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Abstract

In this research article, we present a comprehensive analysis of a repairable
M/M/1/K queueing system that incorporates a threshold-based recovery
policy to address server breakdowns, catastrophic events, and customer
behaviors such as reneging and balking. In this model, the server fails
only when at least one customer is present, and recovery is initiated once
the number of customers in the queue reaches a specified threshold T
(1 ≤ T < K). We derive closed-form expressions for the system’s steady-
state solutions using successive over-relaxation. The study develops critical
system characteristics, including the number of customers in the system,
the probability of the server being busy, the effective arrival rate, and the
expected waiting time. We formulate a cost model to determine the optimal
threshold value, system capacity, and service rate that minimize the total
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cost, which includes repair costs, downtime expenses, and revenue loss.
Optimization is performed using Newton-Quasi method. The findings offer
valuable insights into queue system design and management, aiding decision-
makers in optimizing cost-effectiveness and enhancing overall system
performance.

Keywords: Breakdown, reneged customers, balking, catastrophic, queue,
threshold-based recovery policy.

1 Introduction

Queue systems are ubiquitous across various sectors, from customer ser-
vice centers to digital platforms, where smooth operation is essential for
organizational success. However, these systems frequently encounter barri-
ers such as server breakdowns, catastrophic events, and customer behavior
phenomena like reneged customers and balking. This research initiates an
extensive cost analysis of finite capacity queue systems, aiming to investigate
the financial implications associated with these challenges and evaluate the
efficacy of implementing a threshold-based recovery policy. The significance
of this inquiry lies in its potential to provide decision-makers with action-
able insights for crafting and managing queue systems effectively. Server
breakdowns can lead to service disruptions, resulting in financial setbacks
and customer dissatisfaction. The complexity of these challenges is further
compounded by the occurrence of catastrophic events. To address these
issues, the study integrates a threshold-based recovery policy, seeking to
identify strategies that effectively mitigate costs. Reneged customers and
balking individuals who leave the queue prematurely and those who choose
not to join it introduce a human-centric perspective to the investigation.
A comprehensive understanding and resolution of the factors influencing
customer behavior are imperative for optimizing the overall performance of
the system.

Queueing theory remains a vital tool in optimizing performance metrics
in both manufacturing and service systems. Classic models like M/M/1 and
M/M/1/K continue to be foundational, but recent research has expanded
these models to address more complex and realistic scenarios. In the last
few years, researchers have focused on integrating artificial intelligence (AI)
and machine learning (ML) into queueing models to enhance predictive
capabilities and system optimization. Recent studies have deepened the
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understanding of balking and reneging behaviors in queueing systems. For
instance, Li and Zhang [14] examined the impact of dynamic pricing on
customer decisions to balk or renege in online service systems. Their findings
highlight that adaptive pricing strategies can mitigate customer impatience,
thereby improving system performance (c.f. [6, 10, 12, 17, 18, 20, 21, 27, 32]).
Their model includes psychological factors, showing how perceived service
quality can reduce reneging rates, especially in critical care environments.

The issue of server breakdowns and the corresponding recovery policies
has gained renewed attention due to the increasing complexity of modern
manufacturing systems. Recent work by Kumar and Singh [7] introduced a
model incorporating predictive maintenance strategies using IoT data, which
reduces downtime and enhances system reliability. Their approach leverages
real-time data analytics to predict and prevent breakdowns before they occur
(c.f. [1, 6, 11]). In another study, Lee and Park [13] proposed a hybrid
model combining queueing theory with simulation techniques to assess the
impact of different recovery policies in a multi-server system. Their results
indicate that a proactive recovery policy, informed by real-time monitoring,
significantly reduces overall system downtime.

Cost analysis in queueing systems has seen innovations through the inte-
gration of AI-driven optimization techniques. For instance, Wang et al. [33]
proposed a novel approach combining queueing theory with deep reinforce-
ment learning (DRL) to optimize service rates and minimize total operational
costs in complex systems. Their research demonstrates that AI-driven models
can outperform traditional optimization methods in dynamic and uncertain
environments (c.f. [8, 20, 22, 24–26, 26, 28]). Additionally, Nguyen et al. [15]
examined the cost implications of incorporating renewable energy sources
into manufacturing systems. Their model evaluates the trade-offs between
energy costs and system performance, offering insights into sustainable
manufacturing practices.

