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Abstract

Cost-effectiveness analysis of a reliability model of two distinguishable
electricity resources is done in this paper. Subsystem-A is taken as the
primary, whereas subsystem-B is taken as the secondary source of electric-
ity. Subsystem-A has three modes – operation, repair, and activation, and
subsystem-B has four modes – operation, inspection, minor repair, and major
repair. Availability of a full-time technician is considered to perform all repair
and activation activities. The technician initiates the repair of subsystem-
A immediately whenever required, whereas inspection is carried out for
subsystem-B to identify the type of repair required. Normal and abnormal
weather conditions are considered to study the impact of weather condi-
tions on repair and activation activities. Only subsystem-A needs activation
after repair, and no repair/activation is carried out in abnormal weather,
while weather conditions do not affect inspection or repair activities of
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subsystem-B. Failure and repair rates of both the subsystems are exponen-
tially distributed, whereas a general distribution is taken for the operation rate
of subsystem-A. Various reliability components like Mean Time to System
Failure (MTSF), steady-state availability, busy period of the server, and profit
of the system model are evaluated using the semi-Markov process. Random
values are taken to show the impact of increasing failure rate of subsystem-A
and rate of change of weather condition from normal to abnormal on MTSF
and the cost-benefit of the system model. Graphs are drawn for MTSF and
profit of the system model, which clearly indicates that MTSF and profit of
the system model are higher for a lesser rate of change in weather conditions.

Keywords: Reliability, inspection, activation, semi-markov, weather, minor
repair, major repair.

1 Introduction

The implication of reliability is evident throughout the planning, design,
and operation stages of varied complex systems. As modern technologies
continue to advance, demand for exceptionally reliable systems has grown
significantly. In view of the growing demand for highly reliable systems,
many researchers, including Murari and Goyal (1983), analysed the reliability
of a system with two types of repair facilities. Goel et al. (1985) discussed the
stochastic behaviour of man-machine systems under different weather condi-
tions. Goel et al. (1986) obtained the reliability of a system with preventive
maintenance, inspection, and two types of repairs. Tuteja and Taneja (1991)
conducted cost-benefit analysis of a two-server, two-unit warm standby sys-
tem with different failure modes. Rander et al. (1992) investigated a two-unit
cold standby system with two types of failures (major and minor) by consider-
ing preparation time for repair in the case of major failure. Gupta et al. (1997)
analysed the reliability of a system with preventive maintenance, inspection,
and two repair policies. Sehgal (2000) studied a reliability model with partial
failure, accidents, and various repair types. Siwach et al. (2001) discussed
a two-unit cold standby system with instructions and accidents. Taneja and
Naveen (2003) conducted a comparative study of two reliability models with
patience time and the non-availability of expert repairmen. Malik et al. (2004)
stochastically analysed a reliability model of non-identical units with priority
and different failure modes. Pawar et al. (2010 A) discussed the reliability
model of an operating system with inspection and repair at different levels
of damages under different weather conditions. Pawar et al. (2010 B) studied
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the reliability model of a system with different repair policies in different
weather conditions. Pawar et al. (2013) analysed a weathering server system
under a set of assumptions. Rathee et al. (2018) completed the modelling and
analysis of a parallel unit system with priority to repair/replacement subject
to maximum operation and repair times. Kumar et al. (2019) conducted profit
analysis of a dissimilar unit system in different weather conditions. Kumar
et al. (2022) analysed the cost-effectiveness of a complex system with diverse
repair policies under normal weather conditions. Ram et al. (2022) analysed a
stochastic model rework system. Chachra et al. (2023) explored an intuition-
istic fuzzy approach to reliability assessment of multi-state systems. Ghosh
et al. (2023) analysed the performance of a non-identical units system with
inspection and operational priority. Various systems require some activation
time and undergo activation processes after repair. For example, solar systems
require some activation time before starting their intended functions after
repair. Considering this aspect, in the present paper we developed a relia-
bility model of two non-identical subsystems: A and B, under the following
assumptions.

