Enhancing Accuracy in Population Mean Estimation with Advanced Memory Type Exponential Estimators

Poonam Singh¹, Prayas Sharma² and Pooja Maurya^{1,*}

¹Department of Statistics, Banaras Hindu University Varanasi, 221005, India ²Department of Statistics, Babasaheb Bhimrao Ambedkar University Lucknow, 226025, India E-mail: poonamsingh@bhu.ac.in; prayassharma02@gmail.com; poojamaurya@bhu.ac.in * Corresponding Author

Received 24 September 2024; Accepted 01 December 2024

Abstract

For a number of reasons, mean estimate is an essential sampling activity as it offers crucial information and forms the basis of statistical inference and judgement. In this study, we estimate the population mean using the Exponentially Weighted Moving Average (EWMA) statistic and provide generalized family of exponential estimators. The theoretical aspects of the suggested estimator are evaluated via rigorous mathematical derivations of the bias and mean square error (*MSE*), which are then compared to other exponential estimators that are already in use. Furthermore, a thorough simulation research is carried out to thoroughly assess the effectiveness and empirical performance of the suggested strategy. The results highlight how the estimator's effectiveness is significantly increased when both recent and historical data are used in tandem.

Keywords: Bias, Exponentially Weighted Moving Average (*EWMA*), Mean Square Error (*MSE*), Memory type estimator, Percent Relative Efficiency (*PRE*).

Journal of Reliability and Statistical Studies, Vol. 17, Issue 2 (2024), 417–434. doi: 10.13052/jrss0974-8024.1728 © 2025 River Publishers

1 Introduction

Utilizing supplementary information is a crucial tactic in survey sampling to increase estimators accuracy in calculating the population mean. Additional, easily accessible population data that is connected with the study variable and may be used to increase estimating accuracy and efficiency is referred to as auxiliary information.

The ratio estimator propounded by Cochran [5] is usually used when the study and auxiliary variable have a positive linear relationship. By taking advantage of the proportionality between the two variables, this estimator permits modifications that are consistent with their direct correlation. By taking into account the strength of positive correlation, the ratio estimator efficiently lowers variance and improves the estimate dependability.

On the other hand, the product estimator given by Robson [14] is better suitable when the linear connection is negative. This estimator makes adjustments that reflect the opposing trends of the study and auxiliary variables by taking advantage of their inverse connection. Despite the divergent directional trends, the product estimator guarantees more precise population mean predictions by taking into account the negative correlation.

The importance of auxiliary information in improving estimate methods in survey sampling is highlighted by the careful selection of these estimators based on the kind of correlation between the study and auxiliary variables.

Many authors [1, 4, 6, 7, 16, 17, 19, 21–25] have extensively utilized auxiliary information to refine and enhance the efficiency of estimators under various sampling designs. These contributions underscore the pivotal role of auxiliary variables in improving the accuracy and reliability of population parameter estimates, demonstrating their applicability across a wide array of methodological advancements and practical scenarios.

In recent decades, the systematic collection of data through time-scaled surveys has gained significant importance across various research fields, becoming essential for informed decision-making and effective policy formulation. Notable examples include the National Sample Survey (*NSS*) and the National Family Health Survey (*NFHS*), both conducted every five years by the Government of India. Additionally, the Annual Status of Education Report (*ASER*) and the Periodic Labour Force Survey (*PLFS*), conducted annually, provide critical insights into demographic, health, and educational trends over time. A significant challenge arises when conventional estimators are employed to estimate the population parameter from these time-scaled surveys. These estimators give ordinary results that fail to capture the complexity of the data, primarily due to their design for cross-sectional studies, which fails to account for the temporal trends inherent in longitudinal data. As a result, important changes over time, such as fluctuations in employment rates and trends in healthcare access, are overlooked, resulting in potentially misleading conclusions for policy-making.

To address these challenges, we utilize the EWMA statistic, which assigns exponentially decreasing weights to past observations. By placing greater emphasis on more recent data, EWMA facilitates a more dynamic analysis of trends. In this study, we explore the effectiveness of EWMA in estimating population parameters and propose a memory-type exponential estimator specifically designed for time-scaled surveys. Roberts [13] was the first to propose the idea of EWMA. Several authors [2, 3, 8–11, 15, 20] have utilized EWMA statistic to estimate population parameters in the context of timescaled surveys. Their research emphasizes how important EWMA is for combining current and historical data, which improves estimating accuracy and efficiency in dynamic survey environments. Nonetheless, there is still a dearth of research on exponential estimators for time-scaled surveys. Numerous sampling methods and their uses have been extensively studied, but the particular use of exponential estimators in time-scaled surveys has not gotten as much attention. Since exponential estimators have the potential to increase the precision and effectiveness of population parameter estimation, particularly when taking into account the temporal dynamics of data collection in time-series or longitudinal surveys, this gap offers a chance for more research.

EWMA Statistic- The EWMA statistic is a memory-type statistic that enhances estimator efficiency by weighting past and present data. Roberts [13] was the first to introduce the EWMA statistic to observe the change in process mean and is given by

 $Z_i = \lambda \bar{y} + (1 - \lambda) Z_{i-1}$

where \bar{y} is the mean of current data, and $0 \leq \lambda \leq 1$ is the smoothing constant, which varies proportionally to the weight given to the latest data and is inversely proportional to the weight given to past value (information). Note that when λ takes the value 1, it means that all weight is given to the latest data, and in this case, the EWMA statistic is equal to \bar{y} . Here *i* denotes the number of samples, and Z_{i-1} denotes the past value (information). Here we assume the starting value of Z_{i-1} i.e., Z_0 is equal to zero.

