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Abstract

Reliance on software has increased expectations for software organizations to
deliver high-quality software to meet the increasing demand from end-users.
Continuous testing is imperative to ensure software quality, yet prolonged
testing can lead to increased market opportunity costs. Consequently, organi-
zations often opt to release software early and subsequently conduct testing
during the operational phase, addressing existing bugs through patch deploy-
ment. These patches, small programs aimed at fixing, improving, or updating
software, serve to rectify security vulnerabilities or bugs efficiently. For minor
changes, patch releases prove more practical and cost-effective than launch-
ing entirely new software versions. The adoption of multi-release software
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endows developers with a competitive advantage, catering to the diverse
needs of end-users. This paper introduces a testing effort-based software
reliability growth model, evaluating the impact of multi-patching on multi-
release software. The model operates under the assumption of continuous
fault removal post-release, using different distribution functions to construct
three framework variations. Parameter estimation employs the Statistical
Package for Social Sciences, with a real dataset serving as a basis for a numer-
ical example illustrating the model’s practical application. Additionally, a
comparative analysis of model performance, based on different distribution
functions, is conducted through multi-criteria decision-makingtechniques.

Keywords: Software reliability growth model, multi-release, patch, testing
cost, multi-criteria decision making.

1 Introduction

Software is a set of instructions, or we can say a set of commands that tells a
computer what task needs to be performed. Technology is all around us and
is very important in our daily lives. Due to the innovative steps in the field of
technology, our regular tasks can now be done easily and effectively. Software
is what we think of modern technology. However, people and businesses
worldwide are using software for various purposes, reaping numerous ben-
efits. Software development can enhance end user’s experiences, introduce
more feature-rich and innovative products to the market, and enhance setup
processes to be safer, more productive, and more efficient (Guesmi et al.
2023; David et al. 2023). Software development represents the entire lifespan
of the software and is known as the software development life cycle (SDLC).
SDLC includes requirement analysis, design, implementation, testing, and
maintenance phases. Testing is one of the crucial phases during the software
development process. During this phase, faults are detected and removed.
Debugging all the faults is not practically possible but it is possible to use the
testing results in order to reduce further faults and failures in the software.

Software Reliability Growth Model (SRGM) is a mathematical model
that is used by software engineers in order to predict software reliability.
It also helps in managing faults during the software development process.
It helps in understanding how the fault count in a software system changes
when the software undergoes the testing and debugging process. SRGM is a
very essential tool for software engineers as it provides a quantitative way to
estimate software development progress in terms of fault removal. Different
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types of SRGM exist, based on different assumptions and mathematical
formulations. These models can be tailored to fit into different software devel-
opment scenarios, resulting in more accurate reliability prediction. SRGM
plays a crucial role in ensuring that software meets the expected level of
quality before it is released into the market. Some of the most commonly used
SRGMs (Goel and Okumoto, 1979; Yamada et al., 1983; Ohba, 1984; Musa
and Okumoto 1984; Yamada et al., 1993; Pham and Zhang, 1997; Huang
et al., 1997).

In the context of software development, a “release” can be defined as
the specific version of the software that is available to the end users. Each
release includes fault fixes, improvements, and new features over the previous
releases. By using multi-release models’ software engineers gain valuable
insights regarding the reliability of different releases, which helps them in
making decisions about resource allocation, release planning, quality assur-
ance, etc. Bibyan et al. (2023) have proposed a multi-release testing coverage
based on SRGM. Aggarwal et al. (2019) have proposed a multi-release
software showcasing the effect of imperfect debugging and time variable fault
reduction factor. Saraf and Iqbal (2019) have developed a non-homogeneous
Poisson Process (NHPP) based multi-release two-stage model where fault
detection/observation and fault correction/removal are considered.

