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Abstract

For a number of reasons, mean estimate is an essential sampling activity
as it offers crucial information and forms the basis of statistical inference
and judgement. In this study, we estimate the population mean using the
Exponentially Weighted Moving Average (EWMA) statistic and provide gen-
eralized family of exponential estimators. The theoretical aspects of the
suggested estimator are evaluated via rigorous mathematical derivations of
the bias and mean square error (MSE), which are then compared to other
exponential estimators that are already in use. Furthermore, a thorough
simulation research is carried out to thoroughly assess the effectiveness and
empirical performance of the suggested strategy. The results highlight how
the estimator’s effectiveness is significantly increased when both recent and
historical data are used in tandem.
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1 Introduction

Utilizing supplementary information is a crucial tactic in survey sampling to
increase estimators accuracy in calculating the population mean. Additional,
easily accessible population data that is connected with the study variable and
may be used to increase estimating accuracy and efficiency is referred to as
auxiliary information.

The ratio estimator propounded by Cochran [5] is usually used when the
study and auxiliary variable have a positive linear relationship. By taking
advantage of the proportionality between the two variables, this estimator
permits modifications that are consistent with their direct correlation. By
taking into account the strength of positive correlation, the ratio estimator
efficiently lowers variance and improves the estimate dependability .

On the other hand, the product estimator given by Robson [14] is better
suitable when the linear connection is negative. This estimator makes adjust-
ments that reflect the opposing trends of the study and auxiliary variables
by taking advantage of their inverse connection. Despite the divergent direc-
tional trends, the product estimator guarantees more precise population mean
predictions by taking into account the negative correlation.

The importance of auxiliary information in improving estimate methods
in survey sampling is highlighted by the careful selection of these estimators
based on the kind of correlation between the study and auxiliary variables.

Many authors [1,4,6,7,16,17,19,21-25] have extensively utilized aux-
iliary information to refine and enhance the efficiency of estimators under
various sampling designs. These contributions underscore the pivotal role of
auxiliary variables in improving the accuracy and reliability of population
parameter estimates, demonstrating their applicability across a wide array of
methodological advancements and practical scenarios.

In recent decades, the systematic collection of data through time-scaled
surveys has gained significant importance across various research fields,
becoming essential for informed decision-making and effective policy for-
mulation. Notable examples include the National Sample Survey (NSS) and
the National Family Health Survey (NVFHS), both conducted every five years
by the Government of India. Additionally, the Annual Status of Education
Report (ASER) and the Periodic Labour Force Survey (PLFS), conducted
annually, provide critical insights into demographic, health, and educational
trends over time. A significant challenge arises when conventional estimators
are employed to estimate the population parameter from these time-scaled
surveys. These estimators give ordinary results that fail to capture the
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complexity of the data, primarily due to their design for cross-sectional
studies, which fails to account for the temporal trends inherent in longitu-
dinal data. As a result, important changes over time, such as fluctuations in
employment rates and trends in healthcare access, are overlooked, resulting
in potentially misleading conclusions for policy-making.

To address these challenges, we utilize the EWMA statistic, which assigns
exponentially decreasing weights to past observations. By placing greater
emphasis on more recent data, EWMA facilitates a more dynamic analysis
of trends. In this study, we explore the effectiveness of EWMA in estimating
population parameters and propose a memory-type exponential estimator
specifically designed for time-scaled surveys. Roberts [13] was the first to
propose the idea of EWMA. Several authors [2,3,8-11, 15,20] have utilized
EWMA statistic to estimate population parameters in the context of time-
scaled surveys. Their research emphasizes how important EWMA is for
combining current and historical data, which improves estimating accuracy
and efficiency in dynamic survey environments. Nonetheless, there is still a
dearth of research on exponential estimators for time-scaled surveys. Numer-
ous sampling methods and their uses have been extensively studied, but the
particular use of exponential estimators in time-scaled surveys has not gotten
as much attention. Since exponential estimators have the potential to increase
the precision and effectiveness of population parameter estimation, partic-
ularly when taking into account the temporal dynamics of data collection in
time-series or longitudinal surveys, this gap offers a chance for more research.