The term "exponentially weights" means the weight λ decreases exponentially as the number of past data points increases. And

$$\operatorname{E}[Z_i] = \overline{Y} \text{ and } \operatorname{Var}[Z_i] = \sigma_Y^2\left(\frac{\lambda}{2-\lambda}\right) (1-(1-\lambda))^{2i}$$

where \bar{Y} and $\sigma_{\bar{Y}}^2$ is the mean and variance of the study variable respectively. And the limiting variance of Z_i is given by

$$Var[Z_i] = \sigma_Y^2\left(\frac{\lambda}{2-\lambda}\right)$$

Now we briefly outline the rest of the manuscript. In Section 2, we reassess several existing estimators from the literature and derive the expression for their MSE. Section 3 introduces a class of memory-type exponential estimators for which we determine the minimum MSE. In Section 4, we conduct an extensive simulation study. Finally, Sections 5 present the conclusion of our study.

2 Review of Some Existing Estimators in Literature

First, we review several prominent estimators that have been extensively studied and applied in the literature and then modify them into memory-type estimators to improve their efficiency.

Let Y and X be the study and auxiliary variables, respectively, within a population $U = \{U_1, U_2, \ldots, U_N\}$ having N units. Let \bar{y} and \bar{x} denote the sample means of the study variable and the auxiliary variable, respectively. Additionally, let

$$Z_i = \lambda \bar{y} + (1 - \lambda) Z_{i-1} \tag{1}$$

$$Q_i = \lambda \bar{x} + (1 - \lambda)Q_{i-1} \tag{2}$$

be the EWMA statistic for study and auxiliary variables, respectively. Based on the above population, a summary of several related existing estimators along with their *MSE* is provided below:

(a) The classical ratio estimator suggested by Cochran [5] is

$$\hat{\bar{y}}_r = \frac{y}{\bar{x}}\bar{X}$$

Further Noor-ul Amin [8] suggested the memory type ratio estimator as follows:

$$\hat{\bar{y}}_{mri} = \frac{\bar{Z}_i}{\bar{Q}_i} \bar{X} \tag{3}$$

The approximate *MSE* of $\hat{\bar{y}}_{mri}$ is given by

$$MSE(\hat{y}_{mri}) = \left(\frac{\lambda}{2-\lambda}\right) f_1 \bar{Y}^2 (C_y^2 + C_x^2 - 2\rho C_x C_y) \tag{4}$$

where $f_1 = \frac{1}{n} - \frac{1}{N}$, C_y and C_x represent the coefficients of variation for the study and auxiliary variables, respectively, and ρ is the correlation coefficient between the study and auxiliary variables.

(b) Regression estimator suggested by Watson [22] is as follows:

$$\hat{\bar{y}}_{reg} = \bar{y} + b(\bar{X} - \bar{x})$$

where b is the regression coefficient. By utilizing (1) and (2), in \hat{y}_{reg} the memory-type regression estimator is given as:

$$\hat{\bar{y}}_{mrgi} = Z_i + b(\bar{X} - Q_i) \tag{5}$$

The approximated *MSE* of \hat{y}_{mrqi} is given below

$$MSE(\hat{\bar{y}}_{mrgi}) = \left(\frac{\lambda}{2-\lambda}\right) f_1 \bar{Y}^2 C_y^2 \left(1-\rho^2\right)$$
(6)

(c) The exponential ratio type estimator suggested by Bahl and Tuteja [4] is given by

$$\hat{\bar{y}}_{ex} = \bar{y} \exp\left(\frac{\bar{X} - \bar{x}}{\bar{X} + \bar{x}}\right)$$

Now, employing (1) and (2) in the above expression, the memory type exponential ratio estimator is given as:

$$\hat{\bar{y}}_{mexi} = Z_i \exp\left(\frac{\bar{X} - Q_i}{\bar{X} + Q_i}\right) \tag{7}$$

and we obtain the approximate *MSE* of \hat{y}_{mexi} , which is as follows:

$$MSE(\hat{\bar{y}}_{mexi}) = \left(\frac{\lambda}{2-\lambda}\right) f_1 \bar{Y}^2 \left[C_y^2 + C_x^2 \left(\frac{1}{4} - \frac{\rho C_y}{C_x}\right)\right]$$
(8)

3 Proposed Class of Memory Type Exponential Estimators

Now, in this section, we propose a class of memory-type exponential estimators that introduce a novel approach to improving estimation accuracy. These estimators are designed to efficiently incorporate past information, potentially resulting in lower *MSE* and higher *PRE* compared to existing methods.

Suppose Y and X are the study and auxiliary variables, respectively. The exponential type estimator given by [18] is

$$t_{pe} = \left\{ \vartheta_1 \bar{y} + \vartheta_2 \left(\frac{\bar{y}}{\bar{x}}\right) \bar{X} \right\} \exp\left[\frac{\alpha(\bar{X} - \bar{x})}{\alpha(\bar{X} + \bar{x}) + 2\beta}\right]$$

where \bar{y} and \bar{x} are the sample mean of study and auxiliary variable, \bar{X} is the population mean of auxiliary variable, ϑ_1 and ϑ_2 denote approximately chosen constants intended to minimize $MSE(t_{pe})$, while α and β are real constants.