To identify the relation between detected faults and faults removed during
testing, various testing effort based SRGM have been proposed under a
different set of assumptions (Huang and Lyu 2005; Inoue and Yamada 2013;
Li et al., 2015; Saxena et al., 2021; Samal et al., 2023; Singh et al., 2024;
Pradhan et al., 2024). Huang and Lyu (2005) have introduced a testing
effort-based function known as generalized logistic and further incorporated
this function into the software reliability growth model. Additionally, the
author has also explored the effect of new testing techniques on enhancing
the effectiveness of software testing. Inoue and Yamada (2013) have put
forth testing effort based on SRGM and rely on continuous state space
stochastic process. Furthermore, the authorhas conducteda goodness of fit
assessment. Li et al.(2015) have incorporated testing effort-based functions
with imperfect debugging. Saxena et al. (2021) have proposed testing effort
based SRGM within a fuzzy environment. Furthermore, the author has taken
into account the impact of imperfect debugging. Samal et al. (2023) have
incorporated generalized logistic testing effort function and change point into
the SRGM.

Introducing error-free software is an unattainable task for the testing
team. However, to ensure that end users face the least number of faults during
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the operational phase, software organizations now persist in addressing faults
even after software has been released. During this post-release phase, fault
removal, feature enhancement, etc. is done through patches. Kapur et al.
(2018) have proposed a framework in order to determine the optimal release
time, patching time, and testing stop time of the software to minimize the
overall software cost. Tickoo et al. (2016) have introduced a testing effort-
based cost model to determine the optimal release and patching time of
software. Saxena et al. (2024) have modeled software release time and
patch release time. Anand et al. (2017) have proposed a scheduling policy
for software and presented the impact of patching in lowering the overall
software cost. Kansal et al. (2016) have developed a framework to determine
the optimal release and patching time of the software product under warranty.
Choudhary et al. (2019) have illustrated the testing effort-based cost model
by taking into account the effect of change point and warranty. The authors
focused on determining the optimal time for software release and patching to
minimize the overall cost of the software.

Multi Criteria Decision Making (MCDM) techniques are used to handle
decision-making problems that aim to determine the best alternative by
considering more than one criterion during the selection process (Gupta et al.,
2018; Garg 2019; Devet al., 2020; Saxena et al., 2022; Bibyan and Anand
2022; Rawat et al. 2022; Kumar et al. 2022; Singh et al., 2023; Sharma
et al. 2023; Chaube 2024; Pant et al. 2024). Various MCDM techniques
have been developed and used to date. Gupta et al. (2018) have done the
ranking of SRGM using MCDM approaches. Garg (2019) have conducted
literature-based approach to demonstrate how Multi-Criteria Decision Anal-
ysis (MCDA), specifically using the Analytical Hierarchy Process (AHP)
and TOPSIS models, has been applied to address complex decision-making
problems. Dev et al. (2020) have proposed methods for conducting material
selection using MCDM approaches.

The literature discussed in the current section provides the foundation
for this study and highlights the need to address the existing research gap.
While considerable work has been conducted on multi-release, patching, and
testing effort based SRGM, there is limited exploration of multi-patch multi-
release models. In this research, a multi-release software reliability growth
model (SRGM) is proposed, specifically focused on testing effort allocation
and its impact across multiple software patches. We have also presented three
frameworks featuring distinct distribution functions. These frameworks offer
flexibility in accounting for various real-world distributions of software faults
and their occurrences. Performance of proposed Frameworks represented
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Figure 1 Proposed framework.

using goodness of fit measures. In order to get a clear image of the best-suited
framework for a particular release MCDM approach is used. It is noticed
that the technique VIKOR and entropy is not used in ranking testing effort
based SRGM. The VIKOR (VlseKriterijumskaOptimizacija I Kompromis-
noResenje) is an effective ranking technique as it has simple mathematical
calculations and therefore is more convenient and easier to use (Dev et al.,
2020). We have used entropy for calculating the weights of model parameters.
Therefore, by using these two techniques ranking of proposed frameworks is
done. The proposed framework is shown in Figure 1. The key contributions
of the study are.