Recent advances in queueing models have focused on enhancing their
applicability in real-time and dynamic environments. One notable devel-
opment is the integration of digital twins and cyber-physical systems with
queueing models, as explored by Xu and Liu [34]. Their research shows that
digital twins, which provide a real-time virtual representation of physical sys-
tems, can be used alongside queueing theory to optimize system performance
dynamically (c.f. [2,3,5,9,19,23,29,34]). Furthermore, the use of blockchain
technology in queue management has been a topic of interest. Yadav and
Sharma [35] introduced a decentralized queue management system using
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blockchain to ensure transparency and fairness in service prioritization.
Their study highlights the potential of blockchain to revolutionize queue
management in sectors like finance and healthcare.

The application of queueing theory to IoT and smart manufacturing has
been a rapidly growing field. Recent studies have focused on integrating
edge computing with queueing models to enhance decision-making at the
manufacturing floor level. For example, Chen et al. [3] proposed a queueing
model that incorporates edge computing to process data locally, reduc-
ing latency and improving real-time responsiveness in smart manufacturing
systems (c.f. [16, 30]). Additionally, the use of 5G networks to support IoT-
enabled queueing systems has been explored by Zhang and Wu [36]. Their
research indicates that 5G’s low latency and high reliability make it an
ideal platform for implementing advanced queueing models in Industry 4.0
environments, particularly in high-tech manufacturing sectors like semicon-
ductor production. The analysis considers a spectrum of factors, including
repair costs, downtime expenses, and potential revenue loss, providing a
holistic view of the financial implications associated with different opera-
tional scenarios. By systematically comparing recovery policies based on
predetermined thresholds, this study aims to pinpoint the most cost-efficient
strategy for minimizing the combined financial impact of server breakdowns,
catastrophic events, Reneged Customers, and Balking. The study delves into
the dynamics of the queueing system under server breakdowns and explores
the implications of catastrophic,reneged customers, and balking. events on
system performance. Recently Mouloud Cherfaoui et al. [4] investigates a
feedback queueing system with a distinctive multiple vacation policy, balk-
ing, server’s states-dependent reneging, and retention of reneged customers.
The model features individual timers for customers during vacation and busy
periods, with patience times characterized by general probability distribu-
tion functions (GV and GB). Som and Seth [31] investigate a single-server
finite capacity feedback queuing system featuring buffer modified reverse
balking and retention of impatient customers. The paper derives steady-state
probabilities, explores performance measures.

The structure of this paper is organized as follows: Sections 2 and 3
provide a comprehensive description of the queueing model, along with the
introduction of an equation for calculating time-independent probabilities.
Section 4 explores the performance measures for queue models. Sections 5
focus on cost analysis, respectively. Section 6 discusses the Newton-Quasi
Method, with numerical results presented in Section 7. Finally, Sections 8
and 9 respectively real life application and summarizes our findings and
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provides conclusive remarks on the implications and contributions of this
research.

2 Basic Assumptions

We investigate the dynamics of a queueing system with server break-
downs and threshold-based recovery, considering the phenomena of reneging,
balking, and catastrophic events. The model assumptions are outlined below:

1. Customers arrive at the system following a Poisson process with
parameter λ.

2. Upon arrival, customers join a single waiting line, adhering to the first-
come-first-served (FCFS) discipline.

3. During active periods, service times are exponentially distributed with a
mean of 1/µ.

4. The server can handle only one customer at a time, causing incoming
customers to wait if the server is occupied.

5. Breakdowns occur only when at least one customer is in the system.
Breakdown times are exponentially distributed with a rate of α.

6. Following a breakdown, the server remains inactive until the queue
reaches a predefined threshold value T (where 1 ≤ T ≤ K). Repair
times are exponentially distributed with a mean of 1/ν.

7. Upon completion of repairs, the server resumes operations and serves
customers until the system is empty.

8. The system’s capacity is denoted by K (where K < ∞).
9. Various stochastic processes within the system are assumed to be

independent of one another.