• Initially, subsystem A is operative, and subsystem B is in cold standby
mode.

• Subsystem-A has three modes – operation, repair, and activation,
whereas subsystem-B has four modes – operation, inspection, minor
repair, and major repair.

• Normal and abnormal weather conditions are taken to see their impact
on repair and activation of the subsystems.

• All-time availability of a single technician is considered with the system
to perform all repair and activation activities.

• Subsystem-A undergoes repair immediately whenever required, whereas
inspection is carried out for subsystem-B to identify the requirement of
minor/major repair.

• Subsystem-A requires activation after repair, and no activation activ-
ity is carried out in abnormal weather while there is no impact on
inspection/repair of subsystem-B.

• Failure and repair rates of both the subsystems are exponentially dis-
tributed, whereas general distribution is taken as the rate at which
subsystem-A operates.

• Various reliability measures such as MTSF, steady-state availability,
busy period of the server, and profit of the system model are analyzed
using the semi-Markov process.
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• Arbitrary values are taken to represent the outputs of the system model
graphically.

The scope of the present work is in all types of industries that consume
electricity. All industries are depending on the electricity supplied by power
grids. The present study will help those industries that are looking at solar
systems as an alternate and primary source of electricity and want to use off
grid electricity resources. Electricity generation through solar systems and
their maintenance also depends on weather conditions. Therefore, in this
study we considered the impact of weather conditions for optimizing the
cost-benefit of the system.

2 Notations
Ao/Ar/Aa: Subsystem-A is operative in normal mode/ failed and under

repair/ repaired and under activation.
AR/Abwa: Subsystem-A is under continuous repair from previous state/

waiting for activation due to abnormal weather.
Bo/Bcs: Subsystem-B is operative in normal mode/ is in cold standby

mode.
Bfwi/Bfui: Subsystem-B is failed and waiting for inspection/ is under

inspection.
Bwr1/ Br1: Subsystem-B is failed and waiting for minor repair/ under

minor repair.
BWr2/ Br2: Subsystem-B is failed and waiting for major repair/ under

major repair.
α / λ: Failure rate of subsystem-A/ subsystem-B.
θ: Inspection rate of subsystem-B.
a/b: Probability that the failed subsystem-B goes for minor/ major

repair.
β: Repair rate of subsystem-A.
δ: Rate of change of weather from normal to abnormal.
δ1: Activation rate of subsystem-A.
G1(·)/G2(·): c.d.f. of minor/ major repair rates of subsystem-B.
H (·): c.d.f. of activation rate of subsystem-A.
qij: Transition probability by which system transits from state Si

to Sj on or before time ‘t’.
ψi: Mean sojourn time in the state ‘i’ is the probable waiting time

of the system in the ith state before moving to another state.
If sojourn time in ith state is Ti then ψi =

∫
P (Ti> t)dt.
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zi: Probability that the system stays in state Si up to time ‘t’.
mij: System’s mean sojourn time in the ith state when the system

is to transit to the jth regenerative state i.e., mij =
∫
tqij(t)dt.

*/**: Symbol of Laplace Stieltjes Transformation/ Laplace
Transformation.

©/′(desh): Symbols for Laplace Convolution/ derivative of the function.
K0: Revenue per unit up-time when system is operative.
K1: Repairing cost per unit of time for subsystem-A.
K2: Cost per unit of time when subsystem-A is under activation.
K3: Cost per unit of time when subsystem-B is under inspection.
K4: Repairing cost per unit of time for subsystem-B.
K5: Fixed amount paid to the server per unit time.