• Proposed testing effort based multi-release model showcasing the
impact of multi-patch in each release once the software is introduced
to the market.

• Proposed three models using different distribution functions.
• Identifying the optimal timing for patch releases.
• Model ranking to identify the best fit model for each release is done

using the ENTROPY-VIKOR technique’s.

The structure of the paper is as follows: Section 2 outlines the assump-
tions and notations used throughout. Section 3 focuses on the development of
the model. Section 4 covers data analysis, while Section 5 addresses model
ranking. In Section 6, the results and discussion are presented. Section 7
highlights the limitations, and Section 8 concludes with the conclusion and
future scope.
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2 Assumptions and Notations

The following assumption is taken to develop the model:

1. The fault removal process is a Non-Homogeneous Poisson Process
(NHPP).

2. The software system might randomly fail due to the faults lying in it.
3. Initial fault content in every release is constant.
4. We have assumed that the market opportunity cost is an increasing

function of release time. The second derivative of market opportunity
cost function exists and is continuous (Jiang et al. 2012).

The following notations are taken to develop the model:

ai: Faults in ith release of software where i = 1, 2, 3, . . . , p.
p: Represent releases in multi-release software.

mi(W (t)): Expected number of faults removed during the time interval
Ti−1 ≤ t ≤ Ti where 1 ≤ i ≤ p.

W (t): cumulative testing effort in the time interval (0, t].
t: Represents time. W (t) is a function of time t.

F (W (t)): Failure distribution function.
τij : Patch release timefor jth patch in ith release where i =

1, 2, 3, . . . , p and
j = 1, 2, 3, . . . , q

q: Represents patches in a particular release.
Ti: Time till which the testing process is done in ith release where

i = 1, 2, 3, . . . , p.
c′: Testing cost.
c′′: Market opportunity cost.
cik: Cost of debugging in each release where k = 1, 2, 3 . . . , (q+1)

because for q number of patches there will be (q + 1) intervals
or phases.

bi: Fault detection rate in ith release of software where i =
1, 2, 3, . . . , p.

ci: Factor that modifies the failure detection rate over time ith

release of software where i = 1, 2, 3, . . . , p.

3 Model Development

In the current study, we have modeled the scenario where the single patch
is released between subsequent releases. We have also considered changes
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Figure 2 Timeline depicting the release of patches in a testing effort based on multi-release
software.

in testing resource consumption over time. To depict the testing effort in the
current study, we used Weibull distribution as defined by (Tickoo et al., 2016).

W (t) = W0(1− e−vtk) (1)

Where W0 is total effort expenditure, k is the shape parameter, and v is
the scale parameter. Figure 2 is the timeline to depict the release of patches
in a testing effort based on multi-release software.

3.1 Release 1

To remain competitive in the market, organizations release software early
and address remaining faults through patches. In this study, the time period
considered for Release1 is from [T0, T1], which denotes first release available
in the market. The total number of faults in this release is determined by
Equation (2)(Kapur et al. 2016; Kapur et al. 2011), where m1(W (t)) rep-
resents the mean value function, F1(W (t)) denotes the failure distribution
function, and T1 signifies the time of the initial software introduction to the
market.

Given the scenario of multiple patching, for q patches, there will be
(q + 1) phases. Faults reported during the operational phase of the software
within intervals [T0, τ11], (τ11, τ12], . . . , (τ1q, T1] are debugged during phases
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1, 2, . . . , (q + 1) respectively. The cumulative number of faults removed at
the end of Release 1 is the sum of faults removed in all phases, as expressed
in the equations below.

m1(W (t)) = m11(W (t)) +m12(W (t))+m13(W (t))

+ · · ·+m1(q+1)(W (t)) (2)

where T0 ≤ t ≤ T1 (3)

m11(W (t)) = a1F11(W (t));T0 ≤ t ≤ τ11 (4)

m12(W (t)) = [a1−m11(W (τ11))]F12(W (t)); τ11 < t ≤ τ12 (5)

m13(W (t)) = [[a1−m11(W (τ11))]−m12(W (τ12))]F13(W (t));