This research develops and describes the mathematical representation of the
current state of the governing model at any time t.

N(t) = The number of customers in the system at time t

Y (t) = State of the server at time t

where

Y (t) =

{
0, when the server is in a busy period

1, when the server is in a breakdown period

Then, the system {Y (t), N(t) : t ≥ 0} is a continuous time Markov
process with a state space S = {(0, n) | n ∈ I1} ∪ {(1, n) | n ∈ I2};
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I1 = {0, 1, 2, . . . ,K}, I2 = {1, 2, . . . ,K}. Furthermore, the steady-state
probabilities of the system are defined as follows:

π0(n) = lim
t→∞

P{Y (t) = 0, N(t) = n | n = 0, 1, . . . ,K}

π1(n) = lim
t→∞

P{Y (t) = 1, N(t) = n | n = 1, 2, . . . ,K}

3 Chapman–Kolmogorov Equation

The Chapman-Kolmogorov equation, a cornerstone of stochastic processes,
outlines the transition probabilities in Markov processes, providing insights
into future states based on present conditions. Equations (1) to (9) presented
here delineate the dynamic evolution of state probabilities, which is crucial
for understanding the intricate dynamics and dependencies within the sys-
tem. Mastery of these equations is essential for effectively modeling and
analyzing complex systems under uncertainty, with applications spanning
various domains, including physics, engineering, and finance. In the steady
state, the system reaches equilibrium, meaning no further changes occur over
time.

0 = −λπ0,0 + µπ0,1 + γ

(
K∑

n=1

π0,n +

K∑
n=1

π1,n

)
(1)

0 = −
(
ξ̄λ+ µ+ α+ γ

)
π0,1 + λπ0,0 + (µ+ pη)π0,2 (2)

0 =−
(
ξ̄λ+ µ+ (n− 1)ηp+ α+ γ

)
π0,n

+ ξ̄λπ0,n−1 + (µ+ nηp)π0,n+1, n = 2, 3, ...T − 1
(3)

0 =−
(
ξ̄λ+ µ+ (n− 1)ηp+ α+ γ

)
π0,n

+ ξ̄λπ0,n−1 + (µ+ nηp)π0,n+1 + βπ1,n n = T, T + 1, ...K − 1(4)

0 = − (µ+ (K − 1)ηp+ α+ γ)π0,K + ξ̄λπ0,K−1 + βπ1,K (5)

0 = −
(
ξ̄λ+ γ

)
π1,1 + απ0,1 + ηpπ1,2 (6)

0 =−
(
ξ̄λ+ (n− 1)ηp+ γ

)
π1,n

+ ξ̄λπ1,n−1 + απ0,n + nηpπ1,n+1 n = 2, 3, ..., T − 1
(7)
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0 =−
(
ξ̄λ+ β + (n− 1)ηp+ γ

)
π1,n + ξ̄λπ1,n−1 + απ0,n

+ nηpπ1,n+1 n = T, ...,K − 1
(8)

0 = − (β + (K − 1) ηp+ γ)π1,K + ξ̄λπ1,K−1 + απ0,K (9)

Normalization Condition of Probabilities

K∑
n=1

π0,n +
K∑

n=1

π1,n = 1 (10)

3.1 Steady-State Equation

The steady-state solution of the queuing system is achieved by expressing
the simultaneous linear equations (Equations (1)–(9)) as a matrix equation,
denoted as AX = 0, where A represents a square matrix of size K + 1
comprising the coefficients of state probabilities as its elements. Concur-
rently, X stands for a column vector of unknown state probabilities with
dimensions (K + 1) × 1, while 0 signifies a null vector. By applying the
normalizing condition outlined in Eq. 11, the equation is transformed into
ĀX = B, where Ā is derived from A with the last row modified to include
ones, and B is a column vector with its final element set to 1. This linear
system is represented in augmented matrix form as [A|B]. Subsequently,
employing numerical techniques such as Gauss elimination extended (GEE)
or the Successive Over-Relaxation (SOR) method, with an over-relaxation
parameter typically set to 1.25 in MATLAB (R2019b) software, facilitates
the solution of the non-homogeneous system. Upon solving, the stationary
probabilities derived from this equation system are used to determine the
classification of the queuing system.