The possible transition states with their transition rates are shown in Figure 1.
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3 Transition Probabilities and Mean Sojourn Times

The probabilities of steady-state transitions are calculated as follows:

pij = lim
t→∞

Qij(t); p
(k)
ij (t) = lim

t→∞
Q

(k)
ij (t)

Therefore,

p01 = p24 = p9,10 = p16,17 = 1; p13 =
β

β + λ
; p

(2)
14 = 1− β

β + λ
;

p30 = H̃(δ + λ); p35 =
δ[1− H̃(δ + λ)]

δ + λ
;

p
(4)
3,11 = [1− H̃(δ)]− δ[1− H̃(δ + λ)]

δ + λ
; p

(4)
36 = H̃(δ)− H̃(δ + λ);

p46 = p10,7 = p13,7 = p15,18 = p17,8 = H̃(δ);

p4,11 = p10,12 = p13,12 = p15,14 = p17,14 = 1− H̃(δ); p53 =
δ1

δ1 + λ
;

p5,11 =
λ

δ1 + λ
; p62 =

α

α+ θ
; p67 =

bθ

α+ θ
; p68 =

aθ

α+ θ
;

p70 = G̃2(α); p79 = 1− G̃2(α); p80 = G̃1(α); p8,16 = 1− G̃1(α);

p11,4 =
δ1

δ1 + θ
; p11,12 =

bθ

δ1 + θ
; p11,14 =

aθ

δ1 + θ
; p12,5 = G̃2(δ1);

p12,13 = 1− G̃2(δ1); p14,5 = G̃1(δ1); p14,15 = 1− G̃1(δ1)

We observe that the following relations hold true:

p01 = p13 + p
(2)
14 = p24 = p30 + p35 + p

(4)
3,11 + p

(4)
36 = p46 + p4,11

= p53 + p5,11 = p62 + p67 + p68 = p70 + p79 = p80 + p8,16

= p9,10 = p10,7 + p10,12 = p11,4 + p11,12 + p11,14 = p12,5 + p12,13

= p13,7 + p13,12 = p14,5 + p14,15 = p15,8 + p15,14

= p16,17 = p17,8 + p17,14 = 1

3.1 Mean Sojourn Time (ψi) in State Si are

ψ0 =
1

α
; ψ1 =

1

β + λ
; ψ2 = ψ9 = ψ16 =

1

β
;
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ψ3 =

∫
e−(δ+λ)tH(t)dt;

ψ4 = ψ10 = ψ13 = ψ15 = ψ17 =

∫
e−δtH(t)dt;

ψ5 =
1

δ1 + λ
; ψ6 =

1

α+ θ
; ψ7 =

∫
e−αtG2(t)dt;

ψ8 =

∫
e−αtG1(t)dt; ψ11 =

1

δ1 + θ
; ψ12 =

∫
e−δ1tG2(t)dt;

ψ14 =

∫
e−δ1tG1(t)dt

Now, we define mij as

mij =

∫
t dθij(t) =

∫
t qij(t)dt

So, we have

m01 =

∫
t αe−αt dt = α

∫
t2−1e−αt dt = α

Γ(2)

α2
=

1

α

Similarly,

m13 =
β

(β + λ)2
; m24 = m9,10 = m16,17 =

1

β
;

m30 =

∫
t e−(δ+λ)tdH(t); m35 = δ

∫
t e−(δ+λ)tH(t)dt;

m46 = m10,7 = m13,7 = m15,8 = m17,8 =

∫
t e−δtdH(t);

m4,11 = m10,12 = m13,12 = m15,14 = m17,14 = δ

∫
t e−δtH(t)dt;

m53 =
δ1

(δ1 + λ)2
; m5,11 =

λ

(δ1 + λ)2
; m62 =

α

(α+ θ)2
;

m67 =
bθ

(α+ θ)2
; m68 =

aθ

(α+ θ)2
; m70 =

∫
t e−αtdG2(t);

m79 = α

∫
t e−αtG2(t)dt; m80 =

∫
t e−αtdG1(t);