EWMA Statisticc The EWMA statistic is a memory-type statistic
that enhances estimator efficiency by weighting past and present data.
Roberts [13] was the first to introduce the EWMA statistic to observe the
change in process mean and is given by

Zi = Ay + (1 — )\)Zz'—l

where 4 is the mean of current data, and 0 < A < 1 is the smoothing
constant, which varies proportionally to the weight given to the latest data
and is inversely proportional to the weight given to past value (information).
Note that when A takes the value 1, it means that all weight is given to the
latest data, and in this case, the EWMA statistic is equal to . Here ¢ denotes
the number of samples, and Z;_; denotes the past value (information). Here
we assume the starting value of Z;_ i.e., Zy is equal to zero.
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The term “exponentially weights” means the weight )\ decreases
exponentially as the number of past data points increases. And

E[Z)]| =Y and Var|Z;] = 0% <2_AA) (1—(1-=X)%

where Y and a% is the mean and variance of the study variable respec-
tively. And the limiting variance of Z; is given by

Var(Z] = o3 <2_AA>

Now we briefly outline the rest of the manuscript. In Section 2, we
reassess several existing estimators from the literature and derive the expres-
sion for their M S E. Section 3 introduces a class of memory-type exponential
estimators for which we determine the minimum M S E. In Section 4, we con-
duct an extensive simulation study. Finally, Sections 5 present the conclusion
of our study.

2 Review of Some Existing Estimators in Literature

First, we review several prominent estimators that have been extensively
studied and applied in the literature and then modify them into memory-type
estimators to improve their efficiency.

Let Y and X be the study and auxiliary variables, respectively, within a
population U = {U;,Us,...,Un} having N units. Let § and Z denote the
sample means of the study variable and the auxiliary variable, respectively.
Additionally, let

Zi = Ay + (1 — )\)Zi—l (D)
Qi= A+ (1-XN)Qi—1 )
be the EWMA statistic for study and auxiliary variables, respectively. Based

on the above population, a summary of several related existing estimators
along with their MSE is provided below:

(a) The classical ratio estimator suggested by Cochran [5] is

Yr = X

SRS
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Further Noor-ul Amin [8] suggested the memory type ratio estimator as
follows:

. Zi -

1
The approximate MSE of ¥,,,; is given by

A A _
MSE(Ymri) = <H> AY?(C2+C2 —2pC,Cy) (B

where f1 = % — %, Cy and C, represent the coefficients of variation for
the study and auxiliary variables, respectively, and p is the correlation
coefficient between the study and auxiliary variables.

(b) Regression estimator suggested by Watson [22] is as follows:

ﬁreg = :lj—l—b(X - i')

where b is the regression coefficient. By utilizing (1) and (2), in ﬁmg the
memory-type regression estimator is given as:

Ymrgi = Zi + b(X — Qi) 5)
The approximated MSE of gjngi is given below

A A _
MSE (mrgi) = <H) hY?Cy (1= %) (©)

(c) The exponential ratio type estimator suggested by Bahl and Tuteja [4] is

given by -
A _ X -z
Yex = Y €XP X Tz

Now, employing (1) and (2) in the above expression, the memory type
exponential ratio estimator is given as:

X - Qi) 7

gjme:vi = Z; exp (X i Qz

and we obtain the approximate MSE of ¢z, Which is as follows:
A

MSE (meri) = (H) hy? [05 +C; (fl -4 CC y)} )
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3 Proposed Class of Memory Type Exponential Estimators

Now, in this section, we propose a class of memory-type exponential estima-
tors that introduce a novel approach to improving estimation accuracy. These
estimators are designed to efficiently incorporate past information, potentially
resulting in lower MSE and higher PRE compared to existing methods.

Suppose Y and X are the study and auxiliary variables, respectively. The
exponential type estimator given by [18] is

e = {015+ 02 (£) X} exp [cm}

where ¢ and Z are the sample mean of study and auxiliary variable, X is
the population mean of auxiliary variable, ¥/; and J2 denote approximately
chosen constants intended to minimize M SE(t).), while « and 3 are real
constants.

Now, employing (1) and (2), in ¢, the memory type exponential estimator
is given as follows:

oz ao (7 5 o(X - Q)
tnpei = {19122 + <Q1> X}exp [a(X+Q¢) Y 9)

where 1 and J represent approximately chosen constants aimed at mini-
mizing M SE(tmpei), o, B are real constants, and X is the population mean
(which is known in advance) of auxiliary variable.

