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Abstract

This paper introduces a novel system consisting of two dissimilar units
operating in parallel, each with distinct failure modes. This flexibility in units
characteristics minimizes the risk of simultaneous failures due to common
causes. The system’s mathematical model is developed using a semi-Markov
approach, and a numerical method based on the regenerative point technique
is applied to estimate various reliability measures, such as the mean time to
system failure (MTSF) and system availability. Failure rates are modeled as
exponentially distributed, while repair rates are allowed to follow arbitrary
distributions. Additionally, the proposed model undergoes graphical analysis
to evaluate system performance under varying parameters.
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1 Introduction

Reliability and redundancy are essential concepts in engineering, computing,
and systems design, significantly impacting performance and user satis-
faction. Reliability refers to a system’s ability to consistently perform its
intended functions without failure, which is crucial for safety-critical applica-
tions such as aviation and medical devices. High reliability builds user trust
and confidence, leading to improved customer retention and brand reputa-
tion. Moreover, reliable systems can enhance cost efficiency by minimizing
downtime and reducing maintenance needs. In many industries, compliance
with regulatory requirements for system reliability is necessary, emphasizing
the importance of adherence to established safety and performance standards.
Additionally, reliability is vital for maintaining data integrity in storage and
processing systems, ensuring that data remains accurate and accessible over
time. On the other hand, redundancy is a critical strategy for enhancing sys-
tem resilience and fault tolerance. Redundant systems can maintain operation
even when one or more components fail, thus improving overall availability
and reliability. This feature is particularly important for critical applications
that require uninterrupted service. Redundancy can also facilitate load bal-
ancing in computing environments, distributing workloads across multiple
components to optimize performance and efficiency. Furthermore, it plays a
crucial role in disaster recovery, providing backup options for data restoration
and ensuring continuity in the event of catastrophic failures. By incorporating
redundancy, organizations can effectively mitigate risks associated with hard-
ware malfunctions, software bugs, and unforeseen events. In summary, both
reliability and redundancy are vital for developing robust systems capable of
withstanding challenges while effectively meeting user needs.

The pursuit of increased reliability is essential for long-term performance
and operational efficiency in today’s industrial and technological environ-
ment. Additionally, the configurations and designs of industrial systems are
becoming more complex, which affects their reliability. Experts are contin-
uously striving to develop more productive and lucrative models despite the
fact that society’s ever-increasing demands are complicating system designs.
Moreover, the strength and effectiveness of such systems in the face of
failures must be controlled. Strategies for improving reliability proposed by
researchers include the provision of spare units, high-quality components,
optimal configurations, and appropriate repair mechanisms.

Reliability analysis plays a crucial role in assessing the performance of
systems with parallel units, particularly in the context of varying operational
conditions and failure modes. Kumar and Gupta [1] analyzed a single-unit
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M/G/1 system model with a helping unit. Their study focused on the
reliability of the system by incorporating the concept of a supplementary unit,
which aids in reducing downtime and improving system performance. Kumar
and Sirohi [2] examined a two-unit cold standby system where the repair of a
partially failed unit is delayed. Their analysis emphasized the significance of
this delay on system profitability and how better utilization of the units could
lead to optimized system operation. Kumar and Sharma [3] investigated a
system with two non-identical units operating in parallel, where inspection
intervals and correlated lifetimes played a critical role in system reliability.
They highlighted that non-identical units, when subjected to inspection, can
offer practical insights into improving system efficiency. Singh and Poo-
nia [4] used a probabilistic approach to evaluate the reliability of a two-unit
parallel system with correlated lifetimes, considering the inspection process.
They applied the regenerative point technique to demonstrate the impact of
lifetime correlation on system reliability, underscoring the importance of this
factor in reliability assessments.