m8,16 = α

∫
t e−αtG1(t)dt; m11,4 =

δ1

(δ1 + θ)2
; m11,12 =

bθ

(δ1 + θ)2
;
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m11,14 =
aθ

(δ1 + θ)2
; m12,5 =

∫
t e−δ1tdG2(t);

m12,13 = δ1

∫
t e−δ1tG2(t)dt;

m14,5 =

∫
t e−δ1tdG1(t); m14,15 = δ1

∫
t e−δ1tG1(t)dt;

m
(2)
14 =

1

β
− β

(β + λ)2
; m

(4)
36 =

∫
t{e−δt − e−(δ+λ)t}dH(t);

m
(4)
3,11 = δ

∫
t{e−δt − e−(δ+λ)t}H(t)dt

The following relations among mij’s are observed.

m01 = ψ0; m13 = m
(2)
14 = n1; m24 = m9,10 = m16,17 = ψ2;

m30 = m35 +m
(4)
36 +m

(4)
3,11 = n2; m46 = m4,11 = n3;

m53 = m5,11 = ψ5; m62 = m67 = m68 = ψ6; m70 = m79 = n4;

m80 = m8,16 = n5;

m10,7 +m10,12 = m13,7 +m13,12 = m15,8 +m15,14 = m17,8 +m17,14 = n6;

m11,4 +m11,12 +m11,14 = ψ11; m12,5 +m12,13 = n7;

m14,15 +m14,15 = n8

4 Reliability of the System and MTSF

To determine Ri(t) we assume failed states S2,S4, S9,S10, S11,S12, S13,S14,
S15,S16, S17 of the system as absorbing. By simple probabilistic arguments
we see that R0(t) is the sum of the subsequent contingencies:

1. Probability that the system remains operative in the state without
transiting to any other state up to time ‘t’ is αe−αt = z0(t), say.

2. Probability that the system first enters to the state S1 from S0 during
(u, u + du), u ≤ t and then starting from S1, it remains up continu-
ously during the remaining time (t− u), is

∫ t
0 q01(u)duR1(t− u) =

q01(t)©R1(t).

Thus, we have

R0(t) = z0(t) + q01(t)©R1(t);

R1(t) = z1(t) + q13(t)©R3(t)
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R3(t) = z3(t) + q30(t)©R0(t) + q3.5(t)©R5(t);

R5(t) = z5(t) + q53(t)©R3(t)

where,

z0(t) = e−α1t; z1(t) = e−(λ1+β1)t; z3(t) = e−(λ1+δ)tH(t)

and
z5(t) = e−(λ1+δ1)t

Solving above equations for R∗
0(s) by taking Laplace transform, we get

R∗
0(s) =

N1

D1
(*)

Now, by taking inverse Laplace transformation of (*), we can find the
system reliability when it first starts from state S0.

The average down time of a system is given by lims→0R
∗
0(s). Therefore,

MTSF =
p01p13(y3 + y5p35)(y0 + y1p01)(1− p35p53)

(1− p35p53)− p01p13p30

5 Steady-State Availability

Let Ai(t) be the probability of the system to be operative at epoch ‘t’, when
firstly it starts from state Si ∈ E. By taking Laplace transforms, we get
the value of A0(t) i.e., A∗

0(s). The steady-state availability of the system is
determined by

A0 = lim
t→∞

A0(t) = lim
s→0

sA∗
0(s) =

N2

D′
2

where,

N1 = U0 (ψ0 + p01ψ1) + U1 (ψ3 + p35ψ5) + U2ψ5

+U3ψ6 +U4ψ7 +U5ψ8

and

D′
2 = U0ψ0 + [p62U3 + p79U4 + p8,16U5]ψ2 + p35U1ψ5 +U3ψ6

+U6ψ11 +U0n1 +U1n2 + p
(2)
14 U0n3 +U4n4 +U5n5

+ [p79U4 +U7 +U8]n6 + [p79p10,12U4 + p11,12U6 + p13,12U7]n7

+ [p8,16p17,14U5 + p11,14U6 + p15,14U8] n8
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During (0, t), the probable operation time of the system is given by m∗
up(s) =

A∗
0(s)/s.