Now, employing (1) and (2), in t_{pe} the memory type exponential estimator is given as follows:

$$t_{mpei} = \left\{ \vartheta_1 Z_i + \vartheta_2 \left(\frac{Z_i}{Q_i} \right) \bar{X} \right\} \exp\left[\frac{\alpha(\bar{X} - Q_i)}{\alpha(\bar{X} + Q_i) + 2\beta} \right] \tag{9}$$

where ϑ_1 and ϑ_2 represent approximately chosen constants aimed at minimizing $MSE(t_{mpei})$, α, β are real constants, and \bar{X} is the population mean (which is known in advance) of auxiliary variable.

We use the Taylor series expansion to calculate the minimum MSE of the estimator t_{mpei} up to the second-order approximation, using the terms listed

1	able	I M	embei	s of th	the proposed class of estimator for different value of ϑ_1 and ϑ_2
	α	β	ϑ_1	ϑ_2	Estimators
	1	1	ϑ_1	ϑ_2	$t_{mpei_1} = \left\{ \vartheta_1 Z_i + \vartheta_2 \left(\frac{Z_i}{Q_i} \right) \bar{X} \right\} \exp\left[\frac{\bar{X} - Q_i}{\bar{X} + Q_i + 2} \right]$
	1	-1	ϑ_1	ϑ_2	$t_{mpei_{2}} = \left\{ \vartheta_{1} Z_{i} + \vartheta_{2} \left(\frac{Z_{i}}{Q_{i}} \right) \bar{X} \right\} \exp \left[\frac{\bar{X} - Q_{i}}{\bar{X} + Q_{i} - 2} \right]$
	1	0	ϑ_1	ϑ_2	$t_{mpei_3} = \left\{ \vartheta_1 Z_i + \vartheta_2 \left(\frac{Z_i}{Q_i} \right) \bar{X} \right\} \exp \left[\frac{\bar{X} - Q_i}{\bar{X} + Q_i} \right]$
	0	1	ϑ_1	ϑ_2	$t_{mpei_4} = \left\{ \vartheta_1 Z_i + \vartheta_2 \left(\frac{Z_i}{Q_i} \right) \bar{X} \right\}$

Table 1 Members of the proposed class of estimator for different value of ϑ_1 and ϑ_2 .

below:

$$\zeta_0 = \frac{Z_i - \bar{Y}}{\bar{Y}}, \quad \zeta_1 = \frac{Q_i - \bar{X}}{\bar{X}} \tag{10}$$

such that

$$\mathbf{E}[\zeta_0] = \mathbf{E}[\zeta_1] = 0 \tag{11}$$

$$\mathbf{E}[\zeta_0^2] = f_1 \frac{\operatorname{Var}(Z_i)}{\bar{Y}^2} = \left(\frac{\lambda}{2-\lambda}\right) f_1 C_y^2,\tag{12}$$

$$\operatorname{E}[\zeta_1^2] = f_1 \frac{\operatorname{Var}(Q_i)}{\bar{X}^2} = \left(\frac{\lambda}{2-\lambda}\right) f_1 C_x^2,\tag{13}$$

$$E[\zeta_1\zeta_1] = f_1 \frac{Cov(Z_i, Q_i)}{\bar{Y}\bar{X}} = \left(\frac{\lambda}{2-\lambda}\right) f_1 \rho C_y C_x \tag{14}$$

Utilizing equation (10) in (9), we have

$$t_{mpei} = \left\{ \vartheta_1 \bar{Y}(1+\zeta_0) + \vartheta_2 \frac{\bar{Y}(1+\zeta_0)}{(1+\zeta_1)} \right\} \exp\left[\frac{-\alpha \bar{X}\zeta_1}{\alpha \bar{X}\zeta_1 + 2(\beta + \alpha \bar{X})}\right]$$

we can also write the above equation as:

$$t_{mpei} = \left\{ \vartheta_1 \bar{Y}(1+\zeta_0) + \vartheta_2 \frac{\bar{Y}(1+\zeta_0)}{(1+\zeta_1)} \right\} \exp\left[\frac{-\gamma\zeta_1}{1+\gamma\zeta_1}\right]$$

where $\gamma = \frac{\alpha \bar{X}}{2(\beta + \alpha \bar{X})}$. Now, by subtracting \bar{Y} from both sides of the above equation, we obtain

$$t_{mpei} - \bar{Y} = \bar{Y} \left[\vartheta_1 \left\{ 1 - \gamma \zeta_0^2 + \frac{3}{2} \gamma^2 \zeta_1^2 \right\} + \vartheta_2 \left\{ 1 + (1 + \gamma + \frac{3}{2} \gamma^2) \zeta_1^2 - (1 + \gamma) \zeta_0 \zeta_1 \right\} - 1 \right]$$
(15)

Employing expectation on both sides of the Equation (15), and using (12), (13), (14), we have

$$Bias(t_{mpei}) = \bar{Y}\vartheta_1 \left\{ 1 - f_1\left(\frac{\lambda}{2-\lambda}\right)\left(\gamma C_y^2 - \frac{3}{2}\gamma^2 C_x^2\right) \right\} \\ + \bar{Y}\vartheta_2 \left[\left\{ 1 + f_1\left(\frac{\lambda}{2-\lambda}\right) \right. \\ \left. \left((1+\gamma+\frac{3}{2}\gamma^2)C_x^2 - (1+\gamma)\rho C_x C_y\right) \right\} - 1 \right]$$
(16)