Kumar, A. et al. [5] analyzed the cost implications of a finite capacity
queue with server failures, balking, and a threshold-driven recovery policy,
highlighting how these factors impact system costs and performance opti-
mization. Shekhar, C., et al. [7] studied load-sharing redundant repairable
systems with switching and reboot delays, addressing the challenges in relia-
bility management under these conditions. Additionally, Shekhar, C. et al. [8]
examined fault-tolerant redundant repairable systems with various failures
and delays, offering valuable insights into the impact of delay factors on sys-
tem performance. In recent, matrix method approach was used for sensitive
analysis for standby ,vacation and common cause failure events in safety
assessment (c.f. [6, 7, 9–14]). Hu et al. [15] introduced a parallel Bayesian
probabilistic integration framework for structural reliability analysis, focus-
ing on small failure probabilities to enhance assessment accuracy. Ahmadi
et al. [16] emphasized state-dependent mean residual time in their reliability
modeling and maintenance planning for parallel systems, improving mainte-
nance strategies. Bo et al. [17] proposed a DNN-based reliability evaluation
method for multi-state series-parallel systems using a semi-Markov process,
showcasing the potential of machine learning in reliability assessments.

Most studies are based on the assumption that all units operating in
parallel are either identical or have identical failure rates. However, parallel
systems consisting of dissimilar units with different modes of failure have not
been investigated so far. Additionally, it is not always practical to use standard
quality units due to their high cost. Different quality units may be utilized to
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enhance the profitability of the system. Furthermore, the dissimilar nature of
these system units ensures that they are less likely to fail simultaneously due
to common causes of failure. In this article, a profit analysis of a stochastic
model with two dissimilar units is conducted. One unit is of merit quality
and has two types of failures: partial and total failure, while the other unit of
low merit quality has only one mode of failure. A single server is available
for the repair of both types of units. Numerical and sensitivity analyses are
also performed using the Regenerative Point Technique and the semi-Markov
process. To illustrate the simulated results, graphs have been created.

2 System Description

The system model consists of various states representing the operational and
repair conditions of two dissimilar parallel units. In the state D1o/D2o, the
first unit is operative while the second unit is also operative. In the partially
failed state of the first unit, denoted as D̄1uro, the first unit remains operative
while undergoing simultaneous repairs. The state D̄1URo signifies that the
repair process of the partially failed and operative first unit is continuing from
a previous state. When the system is in the state D1ur/D2ur, the first unit is
completely failed while the second unit is under repair. Similarly, in the state
D1UR/D2UR, the totally failed first unit is under repair, and the second unit
is also under repair from its previous state. The notation D̄1wro represents
a partially failed first unit that remains operative but is waiting for repair.
Finally, the state D1wr indicates that the totally failed first unit is waiting for
repair, and the state D2wr/D2WR signifies that the failed second unit is either
waiting for repair or waiting for repair from a previous state. In the following
analysis, a model consisting of two dissimilar parallel units is examined based
on the assumptions outlined below:

• Unit 1 experiences two types of failures, while Unit 2 is characterized
by a single mode of failure.

• Unit 1 operates in a partial failure mode, with repairs being conducted
simultaneously during its operation.

• A single server facility is available to facilitate the repair processes for
both units.

• The failure rates of both units are assumed to follow negative exponen-
tial distributions.

• The repair rates are treated as variable, allowing for a range of scenarios
to be analyzed within the model.

• In the proposed model, S = {S0, S1, S2, S4} are regenerative states.
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2.1 Notations

S : Set of regenerative states

pij : Probability of transition from state i to j

pi,j.m.n : Transition probability from state i to j via states m and n

λ1 : Constant partial failure rate of first unit

λ2 : Partial failure to total failure rate of the first unit

λ3 : Constant failure rate of the second unit

g1(t) : P.D.F of the repair rate of the partially failed first unit

g(t) : P.D.F of repair rate of totally failed first unit

g2(t) : P.D.F of the repair rate of the second failed unit

G1(t) : C.D.F of the repair rate of the partially failed first unit

G(t) : C.D.F of repair rate of totally failed first unit

G2(t) : C.D.F of the repair rate of the second failed unit

§/© : Symbol for Stieltjes convolution / Laplace convolution

‘/∗ : Symbol for Laplace-Stieltjes transform (LST) / Laplace

transform (LT)

3 Reliability Characteristics

3.1 Transition Probabilities and Sojourn Times

The expressions specifying the probability of transition form any state i to
j are:

pij = lim
t→∞

Qij(t)dt = Qij(∞) =

∫ ∞

0
qij(t)dt.