6 Busy Period Analysis

Let BA
i (t), B

a
i (t), B

i
i(t) and BB

i (t) are the probabilities that at time ‘t’, the
server is busy in the repair of failed subsystem-A, activation of subsystem-A,
inspection of failed subsystem-B and minor/major repair of failed subsystem-
B respectively, when the system initially starts from state Si ∈ E. Now, taking
the Laplace transforms of the above probabilities we can obtain the values
BA∗
i (s), Ba∗

i (s), Bi∗
i (s) and BB∗

i (s) respectively.
The probabilities that the server will be busy in the repair of a failed

subsystem-A, activation of subsystem-A, inspection of failed subsystem-B,
minor/major repair of failed subsystem-B respectively are given by,

BA
0 = N3/D

′
2; Ba

0 = N4/D
′
2; Bi

0 = N3/D
′
2 and BB

0 = N3/D
′
2

where,

N3 = [ψ1 + p12ψ2] U0 + p62ψ2U3 + p79ψ9U4 + p8,16ψ16U5

N4 = p
(2)
14 ψ4U0 + [ψ3 + p34ψ4] U1 + p62ψ4U3 + p79ψ10U4

+ p8,16ψ17U5 + p11,4ψ4U6 + ψ13U7 + [ψ15 + p15,8p8,16] U8

N5 = ψ6U3 + ψ11U6

N6 = ψ7U4 + ψ8U5 + (p11,12ψ12 + p11,14ψ14)U6 + p13,12ψ12U7

+ p15,14ψ14U8 + p79p10,12ψ12U4 + p8,16p17,14ψ14U5

and D′
2 is identical as defined in availability.

During (0, t), expected busy time of the server in the repair of failed
subsystem-A, activation of subsystem-A, inspection of failed subsystem-
B and minor/major repair of subsystem-B are given by µA∗

b (t) =
BA∗
0 (s)/s;µa

∗
b ( s) = Ba∗

0 (s)/s;µi∗b ( s) = Bi∗
0 (s)/s and µB

∗∗
b (s) = BB∗

0 (s)/s
respectively.

7 Cost-Benefit Analysis

Consider the expected uptime of the system when system is operative and
expected busy periods of the repairman when he is busy in inspection, repair



Cost-Effectiveness Analysis of a System of Distinguishable Subsystems 343

and activation of failed subsystems. Then during (0, t), the expected profit
incurred by the system is

P(t) = Expected total revenue in (0, t)− Expected total repair cost in (0, t)

= K0µup(t)−K1µ
A
b (t)−K2µ

a
b(t)−K3µ

i
b(t)−K4µ

a
b(t)−K5

In steady state, expected profit per unit time is given by

P =K0A0 −K1B
A
0 −K2B

a
0 −K3B

i
0 −K4B

B
0 −K5

where, A0,B
A
0 ,B

a
0,B

i
0 and BB

0 are already defined.

8 Particular Case

To study the behaviour of MTSF and profit of the system model, all the repair
and activation time distributions taken negative exponential i.e.,

G1(t) = 1− e−γ1t; G2(t) = 1− e−γ2t and H(t) = 1− e−γ3t

We get following values of steady-state transition probabilities and mean
sojourn times:

p30 =
γ3

δ + λ+ γ3
; p35 =

δ

δ + λ+ γ3
;

p46 = p10,7 = p13,7 = p15,8 = p17,8 =
γ3

δ + γ3
;

p4,11 = p10,12 = p13,12 = p15,14 = p17,14 =
δ

δ + γ3
; p70 =

γ2
α+ γ1

;

p79 =
α

α+ γ2
; p80 =

γ1
α+ γ1

; p8,16 =
α

α+ γ1
; p12,5 =

γ2
δ1 + γ2

;

p12,13 =
δ1

δ1 + γ2
; p14,5 =

γ1
δ1 + γ1

; p14,15 =
δ1

δ1 + γ1
;

p36 = p46 − p30; p
(4)
3,11 = p4,11 − p35

ψ3 =
1

δ + λ+ γ3
; ψ4 = ψ10 = ψ13 = ψ15 = ψ17 =

1

δ + γ3
;