We use the Taylor series expansion to calculate the minimum MSE of the
estimator ,,,p¢; up to the second-order approximation, using the terms listed

Table 1 Members of the proposed class of estimator for different value of 99, and ¥J.

a | B | | P Estimators
Zi e X — Qz
o R R s Gl G R e b e
Zi e X — Qz
1| -1 | Y1 | Y2 | tmpeis = {ﬁlZi + 92 (@) X} exp [m}
Zi e X — Qz
oo o oo ) n[58)
Zi\ =
0 1 791 192 tmpei4 = {19127, +’l92 (6) X}
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below: . <
=" Q:@g (10)
such that
E[¢o] = E[G] =0 (11)
Var(Z; A
E[(5] = f1 a;g ) _ <2 — A) jites (12)
Var(Q;) A
E[(7] = fi <2 <2 — A) HC2, (13)
Zi, Qi A
Ekmﬂ—hcmﬁxQ)—<2_A)ﬁm%@> (14)
Utilizing equation (10) in (9), we have
oy Y(1+G) —aX
b = {71 0, T e | o)

we can also write the above equation as:

e e [he]

Now, by subtracting Y from both sides of the above

tmpei - {191Y(1 + CO) + 02

_ aX _
Where': v = FraX)’
equation, we obtain

_ _ 3
tpei =Y =Y [191 {1 — ¢+ 272C12}

+m{1+u+w+§fx%—u+w@@}—@ (15)

Employing expectation on both sides of the Equation (15), and using (12),
(13), (14), we have

Bias(tmpei) = Y {1 - f <2i)\> (fyCS — ;’YQC£> }
+ Yo Hl + f1 <2 i )\>

<(1 ++ ;72)63 —(1+ v)prCy) } - 1] (16)
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By squaring and taking expectation on both sides of (15) and applying (11),
(12), (13), and (14), we get:

MSE(tmpei) = Am3 + B3+ 20009192+ 2Dy 01 +2E,, 99+ Fy, (17)

where
- A
Ap =Y? {1 + h (H> {C;+CF—2pC,Cy}
B,, = Y? {1 + fi <2i)\> {C2+ B+ 4y +497)C

To minimize the MSE of the estimator ¢,,,.;, we differentiate equation
(17) with respect to 91 and 1J2, we have

_ BuDp — CoEpy

==t g =" (18)
AmEm - CmDm
Vo=t g =03 (19)

Now, utilizing ¥ and ¥5 in equation (17), we obtain the expression for
minimum MSE of t,pe;

MSEmin(tmpei) = Amﬁi& + Bm19§2 + 2Cm’19’1( 5 + 2Dm’l97{
+2E,,05 + Fin. 20)
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4 Simulation Studies

A comprehensive simulation study was conducted to evaluate the effective-
ness of the proposed memory-type estimators. The Mean Squared Error
(MSE) and Percent Relative Efficiency (PRE) of both the proposed and
existing estimators, relative to the usual estimator ¢, were calculated using
the following formulas, based on 10,000 replications:

| 10000 )
MSE(t;) = 15055 2 1 =Y’ 1)
j=1
and _
PRE(t;,9) = m (22)
where t; = tmris bmrgi> tmexis tmpeiy » tmpeiy » tmpeig > tmpei, TOTJ =

1,2,3,4,5,6, 7 respectively.

The PRE of the estimators is calculated at various levels of cor-
relation p = (0.75,0.80,0.85,0.90,0.95) and weight parameter A =
(0.10,0.25,0.50,0.75,0.95) using the algorithm given by [12]:

(i) Generate two independent population of size N = 5000 such that X =

N(10,4) and Z = N(10,4).

(ii) SetY = pX + /1 — p2Z where p is the correlation between X and Y,
and take the value for \.

(iii) Select 10000 samples of sizes n = 50, 100, 200, 300, 500 respectively.
And compute the estimator for each 10000 samples.

(iv) Compute the MSE for each sample size for each estimator using (21).

(v) Obtained the relative efficiencies for each sample using (22).