The different system related transition probabilities are given by:

p0,1 =
λ1

λ1 + λ3
, p0,4 =

λ3

λ1 + λ3
, p1,0 = g∗1(λ2 + λ3),

p1,2 =
λ2(1− g∗1(λ2 + λ3))

λ2 + λ3
, p1,7 =

λ3(1− g∗1(λ2 + λ3))

λ2 + λ3
,
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p2,3 = 1− g∗(λ3), p2,0 = g∗(λ3) ,

p3,4 = 1, p4,0 = g∗2(λ1), p4,5 = 1− g∗2(λ1),

p5,1 = g∗2(λ2), p5,6 = 1− g∗2(λ2),

p6,2 = 1, p7,4 = g∗1(λ2), p7,8 = 1− g∗1(λ2), p8,4 = 1 (1)

Also,

p0,1 + p0,4 = p1,0 + p1,2 + p1,7 = p2,0 + p2,3 = p3,4 = p4,0+

p4,5 = p5,1 + p5,6 = p6,2 = p7,8 + p7,4 = p8,9 = 1
(2)

The mean sojourn times corresponding to various transition states
indulged in system are:

µ0 =
1

λ1 + λ3
, µ1 =

1− g∗1(λ2 + λ3)

λ2 + λ3
, µ2 =

1− g∗(λ3)

λ3
,

µ3 = −(g∗)′(0), µ4 =
1− g∗2(λ1)

λ1
, µ5 =

1− g∗2(λ2)

λ2
,

µ6 = −(g∗2)
′(0), µ7 =

1− g∗1(λ2)

λ2
, µ8 = −(g∗)′(0)

(3)

: Operative State : Failed State: Regenerative States
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Figure 1 State transition diagram.
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3.2 Mean Time to System Failure

Assume Φi(t) is used to denote the C.D.F of first passage time from any
regenerative state i to any failed state where failed state is regarded as an
absorbing state, the following recursive relations are defined for Φi(t):

Φ0(t) = Q0,1(t)§Φ1(t) +Q0,4(t)§Φ4(t)

Φ1(t) = Q1,0(t)§Φ0(t) +Q1,2(t)§Φ2(t) +Q1,4.7(t)§Φ4(t) +Q1,8.7(t)

Φ2(t) = Q2,0(t)§Φ0(t) +Q2,3(t)

Φ4(t) = Q4,0(t)§Φ0(t) +Q4,1.5(t)§Φ1(t) +Q4,6.5(t)

Laplace-Stieltjes transform of (4) will provide solution for Φ′
0(s). If R(t)

represents the reliability of the system, then it is defined as:

R∗(s) =
1− Φ‘

0(s)

s
(4)

Inverse Laplace Transform of (4) will measure the reliability R(t) of the
system. Also, mean time to system failure of the system is given by:

MTSF = lim
s→0

R∗(s) (5)

MTSF =
A
B

(6)

where A and B are A = µ0(1−p1,4.7p4,1.5)+(µ1+p1,2µ2)(p0,1+p0,4p4,1.5)+
µ4(p0,4 + p0,1p1,4.7) B = 1− p0,1(p1,0 + p1,2p2,0 + p1,4.7p4,0)− p0,4(p4,0 +
p4,1.5p1,0 + p1,2p2,0p4,1.5)− p1,4.7p4,1.5.