τ12 < t ≤ τ13 (6)

m14(W (t)) = [[[a1−m11(W (τ11))]−m12(W (τ12))]−m13(W (τ13))]

× F14(W (t)); τ13 < t ≤ τ14 (7)

m1(q+1)(W (t)) =

[
a1 −

q∑
i=1

m1i(W (τ1i))

]
F1(q+1)(W (t)); τ1q < t ≤ T1

(8)

3.2 Release 2

Release 2 will incorporate faults from the current release and remaining faults
from previous releases. The cumulative number of faults removed at the end
will be the sum of faults removed in all phases.

m2(W (t)) = m21(W (t)) +m22(W (t))+m23(W (t))

+ · · ·+m2(q+1)(W (t));T1 < t ≤ T2 (9)

m21(W (t)) = [a2 + (a1 −m1(W (t)))]F21(W (t));T1 < t ≤ τ21 (10)

m22(W (t)) = [(a2 + a1 −m1(W (t)))−m21(W (τ21))]F22(W (t));

τ21 < t ≤ τ22 (11)

m23(W (t)) = [[(a2 + a1 −m1(W (t)))−m21(W (τ21))]

−m22(W (τ22))]F23(W (t)); τ22 < t ≤ τ23 (12)
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m2(q+1)(W (t)) =

[
(a2 + a1 −m1(W (t)))−

q∑
i=1

m2i(W (τ2i))

]
× F2(q+1)(W (t)); τ2q < t ≤ T2 (13)

3.3 Release 3

Release 3 will incorporate faults from the current release and some remaining
faults from previous releases. The cumulative number of faults removed at the
end will be the sum of faults removed in all phases.

m3(W (t)) = m31(W (t)) +m32(W (t))+m33(W (t))

+ · · ·+m3(q+1)(W (t));T2 < t ≤ T3 (14)

m31(W (t)) = [a3 + ((a2 + (a1 −m1(W (t)))−m2(W (t)))]

× F31(W (t));T1 < t ≤ τ31 (15)

m32(W (t)) = [(a3 + ((a2 + (a1 −m1(W (t)))−m2(W (t))))

−m31(W (τ31))]F32(W (t)); τ31 < t ≤ τ32 (16)

m33(W (t)) = [[(a3 + ((a2 + (a1 −m1(W (t)))−m2(W (t))))

−m31(W (τ31))]−m32(W (τ32))]F33(W (t));

τ32 < t ≤ τ33 (17)

m3(q+1)(W (t)) =

[
(a3 + ((a2 + (a1 −m1(W (t)))−m2(W (t))))

−
q∑

i=1

m3i(W (τ3i))

]
F3(q+1)(W (t)); τ3q < t ≤ T3 (18)

3.4 Release p

The pth release is the final release available in the market. The cumulative
number of faults removed at the end will be the sum of faults removed in all
phases.

mp(W (t)) =

(q+1)∑
k=1

mpk(W (t));T(p−1) < t ≤ Tp (19)
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mp1(W (t)) =

[
ap +

p−1∑
i=1

(ai −mi(W (t)))

]
Fp1(W (t));Tp−1 < t ≤ τp1

(20)

mp2(W (t)) =

[(
ap +

p−1∑
i=1

(ai −mi(W (t)))

)
−mp1(W (t))

]
× Fp2(W (t)); τp1 < t ≤ τp2 (21)

mp3(W (t)) =

[[(
ap +

p−1∑
i=1

(ai −mi(W (t)))

)
−mp1(W (t))

]

−mp2(W (τp2))

]
Fp3(W (t)); τp2 < t ≤ τp3 (22)

mp(q+1)(W (t)) =

(ap + p−1∑
i=1

(ai −mi(W (t)))

)
−

q∑
j=1

mpj(W (t))


× Fp(q+1)(W (t)); τpq < t ≤ Tp (23)

The generalized cost model Ci(T ) for multi-patching scenarios in multi-
release software where 1 ≤ i ≤ p is given below.