5 Discussion and Results

Tables 2 and 3 represents the PRE of the existing and the proposed
estimators relative to usual estimator g, with smoothing constant A =
0.10,0.25,0.50 and 0.95, across different values of p and n. Key findings
from Tables 2 and 3 are:

(1) As A (smoothing constant) decreases from 0.95 to 0.10 for any fixed
value of p (0.75 < p < 0.95) the PRE of the proposed estimators
tmpeij»J = 1,2,3,4 increases. Here A indicate the weight assign to
current information so if we take A = 1 i.e. we use only current
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information then our proposed memory type exponential estimator is
equal to the estimator #).

(i1) Increasing the correlation coefficient between the study and the auxiliary
variable results in a rise in the PRFE of the estimators. This is true
regardless of the values of A and n. It may be inferred from this
that the effectiveness of the estimators improves as the strength of the
association between the study and the auxiliary variable increases (that
is, as p increases). When the value of p is larger, it shows that the
auxiliary variable offers more relevant information for predicting the
study variable, which ultimately results in more accurate predictions.
This information is used more effectively by the suggested estimators,
which ultimately leads to an increase in PRFE values.

(iii) As the sample size n rises, notably for the values n = 50, 100, 200, 300,
and 500, the proposed class of estimators has a P RE that is higher than
that of the current estimators. This is the case even when the values of
A and p remain the same. The implication of this is that the proposed
estimators demonstrate superior efficiency in utilizing the information
provided by both the study and auxiliary variables as more data points
become available. Furthermore, with a larger sample size, the estimators
are able to better capture the underlying relationships and reduce the
variability in the estimates. This better performance leads to a higher
PRE, which indicates that the suggested estimators are more effective
in terms of accuracy when compared to the alternatives that are currently
available.

According to Figure 1, which depicts the influence of smoothing constant A
on the PRE of the suggested estimators, the sample size is set at n = 200,
and the coefficient of correlation is p = 0.90. When the value of A grows from
zero to one, we find that the PR FE of the suggested class of estimators rapidly
drops. This is something that we see. The fact that PRE gradually decreases
as the value of )\ grows suggests that the suggested estimators perform better
as they include more information from the past. This is because they become
less susceptible to noise and fluctuations in the data that is currently being
used.

According to Figure 2, which depicts the influence of correlation coef-
ficient p on the PRFE of the suggested estimators, the sample size is set at
n = 200, and the smoothing constant is A = 0.50. When the correlation
coefficient p is increased, the suggested class of estimators experiences a rise
in the PRE. The implication of this is that the suggested estimators become
more effective as the linear connection between the study and auxiliary
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variables becomes stronger (that is, as p increases). When p is larger, it
suggests that the auxiliary variable gives more pertinent information for
predicting the study variable. This enables the estimator to make better use
of the data that is accessible to them. Because of this, the performance
of the estimator is enhanced, which ultimately results in a greater PRE
percentage.This pattern demonstrates that a larger correlation between the
study and auxiliary variables helps the estimator to attain better accuracy.

6 Conclusion

In this study, we aimed to enhance the efficiency of estimators by leveraging
the concept of EWMA statistic. For the purpose of accomplishing this objec-
tive, we developed a family of estimators that include the EWMA statistic.
Furthermore, in order to assess the effectiveness of these estimators, we car-
ried out a comprehensive simulation research. The results of this investigation
are shown in Tables 2 and 3 to illustrate the findings. It is obvious, after doing
an analysis of the data included in these tables, that the suggested category
of estimators consistently dlsplays greater efﬁ01ency when compared to other
established estimators, such as y,e;, ymrgz, and ¥,mez;. Based on these results,
we strongly suggest that our suggested family of estimators be used for the
purpose of estimating population parameters since they provide a higher
level of efficiency in comparison to the approaches that are already in use.
Additionally, the scope of our research might be broadened by investigating
other sampling methods, such as cluster or stratified sampling, and by using
our estimators to estimate a wider variety of population characteristics, such
as variances, proportions, or regression coefficients. This would allow us to
investigate a wider range of population parameters. Furthermore evaluating
the adaptability and robustness of the suggested estimators in a variety of
statistical settings will be made easier with the assistance of this expansion.
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