4 Performance Characteristics

The system characteristics can be effectively described by evaluating per-
formance measures using steady-state probabilities. These metrics serve
as crucial indicators for achieving optimal system performance and are
essential for system managers and industrial engineers in enhancing the
Grade of Service (GoS). By predicting preventive maintenance requirements
and queueing indices, these measures enable proactive management of the
relevant queueing system. Noteworthy performance measures include:
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1. The expected number of customers in the system:

LS =

K∑
n=0

nπ0,n +

K∑
n=1

nπ1,n

2. Probability that the server is busy:

PB =

K∑
n=1

π0,n

3. Probability that the server is broken down:

PD =

K∑
n=1

π1,n

4. Probability that the server is idle:

PI = π0,0

5. Probability that the server is blocked:

PE = π0,K + π1,K

6. Expected waiting time in the system:

W =
L

λeff

Where λeff is the effective arrival rate given by:

λeff = ξ̄λ

(
K−1∑
n=0

π0,n +

K−1∑
n=1

π1,n

)
7. Average Balking Rate:

Abr =
K−1∑
n=1

ξλ (π0,n + π1,n)

8. Average reneging Rate:

Arr =
K∑

n=2

(n− 1)ηpπ0,n +

K∑
n=2

(n− 1)ηpπ1,n
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9. Expected number of retained customers in the system after reneging
epoch:

ERR =
K∑
2

(n− 1)η(1− p)π0,n +
K∑
2

(n− 1)η(1− p)π1,n

10. Throughput of the system:

PTT = µ
K∑

n=0

π0,n

5 Cost Analysis

Cost analysis is a fundamental issue in queueing theory. We construct an
expected cost function per unit time for the finite capacity (M/M/1/K)
queuing model, which includes server breakdown, recovery policy, balking,
reneging, and retention of reneged customers. In this queueing model, the
system capacity K, the threshold value T , and the server rate µ are the
decision variables. The main aim is to determine the optimal values of
(T,K, µ). Let us define the cost elements as follows.

Ch ≡ Holding cost per unit time for each customer present in the system

Ci ≡ Cost per unit time when the server is idle

Cb ≡ Cost per unit time when the server is busy

Cd ≡ Cost per unit time when the server is broken down

Csb ≡ Fixed cost for every lost customer when the system is blocked

Cr ≡ Lost costomer when onr customer balks or reneges

Cm ≡ Cost per unit time of providing a service rate

The expected cost function is given by

F (T,K, µ) = ChLS + CiPI + CbPB + CdPD + CsbλPE

+ Cr(Abr +Arr) + Cmµ (11)

6 Newton-Quasi Method

In our study, we address the complex unimodal nature of the expected total
cost, which poses challenges in computing its derivatives. To tackle this, we
utilize the Newton-quasi method to globally search for the parameter µ that
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minimizes E(TC(µ∗)). The problem can be succinctly described as follows:

minimize TC(µ∗) for µ (12)

The Newton-quasi method proceeds as follows:

Step 1: Initialize i = 0, µ0 = µ
Step 2: Compute Ω(µi)
Step 3: Calculate first derivatives Ω′(µi) and Ω′′(µi)
Step 4: Determine first trial solution:

µi+1 = µi − |Ω′(µi)/Ω
′′(µi)|

Step 5: Update i = i+ 1 and set µ∗ = µi

Step 6: Repeat steps 2 to 5 until |dΩ/dµ| < ϵ, where ϵ = 10−7

Step 7: Find the global minimum value Ω(µ∗)

7 Numerical Results

Analyzing the finite capacity system’s performance metrics theoretically is
not enough to prove the effectiveness of our model. To ensure its practical
utility, we conduct multiple numerical experiments using MATLAB. These
experiments allow us to assess how well the proposed finite Markov model,
with features such as balking, breakdowns, and a threshold-driven recovery
policy, performs in various scenarios, providing valuable insights into its real-
world applicability. To achieve this goal, we conduct experiments using the
default values for the system parameters. η = 0.1, α = 0.4, β = 5.0 p =
0.6, Ch = 15, Ci = 300, Cb = 380, Cd = 150, Csb = 10, Cr = 210,
Cm = 8