3.3 Availability Analysis

Suppose the system entered any regenerative state i at t = 0 and let it be in
upstate at any instant t. Recursive relations for Ai(t) are given by:

A0(t) = M0(t) + q0,1(t)©A1(t) + q0,4(t)©A4(t)

A1(t) = M1(t) + q1,0(t)©A0(t) + q1,2(t)©A2(t)

+ (q1,4.7(t) + q1,4.7.8(t))©A4(t)

A2(t) = M2(t) + q2,0(t)©A0(t) + q2,4.3(t)©A4(t)

A4(t) = M4(t) + q4,0(t)©A0(t) + q4,1.5(t)©A1(t)

+ q4,2.5.6(t)©A2(t)

(7)
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where

M0(t) = e−(λ1+λ3)t,M1(t) = e−(λ2+λ3)tG1(t),

M2(t) = e−(λ3)tG(t),M4(t) = e(−λ1)tG2(t) (8)

L.T. of relations (7) determines the value of A∗
0(s), which further defines

the steady state availability of the system as follows:

A0(∞) = lim
s→0

sA∗
0(s) =

N2

D2
(9)

where

N2 = µ0(1− p4,1.5(p1,4.7 + p1,4.7.8)− p2,4.3(p4,2.5.6 + p1,2p4,1.5))

+ µ1(p0,1 + p0,4p4,1.5 − p0,1p2,4.3p4,2.5.6)

+ µ2(p1,2(p0,1 + p0,4p4,1.5) + p0,4p4,2.5.6

+ p0,1p4,2.5.6(p1,4.7 + p1,4.7.8))

+ µ4(p0,4 + p0,1(p1,4.7 + p1,4.7.8 + p1,2p2,4.3))

D2 = µ′
0(p4,0 + p4,1.5p1,0 + (p1,2p4,1.5 + p4,2.5.6)p2,0)

+ µ′
1(p4,1.5 + p0,1(p4,0 + p2,0p4,2.5.6))

+ µ′
2(p4,2.5.6 + p1,2p4,1.5 + p0,1(p1,2p4,0 − p1,0p4,2.5.6))

+ µ′
4(1− p0,1p1,0 − p0,1p1,2p2,0)

(10)

3.4 Busy Period Analysis of Server

Assuming that the system gets into regenerative state i at t = 0 and Bi(t) to
be the probability that server is engaged in at any time t, then Bi(t) abides by
the following relations:

B0(t) = q0,1(t)©B1(t) + q0,4(t)©B4(t)

B1(t) = W1(t) + q1,0(t)©B0(t) + q1,2(t)©B2(t)

+ (q1,4.7(t) + q1,4.7.8(t))©B4(t)

B2(t) = W2(t) + q2,0(t)©B0(t) + q2,4.3(t)©B4(t)

B4(t) = W4(t) + q4,0(t)©B0(t) + q4,1.5(t)©B1(t) + q4,2.5.6(t)©B2(t)
(11)

Here,

W1(t) = e−(λ2+λ3)tG1(t), W2(t) = e(−λ3)tG(t), W4(t) = e(−λ1)tG2(t),
(12)
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L.T. of relations (11) will estimate the value of B∗
0(s) and the time for

which server is occupied in steady state is defined by:

B0(∞) = lim
s→0

sB∗
0(s) =

N3

D2
(13)

N3 = W ∗
1 (0)(p0,1 + p0,4p4,1.5 − p0,1p2,4.3p4,2.5.6)

+W ∗
2 (0)(p1,2(p0,1 + p0,4(p4,1.5

+ p4,2.5.6)) + p0,1p4,2.5.6(p1,4.7 + p1,4.7.8)) +W ∗
4 (0)(p0,4

+ p0,1p1,4.7 + p0,1(p1,2p2,4.3 + p1,4.7.8))

(14)

and D2 is already established in (10).

3.5 Server’s Expected Number of Visits

Assuming that system works initially from regenerative state i at t = 0, let
Nvi(t) be the expected times for server’s visit in (0, t], the following relations
holds for Nvi(t):

Nv0(t) = Q0,1(t)§(1 +Nv1(t)) +Q0,4(t)§(1 +Nv4(t))

Nv1(t) = Q1,0(t)§Nv0(t) +Q1,2(t)§(1 +Nv2(t))

+ (Q1,4.7(t) +Q1,4.7.8(t))§(1 +Nv4(t))

Nv2(t) = Q2,0(t)§Nv0(t) +Q2,4.3(t)§(1 +Nv4(t))