C1(T ) = c′T1 + c′′T1
2 + c11m11 + c12m12

+ · · ·+ c1(q+1)m1(q+1) (24)

C2(T ) = c′T2 + c′′T2
2 + c21m11 + c22m12

+ · · ·+ c2(q+1)m2(q+1) (25)

. . . .

Ci(T ) = c′Ti + c′′Ti
2 +

p∑
i=1

(
q+1∑
k=1

cikmik

)
(26)

Here c′Ti denotes testing cost for ith release, c′′Ti
2 denoted market oppor-

tunity cost,
∑p

i=1 (
∑q+1

k=1 cikmik) is the cost of debugging in each interval or
phase.
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4 Data Analysis

The estimated values of parameters on the tandem dataset for Weibull distri-
bution are given in Table 1. The estimated values of the proposed model for
all four releases in given in Table 2. Parameter estimation is conducted using
a statistical package for social sciences (SPSS).

The validation of the proposed model is conducted using the Tandem
computer dataset (Wood, 1996). We have modeled the fault removal process
using three different distribution functions (Saxena et al., 2021) F (W (t)) =
1 − e−bW (t), S-shaped F (W (t)) = 1 − (1 + bW (t))e−bW (t) and flexible

F (W (t)) = 1−e−bW (t)

1+ce−bW (t) .
Based on the experience of the testing team the cost parameters are

assumed as: testing cost c′ = 5, market opportunity cost c′′ = 1, cost of
debugging in the interval Tp−1 < t ≤ τ1 is 8, the cost of debugging in the
interval τ1 < t ≤ τ2 is 8; the cost of debugging in the interval τ2 < t ≤ Tp

is 8. Using the cost parameters, we optimize the cost function through genetic
algorithm (GA) in MATLAB. The cost function for the proposed model is
shown in Equation (26). Assumed cost parameter values can be changed for
different scenarios. Using the above parameters, we get the cost function
which is the function of two variables i.e. τ1 and τ2 for each release. On
optimizing the cost function using GA we obtain the optimal cost, and

Table 1 Estimated values for Weibull distribution
Parameters W0 v k

Release 1 11438.411 0.023 1.480
Release 2 12293.040 0.019 1.582
Release 3 5796.362 0.013 2.068

Table 2 Estimated model parameters using SPSS
Model Release Estimated Parameters
Model 1 Release 1 a1 = 141.226 b1 = 0.00013

Release 2 a2 = 184.988 b2 = 0.00005

Release 3 a3 = 85.953 b3 = 0.00013

Model 2 Release 1 a1 = 102.784 b1 = 0.00049

Release 2 a2 = 120.816 b2 = 0.00027

Release 3 a3 = 62.601 b3 = 0.00059

Model 3 Release 1 a1 = 193.652 b1 = 0.00002 c1 = 0.773

Release 2 a1 = 193.650 b2 = 0.00003 c2 = 0.185

Release 3 a1 = 85.955 b3 = 0.00013 c3 = 0.1
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Table 3 Release-wise optimal cost, optimal release time for 1st patch (τ1) and optimal
release time for 2nd patch (τ2) for model 1
Release Optimal Cost ($) Release Time for 1st Patch Release Time for 2nd Patch
Release 1 6071.421 6th week 14th week
Release 2 5972.987 10th week 18th week
Release 3 4621.564 5th week 10th week

Table 4 Release-wise optimal cost, optimal release time for 1st patch (τ1) and optimal
release time for 2nd patch (τ2) for model 2
Release Optimal Cost ($) Release Time for 1st Patch Release Time for 2nd Patch
Release 1 7045.139 11th week 18th week
Release 2 6909.352 6th week 10th week
Release 3 4923.321 4th week 8th week

Table 5 Release-wise optimal cost, optimal release time for 1st patch (τ1) and optimal
release time for 2nd patch (τ2) for model 3
Release Optimal Cost ($) Release Time for 1st Patch Release Time for 2nd Patch
Release 1 6711.628 7th week 16th week
Release 2 4625.421 6thweek 10th week
Release 3 4812.346 6th week 9th week

optimal release time for 1st patch (τ1) and optimal release time for 2nd patch
(τ2). Tables 3–5 shows the optimal data for each release.