A higher failure rate leads to inefficiency in system behavior, which can
be addressed by enhancing the recovery rate. γ = 0.6, ξ = 0.2, η = 0.1, α =
0.4, β = 5.0, p = 0.6, Ch = 15, Ci = 300, Cb = 380, Cd = 150, Csb =
10, Cr = 210, Cm = 8, ξ̄ = (1− xi)

K = 8, T = 5, λ = 1.0, ξ = 0.2, η = 0.1, α = 0.4, p = 0.6, Ch =
15, Ci = 300, Cb = 380, Cd = 150, Csb = 10, Cr = 210, Cm = 8, ξ̄ =
(1− xi)

8 Real-life Application of This Model

In the context of computer science, particularly within data centre manage-
ment, the described model helps optimise server operations amidst failures
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Table 1 The optimal services rates and expected total cost for different system parameters

(K,T ,λ, γ, ξ) µ∗ F (T,K, µ∗) Total Iterations ∂F
∂µ

(8.0,4,1.0,0.3,0.2) 5.0575 390.799 8 9.05 × 10−6

(9.0,4,1.0,0.3,0.2) 5.0580 390.801 8 2.41 × 10−5

(10,4,1.0,0.3,0.2) 5.0581 390.801 8 7.54 × 10−7

(11,4,1.0,0.3,0.2) 5.0581 390.802 8 2.79 × 10−5

(10,5,1.0,0.3,0.2) 4.9923 391.649 8 7.64 × 10−7

(10,6,1.0,0.3,0.2) 4.9312 392.335 8 2.55 × 10−5

(10,7,1.0,0.3,0.2) 4.8777 392.859 8 2.35 × 10−5

(10,8,1.0,0.3,0.2) 4.8326 393.236 7 5.53 × 10−6

(10,5,1.1,0.3,0.2) 5.5843 401.448 8 3.07 × 10−5

(10,5,1.2,0.3,0.2) 6.1667 411.070 8 5.57 × 10−6

(10,5,1.3,0.3,0.2) 6.7402 420.532 8 1.92 × 10−5

(10,5,1.4,0.3,0.2) 7.3056 429.851 8 1.46 × 10−5

(10,5,1.0,0.4,0.2) 4.7270 388.562 9 8.07 × 10−6

(10,5,1.0,0.5,0.2) 4.5146 386.196 9 1.61 × 10−5

(10,5,1.0,0.6,0.2) 4.3344 384.282 7 1.76 × 10−5

(10,5,1.0,0.7,0.2) 4.1743 382.661 8 4.57 × 10−6

(10,5,1.0,0.3,0.3) 4.3944 383.393 8 2.17 × 10−5

(10,5,1.0,0.3,0.4) 3.7368 374.141 8 1.23 × 10−5

(10,5,1.0,0.3,0.5) 3.0056 363.581 8 1.02 × 10−5

(10,5,1.0,0.3,0.6) 2.1853 351.233 6 1.75 × 10−5

Table 2 Numerical simulation regarding different system characteristics wrt K, λ, T
(K, λ, T) Ls PB PD PI PE PEFE Ws Abr Arr ERR TT

(6, 1, 4) 0.4887 0.2107 0.1105 0.6788 4.941E-4 0.9354 0.5225 0.2566 0.0100 0.0067 2.6685
(8, 1, 4) 0.4891 0.2107 0.1105 0.6788 2.25E-05 0.9357 0.5227 0.2569 0.0101 0.0067 2.6686
(12, 1, 4) 0.4892 0.2107 0.1105 0.6788 3.78E-08 0.9358 0.5227 0.2570 0.0101 0.0067 2.6686
(8, 0.3, 4) 0.1371 0.0698 0.0455 0.8847 7.56E-09 0.2931 0.4678 0.0277 0.0013 0.0009 2.8636
(8, 0.4, 4) 0.1862 0.0914 0.0583 0.8504 5.72E-08 0.3880 0.4798 0.0479 0.0022 0.0015 2.8252
(8, 0.5, 4) 0.2359 0.1123 0.0698 0.8179 2.63E-07 0.4818 0.4897 0.0729 0.0032 0.0022 2.7906
(8, 1, 4) 0.4891 0.2107 0.1105 0.6788 2.25E-05 0.9357 0.5227 0.2569 0.0101 0.0067 2.6686
(8, 1, 5) 0.5180 0.2042 0.1201 0.6757 5.12E-05 0.9351 0.5539 0.2594 0.0116 0.0077 2.6398
(8, 1, 6) 0.5352 0.2004 0.1251 0.6745 1.185E-4 0.9348 0.5725 0.2603 0.0126 0.0084 2.6246