Nv4(t) = Q4,0(t)§Nv0(t) +Q4,1.5(t)§(1 +Nv1(t))

+Q4,2.5.6(t)§(1 +Nv2(t))

(15)

L.S.T. of (15) and further solving for Nv‘0(s), the expected number of
times of server’s visit are given by:

Nv0(∞) = lim
s→0

sNv′0(s) =
N4

D2
(16)

where

N4 = p0,1(1 + p1,2(1 + p2,4.3) + p1,4.7 + p1,4.7.8 + p4,2.5.6)

+ p0,4p4,1.5(1 + p1,2)− p0,1p4,2.5.6(p2,4.3

− p1,4.7 − p1,4.7.8)

(17)

and D2 is already described in (10).
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3.6 Profit Analysis

The system’s profit (P) at steady state can be calculated as follows:

P = K1A0 −K2B0 −K3Nv0 (18)

where
K1 = Revenue generated by system per unit up time.
K2 = Server’s cost per unit time for repairing.
K3 = Server’s cost per visit.

4 Numerical Illustration

For performing sensitivity analysis of proposed model, consider specific case
by assuming g(t) = βe−βt, g1(t) = β1e

−β1t, g2(t) = β2e
−β2t. The effect

of various limiting factors like failure rates, repair rates has been probed on
reliability measures like MTSF, availability and profit of the system model.
Tables 1 and 2 represent the changes in MTSF and availability of system with
respect to failure rates and repair rates respectively.

Profitability of system is evaluated by letting K1 = 5000,K2 =
500,K3 = 100. Table 3 shows how failure as well as repair rates affects
the profit of system.

The numerical and graphical analyses of the system in relation to various
factors reveal distinct behavioral patterns exhibited by different performance
metrics. As the failure rates of both units increase, the Mean Time to System
Failure (MTSF) of the system exhibits a declining trend, as illustrated in
Figure 2. Notably, numerical experiments indicate that variations in the value

Table 1 Effect of failure rates on MTSF and availability

λ1

β = 0.4, β1 = 0.6, β2 = 0.5
MTSF Availability

λ2 = 0.7,
λ3 = 0.4

λ2 = 0.5,
λ3 = 0.6

λ2 = 0.5,
λ3 = 0.9

λ2 = 0.5,
λ3 = 0.4

λ2 = 0.5,
λ3 = 0.6

λ2 = 0.7,
λ3 = 0.6

0.1 16.0398 13.6538 12.1014 0.830523 0.807273 0.782298
0.2 8.84855 7.33333 6.35003 0.729469 0.694315 0.660111
0.3 6.48438 5.24904 4.44811 0.662362 0.619724 0.58189
0.4 5.32288 4.22131 3.50711 0.614556 0.567061 0.527523
0.5 4.63986 3.61458 2.94949 0.578771 0.527828 0.487542
0.6 4.19345 3.21725 2.58289 0.55098 0.497468 0.456905
0.7 3.88336 2.93878 2.32493 0.528772 0.473277 0.432679
0.8 3.65559 2.73402 2.1345 0.51062 0.453548 0.413042
0.9 3.48266 2.57797 1.98881 0.495505 0.437151 0.396804
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Table 2 Effect of repair rates on MTSF and availability

β
λ1 = 0.4, λ2 = 0.5, λ3 = 0.4

β1 = 0.6, β2 = 0.5 β1 = 0.8, β2 = 0.5 β1 = 0.6, β2 = 0.7
MTSF Availability MTSF Availability MTSF Availability

0.1 5.05682 0.411506 5.23214 0.42893 5.28716 0.466486
0.2 5.17857 0.533897 5.35448 0.557874 5.43246 0.599591
0.3 5.27289 0.586968 5.44879 0.614451 5.54589 0.656539
0.4 5.34810 0.614556 5.52372 0.644243 5.63688 0.685962
0.5 5.40948 0.630555 5.58468 0.661763 5.71151 0.702969
0.6 5.46053 0.640544 5.63525 0.672868 5.77381 0.713567
0.7 5.50364 0.647122 5.67787 0.680300 5.82661 0.720536
0.8 5.54054 0.651629 5.71429 0.685484 5.87193 0.725308
0.9 5.57248 0.654815 5.74576 0.689219 5.91126 0.728679