ψ7 =
1

α+ γ2
; ψ8 =

1

α+ γ1
; ψ12 =

1

δ1 + γ2
; ψ14 =

1

δ1 + γ1
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m30 =
γ3

(δ + λ+ γ3)
2 ; m35 =

δ

(δ + λ+ γ3)
2 ;

m46 =
γ3

(δ + γ3)
2 = m10,7 = m13,7 = m15,8 = m17,8;

m4,11 =
δ

(δ + γ3)
2 = m10,12 = m13,12 = m15,14 = m17,14;

m70 =
γ2

(α+ γ2)
2 ; m79 =

α

(α+ γ2)
2 ; m80 =

γ1

(α+ γ1)
2 ;

m8,16 =
α

(α+ γ1)
2 ; m12,5 =

γ2

(δ1 + γ2)
2 ; m12,13 =

δ1

(δ1 + γ2)
2 ;

m14,5 =
γ1

(δ1 + γ1)
2 ; m14,15 =

δ1

(δ1 + γ1)
2 ;

m
(4)
36 = m46 −m30; m

(4)
3,11 = m4,11 −m35

9 Discussion

To show the behaviour of the system model, tables and graphs are plotted for
MTSF and profit function w.r.t. α (increasing failure rate of subsystem-A)
for different rates of change of weather from normal to abnormal (δ) whereas
values of other parameters are taken as λ = 0.07, β = 0.7, θ = 0.6, a = 0.5,
b = 0.5, γ1 = 0.7, γ2 = 0.6, γ3 = 0.8, δ1 = 0.7, K0 = 35000, K1 = 5000,
K2 = 1000, K3 = 2000, K4 = 1000 and K5 = 5000.

Table 1 Variation in the values of MTSF of the system model
A δ = 0.2 δ = 0.3 δ = 0.4

0.005 2494 1345.12 1038
0.010 1256 846.30 522
0.015 843 568.40 350
0.020 636 429.10 265
0.025 512 345.10 213
0.030 430 289.80 179
0.035 371 249.90 154
0.040 327 220.50 136
0.045 292 196.70 121
0.050 265 178.50 110
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Table 2 Variation in the values of profit of the system model
α δ = 0.2 δ = 0.3 δ = 0.4

0.005 21240 19180 17250
0.010 18150 17570 16090
0.015 16580 16260 15280
0.020 15620 15390 14688
0.025 14974 14771 14228
0.030 14511 14307 13861
0.035 14162 13945 13561
0.040 13888 13653 13309
0.045 13669 13413 13095
0.050 13488 13210 12909
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10 Conclusion

Table 1 and Figure 2 shows the behaviour of MTSF with respect to α for
different values of δ i.e., 0.2, 0.3, and 0.4. From above table and graph,
we observe that MTSF of the system model is decreasing with increasing
α. It is also clear that increment in δ decreases the MTSF. Initially, there
is a significant decrease in MTSF and then it decreases at an approximate
constant rate. Table 2 and Figure 3 reveals the behaviour of profit of the
system model with respect to α for different values of δ. The profit function
also shows a significant decrease in profit and then it decreases gradually with
increasing α. We can conclude that MTSF and profit of the system model will
be maximum for lower rate of change of weather conditions.

Further, MTSF and profit of the considered system model can be analysed
with a different set of assumptions such as delay in the repair facility,
replacement of the subsystem-A/subsystem-B, using fuzzy concept, etc.
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