The validity of proposed frameworks can be judged by goodness of
fit parameters such as squared errors (SSE), Mean Square Error (MSE),
Predictive Power (PP), correlation index of the regression curve (R2), theil
statistic (TS). The goodness of fit of models on a dataset measure how well a
statistical or predictive model aligns with the actual data. The obtained values
are shown in Table 6.

5 Model Ranking

Ranking of proposed models based on parameters (SSE, MSE, PP, R2, TS)
was obtained using Entropy coupled with the VIKOR approach. Firstly, the
entropy method was used for weight determination, followed by ranking the
proposed models using the VIKOR technique. The applied hybrid technique
comprises four main phases: Phase 1. Determining frameworks and param-
eters. Phase 2. Making decision matrix. Phase 3. Identifying the weights of
model parameters. Phase 4. Ranking each release in proposed frameworks.
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Table 6 Goodness of Fit parameters for the proposed models
Model Release SSE MSE PP R2 TS

Model 1 Release 1 332.437 18.469 0.744 0.981 5.431

Release 2 205.323 11.407 0.588 0.992 3.829

Release 3 60.465 3.359 0.645 0.988 5.202

Model 2 Release 1 1057.48 58.749 1.907 0.935 9.686

Release 2 802.873 44.604 1.998 0.968 7.572

Release 3 124.503 6.917 1.765 0.976 7.465

Model 3 Release 1 311.528 17.307 0.688 0.981 5.257

Release 2 205.679 11.427 0.583 0.992 3.832

Release 3 117.523 6.529 0.658 0.977 7.252

Phase 1: Identifying framework and parameters.

In this phase, we determine the releases (Ri, i = 1, 2, . . . , n) and parameters
Pj , j = 1, 2, . . . ,m). n denotes the total releases of software and m denotes
the total model parameters considered for ranking purposes.

Phase 2. Making Decision matrix

The results of phase 1 are represented in the form of a matrix as shown by
Equation(27).

dij =


d11 d12 . . . d1m
d21 d22 . . . d2m
. . . . . . . . . . . .

dn1dn2 . . . dnm

 (27)

Phase 3. Identifying the weights of model parameters.

First of all, normalize the decision matrix (nij) by using Equation (28) and
computing the entropy value (ej) using Equation (29).

nij =
dij∑n
i=1 dij

(28)

ej = −h

n∑
i=1

dijln dij , j = 1, 2, . . . ,m (29)

h = 1
ln(n) where n is the number of alternatives in our case n is the total

software releases.
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Calculation of weight vector (wj) is done using Equation (30) mentioned
below.

wj =
1− ej∑m

j=1 (1− ej)
, j = 1, 2, . . . ,m (30)

Phase 4. Ranking each release in proposed frameworks is done using the
VIKOR technique.

First of all, beneficial and non-beneficial criteria must be identified. Ben-
eficial criteria represent those with a desirable higher value, while non-
beneficial criteria entail those with a preferable lower value. Next, the best
and worst valuesfor each criterion need to be identified: (di)max for bene-
ficial criteria, (di)min for non-beneficial criteria and worst-case (di)min for
beneficial criteria, (di)max for non-beneficial criteria.

Next, calculate the utility measure (Si) as shown in Equation (31) and
calculate individual regret measure (Ri) as shown in Equation (32).