By squaring and taking expectation on both sides of (15) and applying (11), (12), (13), and (14), we get:

$$MSE(t_{mpei}) = A_m \vartheta_1^2 + B_m \vartheta_2^2 + 2C_m \vartheta_1 \vartheta_2 + 2D_m \vartheta_1 + 2E_m \vartheta_2 + F_m$$
(17)

where

$$\begin{split} A_m &= \bar{Y}^2 \left[1 + f_1 \left(\frac{\lambda}{2 - \lambda} \right) \left\{ C_y^2 + C_x^2 - 2\rho C_y C_x \right\} \right] \\ B_m &= \bar{Y}^2 \left[1 + f_1 \left(\frac{\lambda}{2 - \lambda} \right) \left\{ C_y^2 + (3 + 4\gamma + 4\gamma^2) C_x^2 \right. \\ \left. -4(1 + \gamma)\rho C_y C_x \right\} \right] \\ C_m &= \bar{Y}^2 \left[1 + f_1 \left(\frac{\lambda}{2 - \lambda} \right) \left\{ C_y^2 + (1 + 2\gamma + 4\gamma^2) C_x^2 \right. \\ \left. -2(1 + 2\gamma)\rho C_y C_x \right\} \right] \\ D_m &= -\bar{Y}^2 \left[1 + f_1 \left(\frac{\lambda}{2 - \lambda} \right) \left\{ \frac{3}{2} \gamma^2 C_x^2 - \rho C_y C_x \right\} \right] \\ E_m &= -\bar{Y}^2 \left[1 + f_1 \left(\frac{\lambda}{2 - \lambda} \right) \left\{ \left(1 + \gamma + \frac{3}{2} \gamma^2 \right) C_x^2 - (1 - \gamma)\rho C_y C_x \right\} \right] \\ F_m &= \bar{Y}^2 \end{split}$$

To minimize the *MSE* of the estimator t_{mpei} , we differentiate equation (17) with respect to ϑ_1 and ϑ_2 , we have

$$\vartheta_1 = \frac{B_m D_m - C_m E_m}{C_m^2 - A_m B_m} = \vartheta_1^\star \tag{18}$$

$$\vartheta_2 = \frac{A_m E_m - C_m D_m}{C_m^2 - A_m B_m} = \vartheta_2^\star \tag{19}$$

Now, utilizing ϑ_1^{\star} and ϑ_2^{\star} in equation (17), we obtain the expression for minimum *MSE* of t_{mpei}

$$MSE_{min}(t_{mpei}) = A_m \vartheta_1^{\star 2} + B_m \vartheta_2^{\star 2} + 2C_m \vartheta_1^{\star} \vartheta_2^{\star} + 2D_m \vartheta_1^{\star} + 2E_m \vartheta_2^{\star} + F_m.$$
(20)

4 Simulation Studies

A comprehensive simulation study was conducted to evaluate the effectiveness of the proposed memory-type estimators. The Mean Squared Error (*MSE*) and Percent Relative Efficiency (*PRE*) of both the proposed and existing estimators, relative to the usual estimator \bar{y} , were calculated using the following formulas, based on 10,000 replications:

$$MSE(t_j) = \frac{1}{10000} \sum_{j=1}^{10000} (t_j - \bar{Y})^2$$
(21)

and

$$PRE(t_j, \bar{y}) = \frac{MSE(\bar{y})}{MSE(t_j)}$$
(22)

where $t_j = t_{mri}, t_{mrgi}, t_{mexi}, t_{mpei_1}, t_{mpei_2}, t_{mpei_3}, t_{mpei_4}$ for j = 1, 2, 3, 4, 5, 6, 7 respectively.

The *PRE* of the estimators is calculated at various levels of correlation $\rho = (0.75, 0.80, 0.85, 0.90, 0.95)$ and weight parameter $\lambda = (0.10, 0.25, 0.50, 0.75, 0.95)$ using the algorithm given by [12]:

- (i) Generate two independent population of size N = 5000 such that X = N(10, 4) and Z = N(10, 4).
- (ii) Set $Y = \rho X + \sqrt{1 \rho^2} Z$ where ρ is the correlation between X and Y, and take the value for λ .
- (iii) Select 10000 samples of sizes n = 50, 100, 200, 300, 500 respectively. And compute the estimator for each 10000 samples.
- (iv) Compute the MSE for each sample size for each estimator using (21).
- (v) Obtained the relative efficiencies for each sample using (22).

5 Discussion and Results

Tables 2 and 3 represents the *PRE* of the existing and the proposed estimators relative to usual estimator \bar{y} , with smoothing constant $\lambda = 0.10, 0.25, 0.50$ and 0.95, across different values of ρ and n. Key findings from Tables 2 and 3 are:

(i) As λ (smoothing constant) decreases from 0.95 to 0.10 for any fixed value of ρ (0.75 $\leq \rho \leq 0.95$) the *PRE* of the proposed estimators $t_{mpei_j}, j = 1, 2, 3, 4$ increases. Here λ indicate the weight assign to current information so if we take $\lambda = 1$ i.e. we use only current