Table 3 Effect of failure rates and repair rates on profit

λ1
β = 0.4, β1 = 0.6, β2 = 0.5

β
λ1 = 0.4, λ2 = 0.5, λ3 = 0.4

λ2 = 0.5,
λ3 = 0.4

λ2 = 0.8,
λ3 = 0.4

λ2 = 0.5,
λ3 = 0.7

β1 = 0.6,
β2 = 0.5

β1 = 0.8,
β2 = 0.5

β1 = 0.6,
β2 = 0.7

0.1 3940.69 3811.34 3797.88 0.1 1911.31 1997.95 2178.13
0.2 3439.81 3258.95 3250.65 0.2 2484.69 2603.44 2804.92
0.3 3106.08 2901.25 2899.65 0.3 2735.73 2871.49 3075.7
0.4 2867.61 2650.62 2633.43 0.4 2867.61 3013.98 3217.09
0.5 2688.6 2465.19 2442.01 0.5 2944.98 3098.63 3299.76
0.6 2549.22 2322.41 2293.5 0.6 2993.9 3152.86 3351.94
0.7 2437.58 2209.07 2174.88 0.7 3026.55 3189.56 3386.72
0.8 2346.13 2116.89 2077.91 0.8 3049.25 3215.46 3410.89
0.9 2269.82 2040.46 1997.14 0.9 3065.56 3234.36 3428.24

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

2

4

6

8

10

12

14

16

18

M
ea

n 
T

im
e 

to
 S

ys
te

m
 F

ai
lu

re
 (

M
T

S
F

)

MTSF vs Failure Rate
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of λ2 (ranging from partial failure to total failure of the merit quality unit)
have minimal impact on the MTSF. In contrast, the failure rate of the second
unit (λ3) significantly influences the MTSF of the system. Figure 4 illustrate
the changes in the MTSF with varying repair rates, further highlighting the
system’s sensitivity to repair strategies.

The analysis of system availability is illustrated in Figure 3. Initially, the
system’s availability exhibits a sharp decline as the failure rate increases.
Furthermore, a significant decrease in availability is observed when the
failure rate of the second unit (λ2) rises. The impact of different repair rates
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on system availability varies, with an increase in the repair rate of the second
unit contributing to a more substantial enhancement in availability compared
to an equivalent increase in the repair rate of the first unit, as demonstrated
in Figure 4. Additionally, the profitability of the system can be improved by
effectively managing the behavior of various parameters. Figure 3 indicates
that profit declines as the failure rate increases. Meanwhile, Figure 4 illus-
trates the relationship between profit and repair rates, showcasing how
adjustments in repair strategies can influence overall profitability.

5 Conclusion

In this study, the performance of a system with two dissimilar parallel units
was evaluated by analyzing the effects of varying failure and repair rates on
key metrics such as Mean Time to System Failure (MTSF), availability, and
profitability. The results demonstrate that an increase in failure rates leads to a
noticeable reduction in both MTSF and system availability. Among the failure
parameters, the failure rate of the second unit (λ3) has a more significant
impact on the system’s performance, particularly on the MTSF. The repair
rates of the units, especially the repair rate of the second unit (β2), play
a crucial role in improving both availability and profitability. Higher repair
rates, particularly for the second unit, result in better system performance and
greater profitability, underscoring the importance of repair efficiency in main-
taining system reliability. Additionally, profitability is found to decline with
increasing failure rates but improves significantly with higher repair rates,
highlighting the potential for optimizing system performance by controlling
these parameters.

The study emphasizes the importance of prioritizing the reduction of
failure rates, especially for the second unit, and enhancing repair strategies
to improve both operational efficiency and profitability. These findings offer
valuable insights for reliability engineers in industries where maintaining
system uptime and profitability is critical. Future research could explore
more complex systems and maintenance strategies under different stochastic
scenarios to further optimize system performance.
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