Si =
m∑
j=1

(
wj ∗

(di)max − dij

(di)max − (di)min

)
(31)

Ri = max

(
wj ∗

(di)max − dij

(di)max − (di)min

)
(32)

Calculate the following values as shown in Equation (33).

S∗ = minSi; S
− = maxSi; R

∗ = minRi; R
− = maxRi (33)

Now calculate VIKOR index (Qi) shown in Equation (34). Here v repre-
sents maximum group utility and (1− v) represents individual regret usually
the value of v is taken as 0.5.

Qi = v ∗ Si − S∗

S− − S∗ + (1− v) ∗ Ri −R∗

R− −R∗ (34)

Finally rank the models based on the VIKOR index.

6 Results and Discussion

The goodness of fit of models on the dataset can be illustrated through the
graphs depicted in Figures 3–5. From the graphs, it is evident that Model 3
provides the best prediction of faults for Release 1 and Release 2, while
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Figure 3 The goodness of fit for release 1.
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Figure 4 The goodness of fit for release 2.

Model 1 is the most effective for predicting faults in Release 3. To attain
a clearer understanding of the best suited model for a specific dataset further
MCDM technique is applied to obtain model ranking. The obtained rankingis
shown in Table 7. It can be seen that release 1 and release 2 can be best
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Figure 5 The goodness of fit for release 3.

Table 7 Model ranking obtained based on the ENTROPY-VIKOR technique
Models Release 1 Release 2 Release 3
Model 1 2 2 1
Model 2 3 3 3
Model 3 1 1 2

modeled with the help of model 3. Release 3 can be best simulated with the
help of model 1.

7 Limitations

The current study focuses on modeling multi-patch, multi-release testing
effort based SRGM which is a novel approach. We have incorporated MCDM
to get a clear image of the best-suited framework for a dataset. MCDM
approach and data set can be changed as per the organization’s requirement.
It is essential to recognize that software functions in diverse environments are
characterized by varying user configurations, hardware, and usage patterns.
Existing models may not fully capture this complexity, which can restrict
their applicability across different contexts. Additionally, a limitation of our
model is that we utilized the Entropy-VIKOR approach for ranking; however,
other hybrid approaches could also be employed depending on the specific
dataset and its characteristics.
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8 Conclusion and Future Scope

As our faith in software continues to grow, so too does the imperative for
software organizations to deliver good quality software efficiently. Continu-
ous testing is important for ensuring quality software, yet a prolonged testing
process can incur significant opportunity costs in the fast-paced market sce-
nario. To navigate this challenge, organizations increasingly adopt a strategy
of releasing software early and subsequently issuing patches to address any
remaining bugs or vulnerabilities. Patches offer a cost-effective solution for
implementing minor changes and updates to software. This paper introduces
a novel testing effort based SRGM to study the impact of multiple patches
on multi-release software. Based on the dataset the optimal cost and patch
release time are identified. Based on the MCDM analysis, Model 3 emerges
as the optimal choice for Release 1 and Release 2, effectively meeting the
criteria for these releases. For Release 3, Model 1 is identified as the best fit,
aligning closely with the unique requirements of this release. This selection
process highlights how MCDM can guide the choice of the most appropriate
models across different releases by evaluating and ranking each model based
on key performance criteria.

In essence, the integration of patching strategies within software devel-
opment processes underscores the importance of adaptability and responsive-
ness in meeting evolving user demands and market dynamics. Overall, this
paper provides a comprehensive framework for managing the complexities
of software maintenance and quality assurance in an era of multiple releases
and multiple patches. This novel approach offers software developers and
stakeholders valuable insights into effective patch management practices in
a dynamic market environment. By embracing such methodologies, orga-
nizations can not only enhance the reliability and quality of their software
products but also maintain competitiveness in an ever-evolving technological
landscape. In the future, this study can be extended by discussing more on
the reliability of multi-patch multi-release software. A comparative analysis
between MCDM techniques can also be done.
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