					$\lambda = 0.10$							$\lambda = 0.25$			
θ	n	t_{mri}	t_{mrgi}	t_{mexi}	t_{mpei_1}	t_{mpei_2}	t_{mpei_3}	t_{mpei_4}	t_{mri}	t_{mrgi}	t_{mexi}	t_{mpei_1}	t_{mpei_2}	t_{mpei_3}	t_{mpei_4}
	50	130.339	259.769	241.379	259.803	259.815	259.808	259.777	124.519	248.9633	236.981	248.982	248.9865	248.984	248.9752
	100	130.236	256.483	240.919	256.499	256.504	256.501	256.486	124.446	245.8732	236.565	245.8819	245.884	245.8829	245.8789
0.75	200	130.2458	254.9266	240.6422	254.9345	254.9371	254.9356	254.9284	124.4498	244.3562	236.2858	244.3605	244.3615	244.3609	244.3589
	300	130.4292	254.8418	240.9131	254.8471	254.8488	254.8478	254.843	124.6254	244.2817	236.5581	244.2845	244.2852	244.2848	244.2835
	500	130.4138	254.2836	240.7363	254.2866	254.2875	254.287	254.2843	124.615	243.7464	236.3703	243.7481	243.7484	243.7482	243.7475
	50	158.2099	315.3172	282.7581	315.3644	315.3808	315.3716	315.3266	151.2466	302.4025	278.9843	302.4275	302.4339	302.4303	302.4168
	100	158.0578	311.273	282.2054	311.2949	311.3026	311.2983	311.2773	151.1315	298.5969	278.475	298.6085	298.6115	298.6099	298.6037
0.80	200	158.0433	309.3339	281.8465	309.3446	309.3483	309.3462	309.33	151.1121	296.7074	278.1128	296.7132	296.7146	296.7138	296.7108
	300	158.2765	309.2517	282.1398	296.7108	309.2613	309.2599	309.2532	151.3367	296.6392	278.4107	296.643	296.644	296.6434	296.6414
	500	158.236	308.5317	281.9107	308.5358	308.5372	308.5364	308.5325	151.3028	295.9477	278.1643	295.9498	295.9504	295.9501	295.9489
	50	204.6092	407.7925	338.1489	407.864	407.8901	407.8755	407.8044	195.8653	391.6131	335.8177	391.6501	391.6604	391.6547	391.6315
	100	204.3758	402.49	337.507	402.5232	402.5355	402.5286	402.4954	195.6814	386.6162	335.2139	386.6335	386.6383	386.6356	386.6249
0.85	200	204.3206	399.9111	337.0577	399.9273	399.9333	399.93	399.9138	195.6229	384.104	334.7582	384.1125	384.1148	384.1135	384.1083
	300	204.6336	399.8276	337.3538	399.8384	399.8423	399.8401	399.8294	195.9262	384.0404	335.0621	384.046	384.0476	384.0467	384.0432
	500	204.5502	398.8362	337.07	398.8423	398.8446	398.8433	398.8372	195.8521	383.0859	334.7517	383.0891	383.09	383.0895	383.0875
	50	297.0771	592.0839	410.9774	592.2381	592.2666	592.2381	592.1006	285.0404	569.9099	411.4358	569.9761	569.9964	569.9851	569.9365
	100	296.6856	584.2814	410.3027	584.3428	584.3668	584.3534	584.2891	284.7227	562.5388	410.7865	562.5697	562.5792	562.5739	562.5514
06.0	200	296.5472	580.4236	409.7885	580.4537	580.4653	580.4588	580.4274	284.5846	558.7797	410.2613	558.7948	558.7994	558.7968	558.7858
	300	297.0134	580.3257	410.0346	580.3455	580.3531	580.3489	580.3282	285.0392	558.7133	410.5154	558.7233	558.7263	558.7246	558.7173
	500	296.8422	578.789	409.7203	578.8003	578.8047	578.8022	578.7904	284.8825	557.2291	410.1636	557.2348	557.2365	557.2355	557.2314
	50	572.666	1141.341	491.1003	1141.74	1141.906	1141.813	1141.372	551.6907	1103.051	495.368	1103.242	1103.309	1103.271	1103.102
	100	571.8166	1126.114	490.5995	1126.301	1126.379	1126.335	1126.128	550.984	1088.603	494.8742	1088.692	1088.724	1088.706	1088.627
0.95	200	571.4236	1118.432	490.1682	1118.523	1118.56	1118.539	1118.439	550.6043	1081.107	494.4319	1081.151	1081.166	1081.157	1081.119
	300	572.3255	1118.25	490.2576	1118.31	1118.335	1118.321	1118.255	551.4904	1080.992	494.5201	1081.02	1081.03	1081.025	1080.999
	500	571.8849	1115.073	490.0197	1115.107	1115.121	1115.113	1115.076	551.0793	1077.909	494.2434	1077.925	1077.931	1077.928	1077.913

g constant $\lambda =$		tt
moothin		tt
\bar{y} , with s		t
or	$\lambda = 0.95$	<i>t</i>
o usual estimat		t
relative to		t
t_{mpei_4} re]		tt
t_{i_2}, t_{mpei_3}, t_r		t
8		t
$_{mpei_1}, t_{\eta}$		turni
$_{i}, t_{mexi}, t_{mpei_1}, t_{m_l}$	$\lambda = 0.50$	tt
$t_{mri}, t_{mrgi},$ les of ρ .		<i>t</i>
tors t_{mri} t values o		<i>t</i>
estimat different		tt
tE of ross of		
PR5, acr		0
able 3 .50, 0.9		

235.363

236.934

240.08

240.011 236.901 235.347

240.012 236.901 235.347 235.29 234.776 291.733 287.874 285.943 285.891 285.235 378.304 373.189 370.627 370.591 369.681 551.801 544.157 540.33 540.323 538.888 1072.278