Table 3 Numerical simulation regarding different system characteristics wrt µ, β, γ
(µ, β, γ) Ls PB PD PI PE PEFE Ws Abr Arr ERR TT

(3.0, 5.0, 0.6) 0.4891 0.2107 0.1105 0.6788 2.25E-05 0.9357 0.5227 0.2569 0.0101 0.0067 2.6686
(4.0, 5.0, 0.6) 0.3940 0.1756 0.0936 0.7308 8.12E-06 0.9461 0.4164 0.2154 0.0075 0.0050 3.6254
(5.0, 5.0, 0.6) 0.3291 0.1501 0.0809 0.7690 3.81E-06 0.9538 0.3450 0.1848 0.0059 0.0039 4.5954
(3.0, 5.0, 0.6) 0.4891 0.2107 0.1105 0.6788 2.25E-05 0.9357 0.5227 0.2569 0.0101 0.0067 2.6686
(3.0, 6.0, 0.6) 0.4877 0.2111 0.1100 0.6789 1.95E-05 0.9358 0.5211 0.2568 0.0100 0.0067 2.6700
(3.0, 7.0, 0.6) 0.4866 0.2113 0.1096 0.6791 1.75E-05 0.9358 0.5200 0.2567 0.0099 0.0066 2.6711
(3.0, 5.0, 0.7) 0.4466 0.2060 0.0972 0.6967 1.59E-05 0.9393 0.4755 0.2426 0.0086 0.0057 2.7083
(3.0, 5.0, 0.8) 0.4123 0.2017 0.0864 0.7119 1.15E-05 0.9424 0.4375 0.2304 0.0075 0.0050 2.7409
(3.0, 5.0, 0.9) 0.3840 0.1976 0.0773 0.7251 8.43E-06 0.9450 0.4063 0.2199 0.0065 0.0044 2.7680
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Figure 1 The expected cost function for different values of K and µ.

and repairs. In a data centre, servers process incoming data requests that arrive
following a Poisson process with a rate of λ requests per hour. Each server
handles these requests one at a time, with the time taken to process each
request being exponentially distributed, with a mean of 1/µ hours. Servers
can experience failures, but such failures only occur when there is at least
one request in the system. The time between failures follows an exponential
distribution with a rate of α. After a failure, a server cannot resume processing
until the number of pending requests reaches a predefined threshold, T . Once
this threshold is reached, the server undergoes repair, with repair times also
following an exponential distribution with a mean of 1/β hours. The data
centre is constrained by a maximum capacity K for pending requests. If the
number of pending requests exceeds this capacity, additional requests may
be delayed or redirected. All processes, including request arrivals, processing
times, server failures, and repair times, are assumed to be independent. This
model aids data centre operators in making informed decisions about capacity
planning, understanding the impact of server failures on service levels, and
effectively managing resources to ensure continuous service availability and
compliance with service level agreements (SLAs).
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9 Conclusion

In this study, we analyzed the M/M/1/K queue model by considering server
breakdowns, a threshold-based recovery policy, a catastrophic factor, and
customer reneging, using Markov process theory. We derived the steady-state
equations and applied a SoR method to obtain the steady-state probability
distribution of the number of customers in the system. Several key system
characteristics were developed and utilized to construct the expected cost
function per unit time. Our approach not only introduced the Newton Quasi-
method to determine the optimal service rate (µ∗). An application example
was provided to demonstrate the practical relevance of these findings. Over-
all, the results of this study offer valuable insights for decision-makers,
helping them better understand the dynamics of server breakdowns and
the efficacy of threshold-based recovery policies in managing such queuing
systems.
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