240.01

233.025 232.621

239.907 236.841

119.377

240.639

240.613

240.614

240.613

233.365 232.942 232.658

240.574

119.902 119.903 119.872 120.048

119.481

237.554

237.542 236.005 235.942 235.439 292.438

237.542

237.542

237.523 235.995

50 100 300

0.75

236.005

236.004

236.01

236.901 235.347

232.334

235.322 235.274 234.782 291.808

234.776

232.448

234.767

119.659 145.097

235.441 292.466 288.651

235.281

232.631

119.6493 119.465

235.946

235.942

235.942 235.439 292.437

232.946

235.936

232.764 275.871 275.327 274.971 275.281 275.046

235.436

120.051

500

235.439

235.301

235.281 234.776 285.242 378.383 373.227 370.645

285.961 285.911

285.943 285.891 285.2353 378.299 373.187 370.626 370.599

285.899

285.235

274.771

145.376

286.028

286.026 379.158

286.026 379.156

286.021 379.086

300 500 50 100

286.681

286.677

286.677

373.185

188.211

374.153 371.613

374.138

374.139 371.606

374.137 371.605 371.568

333.223 332.789 333.111 332.804

374.103

188.841

371.589 371.557

188.746 189.053

200

0.85

300 500 50 100

333.901

371.606 371.568 370.668 552.902 545.439 541.661 541.636 540.232 1073.9

188.131 188.455 188.414 274.41

370.625 370.599 369.68 551.78

332.606 332.949

378.296

333.766 333.049

188.146

379.188

87.91

287.874

287.873 285.942

275.049 274.687 275.017

145.188

288.637

288.637

288.613

50 100 200

292.387

145.726 145.694 145.635 145.861 145.845 188.936

286.716 286.669

0.80

292.439 288.638 285.911

145.147 145.385

286.734

286.727

286.728 286.677 286.026 379.151

286.727

285.879 285.223 378.108 373.094 370.581

291.721

275.595

291.596 287.808

291.731

Table 3	PRE of estim	ators t_{mri}, t_{mrgi}	$, t_{mexi}, t_{mpei_1},$	$,t_{mpei_2},t_{mpe_3}$	$_{pei_3}, t_{mpei_4}$	relative to usual estimator \tilde{j}	\bar{y} , with smoothing constant
0.50, 0.95	, across di	nt values of ρ .					

Enhancing Accuracy	in Population Mea	n Estimation 427

551.874 544.191 540.347 540.333 538.894

551.789

369.68

544.151 540.327 540.321

544.147 540.325 540.319 538.886

411.147

543.998

274.425 274.267 274.757

545.453 541.667

412.015

551.471

552.9313

552.906 545.441

552.898 545.437

411.883

275.507 275.312 275.118 275.583

411.101 410.629 410.911 410.543 499.076 498.437

545.381

541.662 541.637 540.232 1073.919

541.651 541.636

332.621

369.664

370.561

371.572

371.568

370.668

370.668

370.661 552.782

189.003

370.67

410.654 410.947

540.253 540.272 538.859

370.611 369.688 1056.942 1049.321 1049.325

1056.953

1056.976 1049.338

1056.935 1049.319 1049.324

498.775

1056.565 1049.14

532.995 532.611 533.578

1059.092

1059.099 1051.584

1059.108 1051.588 1051.557

1059.092 1051.581 1051.552

1058.953 1051.514 1051.509

534.566 534.108 535.023

100

50

1073.594

498.0625

200 300

0.95

498.164 497.859

1073.885

540.231

541.618

300 500

540.221

275.464 535.071

541.633

200

0.90

1071.42

1073.887

498.385

1072.192

1049.327

1046.326

1046.328

1046.325

498.176

533.269

1048.619

1048.622

1048.619

1048.594

534.687

500

1049.329

1049.337 1046.333

498.488

1049.208 1046.259

1051.552

1051.555 1048.62

1051.581

1072.209

1072.23

538.887

410.571 499.56

274.651 533.135

541.641 540.234

information then our proposed memory type exponential estimator is equal to the estimator t_{pe} .

- (ii) Increasing the correlation coefficient between the study and the auxiliary variable results in a rise in the PRE of the estimators. This is true regardless of the values of λ and n. It may be inferred from this that the effectiveness of the estimators improves as the strength of the association between the study and the auxiliary variable increases (that is, as ρ increases). When the value of ρ is larger, it shows that the auxiliary variable offers more relevant information for predicting the study variable, which ultimately results in more accurate predictions. This information is used more effectively by the suggested estimators, which ultimately leads to an increase in PRE values.
- (iii) As the sample size *n* rises, notably for the values n = 50, 100, 200, 300, and 500, the proposed class of estimators has a *PRE* that is higher than that of the current estimators. This is the case even when the values of λ and ρ remain the same. The implication of this is that the proposed estimators demonstrate superior efficiency in utilizing the information provided by both the study and auxiliary variables as more data points become available. Furthermore, with a larger sample size, the estimators are able to better capture the underlying relationships and reduce the variability in the estimates. This better performance leads to a higher *PRE*, which indicates that the suggested estimators are more effective in terms of accuracy when compared to the alternatives that are currently available.

According to Figure 1, which depicts the influence of smoothing constant λ on the *PRE* of the suggested estimators, the sample size is set at n = 200, and the coefficient of correlation is $\rho = 0.90$. When the value of λ grows from zero to one, we find that the *PRE* of the suggested class of estimators rapidly drops. This is something that we see. The fact that *PRE* gradually decreases as the value of λ grows suggests that the suggested estimators perform better as they include more information from the past. This is because they become less susceptible to noise and fluctuations in the data that is currently being used.

According to Figure 2, which depicts the influence of correlation coefficient ρ on the *PRE* of the suggested estimators, the sample size is set at n = 200, and the smoothing constant is $\lambda = 0.50$. When the correlation coefficient ρ is increased, the suggested class of estimators experiences a rise in the *PRE*. The implication of this is that the suggested estimators become more effective as the linear connection between the study and auxiliary

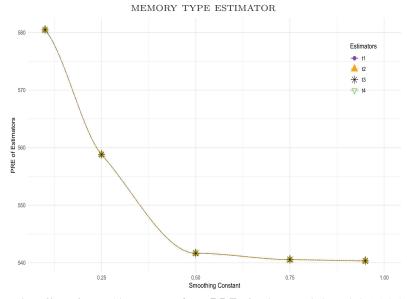


Figure 1 Effect of smoothing constant λ on *PRE* of estimators ti (here ti, i=1,2,3,4 used for notation of the estimators $t_{mpei_1}, t_{mpei_2}, t_{mpei_3}, t_{mpei_4}$ respectively.)

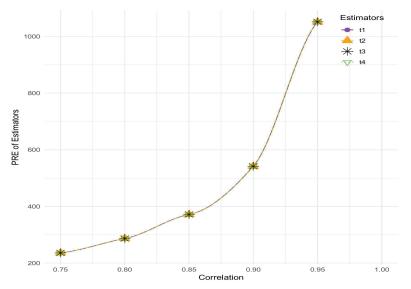


Figure 2 Effect of correlation ρ on *PRE* of estimators ti (here ti, i=1,2,3,4 used for notation of the estimators $t_{mpei_1}, t_{mpei_2}, t_{mpei_3}, t_{mpei_4}$ respectively.)

variables becomes stronger (that is, as ρ increases). When ρ is larger, it suggests that the auxiliary variable gives more pertinent information for predicting the study variable. This enables the estimator to make better use of the data that is accessible to them. Because of this, the performance of the estimator is enhanced, which ultimately results in a greater *PRE* percentage. This pattern demonstrates that a larger correlation between the study and auxiliary variables helps the estimator to attain better accuracy.

6 Conclusion

In this study, we aimed to enhance the efficiency of estimators by leveraging the concept of EWMA statistic. For the purpose of accomplishing this objective, we developed a family of estimators that include the EWMA statistic. Furthermore, in order to assess the effectiveness of these estimators, we carried out a comprehensive simulation research. The results of this investigation are shown in Tables 2 and 3 to illustrate the findings. It is obvious, after doing an analysis of the data included in these tables, that the suggested category of estimators consistently displays greater efficiency when compared to other established estimators, such as $\hat{y}_{mei}, \hat{y}_{mrqi}$, and \hat{y}_{mexi} . Based on these results, we strongly suggest that our suggested family of estimators be used for the purpose of estimating population parameters since they provide a higher level of efficiency in comparison to the approaches that are already in use. Additionally, the scope of our research might be broadened by investigating other sampling methods, such as cluster or stratified sampling, and by using our estimators to estimate a wider variety of population characteristics, such as variances, proportions, or regression coefficients. This would allow us to investigate a wider range of population parameters. Furthermore evaluating the adaptability and robustness of the suggested estimators in a variety of statistical settings will be made easier with the assistance of this expansion.

References

- NK Adichwal, Prabhakar Mishra, Poonam Singh, Rajesh Singh, and Z Yan, A two parameter ratio-product-ratio type estimator for population coefficient of variation based on SRSWOR, J. Adv. Res. Appl. Math Stat 1 (2016), 1–5.
- [2] Irfan Aslam, Muhammad Noorul Amin, Amjad Mahmood, and Prayas Sharma, *New memory-based ratio estimator in survey sampling*, Natural and Applied Sciences International Journal (NASIJ) 5 (2024), no. 1, 168–181.

- [3] Irfan Aslam, Muhammad Noor-ul Amin, Muhammad Hanif, and Prayas Sharma, *Memory type ratio and product estimators under ranked-based sampling schemes*, Communications in Statistics-Theory and Methods 52 (2023), no. 4, 1155–1177.
- [4] Shashi Bahl and RK Tuteja, *Ratio and product type exponential estimators*, Journal of information and optimization sciences **12** (1991), no. 1, 159–164.
- [5] WG Cochran, *The estimation of the yields of cereal experiments by sampling for the ratio of grain to total produce*, The journal of agricultural science **30** (1940), no. 2, 262–275.
- [6] Amjad Javaid, Muhammad Noor-ul Amin, and Muhammad Hanif, *Mod-ified ratio estimator in systematic random sampling under non-response*, Proceedings of the National Academy of Sciences, India Section A: Physical Sciences **89** (2019), 817–825.
- [7] Cem Kadilar and Hulya Cingi, *Ratio estimators in simple random sampling*, Applied mathematics and computation **151** (2004), no. 3, 893–902.
- [8] Muhammad Noor-ul Amin, Memory type estimators of population mean using exponentially weighted moving averages for time scaled surveys, Communications in Statistics-Theory and Methods 50 (2021), no. 12, 2747–2758.
- [9] Muhammad Nouman Qureshi, Osama Abdulaziz Alamri, Naureen Riaz, Ayesha Iftikhar, Muhammad Umair Tariq, and Muhammad Hanif, *Memory-type variance estimators using exponentially weighted moving average statistic in presence of measurement error for time-scaled surveys*, Plos one 18 (2023), no. 11, e0277697.
- [10] Muhammad Nouman Qureshi, Muhammad Umair Tariq, Osama Abdulaziz Alamri, and Muhammad Hanif, *Estimation of heterogeneous population variance using memory-type estimators based on EWMA statistic in the presence of measurement error for time-scaled surveys*, Communications in Statistics-Simulation and Computation (2024), 1–14.
- [11] Muhammad Nouman Qureshi, Muhammad Umair Tariq, and Muhammad Hanif, *Memory-type ratio and product estimators for population* variance using exponentially weighted moving averages for time-scaled surveys, Communications in Statistics-Simulation and Computation 53 (2024), no. 3, 1484–1493.
- [12] M Krishna Reddy, K Ranga Rao, and Naveen Kumar Boiroju, Comparison of ratio estimators using monte carlo simulation, International Journal of Agriculture and Statistical Sciences 6 (2010), no. 2, 517–527.

- 432 Poonam Singh et al.
- [13] SW Roberts, *Control chart tests based on geometric moving averages*, Technometrics **42** (2000), no. 1, 97–101.
- [14] DS Robson, Applications of multivariate polykays to the theory of unbiased ratio-type estimation, Journal of the American Statistical Association 52 (1957), no. 280, 511–522.
- [15] Prayas Sharma, Poonam Singh, Mamta Kumari, and Rajesh Singh, Estimation Procedures for Population Mean using EWMA for Time Scaled Survey, Sankhya B (2024), 1–26.
- [16] Anjali Singh, Poonam Singh, Prayas Sharma, and Badr Aloraini, *Estimation of Population Mean using Neutrosophic Exponential Estimators* with Application to Real Data, International Journal of Neutrosophic Science (IJNS) 25 (2025), no. 03, 322–338.
- [17] Poonam Singh and Rajesh Singh, Exponential ratio type estimator of population mean in presence of measurement error and non response, IJSE 18 (2017), no. 3, 102–121.
- [18] Rajesh Singh, Prabhakar Mishra, Ahmed Auduudu, and Supriya Khare, *Exponential type estimator for estimating finite population mean*, International Journal of Computational and Theoretical Statistics 7 (2020), no. 01.
- [19] Rajesh Singh, and Prayas Sharma, *A class of exponential ratio estimators of finite population mean using two auxiliary variables*, Pakistan Journal of Statistics and Operation Research (2015), 221–229.
- [20] Rajesh Singh, Poonam Singh, and Sakshi Rai, *Estimators using EWMA Statistic for Estimation of Population Mean*, Mathematical Statistician and Engineering Applications 72 (2023) no. 2, 31–41.
- [21] Rajesh Singh, Hemant K Verma, and Prayas Sharma, *Estimation of population mean using exponential type imputation technique for missing observations*, Journal of Modern Applied Statistical Methods 15 (2016), no. 1, 19.
- [22] DJ Watson, *The estimation of leaf area in field crops*, The Journal of Agricultural Science **27** (1937), no. 3, 474–483.
- [23] Tolga Zaman, and Cem Kadilar, Novel family of exponential estimators using information of auxiliary attribute, Journal of Statistics and Management Systems 22 (2019), no. 8, 1499–1509.
- [24] Tolga Zaman, and Cem Kadilar, *Exponential ratio and product type estimators of the mean in stratified two-phase sampling*, AIMS Mathematics **6** (2021), no. 5, 4265–4279.
- [25] Tolga Zaman and Cem Kadilar, New class of exponential estimators for finite population mean in two-phase sampling, Communications in Statistics-Theory and Methods 50 (2021), no. 4, 874–889.

Biographies

Poonam Singh is a dedicated academician and researcher in the field of Statistics. She earned her Ph.D. in 2020 from Banaras Hindu University. With over eight years of experience in teaching and research, Dr. Singh specializes in modeling and estimating unknown population parameters in survey sampling, with a focus on addressing non-response and measurement errors. Currently serving in the Department of Statistics, Banaras Hindu University, she has published around 15 research articles in indexed journals, showcasing her contributions to the field. Dr. Singh is passionate about fostering collaboration and has been actively involved in international research initiatives. A skilled educator, Dr. Singh has a strong commitment to undergraduate and postgraduate teaching, inspiring future statisticians through her expertise and enthusiasm for the subject.

Prayas Sharma is currently working as Assistant Professor in the Department of Statistics, Babasaheb Bhimrao Ambedkar University, Lucknow. Dr. Sharma holds a Bachelor's degree in Computer Science & Statistics, Masters and Doctorate degree in Statistics from Banaras Hindu University, Varanasi, India. Dr. Sharma has good knowledge of Statistics, Artificial

Intelligence and Machine Learning, Business Analytics & Research Methodology along with strong computational & programming skills. He has more than 11 years of academic experience, both in the domain of teaching and research. His research interest includes Survey Sampling, Estimation Procedures using Auxiliary Information and Measurement Errors, Predictive Modelling, Business Analytics and Operations Research. Dr. Sharma has published more than 50 research papers in reputed National & International journals along with one book and two chapters in book internationally published. He has more than 630 citations with H-Index 17 & I index of 20. Dr. Sharma has a keen interest in reading, writing and publishing, he is serving 7 reputed journals as editor/associate editor and more than 30 journals as reviewer and reviewed more than 150 research papers from the journals like Communication in Statistics (T&F), Journal of Statistical Theory and Practice (T&F), Heliyon, Scientific Reports, Clinical Epidemiology and Global Health (Elsevier), Applied Economics, Hacettepe Journal of Mathematics and Statistics, Statistics in Transition, International Journal of Applied and computational Mathematics (Springer), International Journal of Productivity and Performance Management (Emerald), Benchmarking (Emerald), Pakistan Journal of Statistics and Operation Research to name a few.

Pooja Mauryais a research scholar in the Department of Statistics, Banaras Hindu University (BHU), Varanasi. She holds a Master's degree in Statistics and is currently pursuing research in the field of sampling theory. Her work focuses on developing innovative methodologies and techniques within sampling theory, contributing to advancements in the domain.