
GenDE: A CRF-Based Data Extractor

Mohammed Kayed1,∗ and Khaled Shaalan2

1Faculty of Computers and Artificial Intelligence, Beni-Suef University, Beni-suef,
Egypt, 62511
2Faculty of Engineering and IT, The British University in Dubai, Dubai, UAE
E-mail: mskayed@gmail.com; Khaled.shaalan@buid.ac.ae
∗Corresponding Author

Received 01 October 2019; Accepted 23 April 2020;
Publication 12 June 2020

Abstract

Web site schema detection and data extraction from the Deep Web have been
studied a lot. Although, few researches have focused on the more challenging
jobs: wrapper verification or extractor generation. A wrapper verifier would
check whether a new page from a site complies with the detected schema, and
so the extractor will use the wrapper to get instances of the schema types. If
the wrapper failed to work with the new page, a new wrapper/schema would
be re-generated by calling an unsupervised wrapper induction system. In this
paper, a new data extractor called GenDE is proposed. It verifies the site
schema and extracts data from the Web pages using Conditional Random
Fields (CRFs). The problem is solved by breaking down an observation
sequence (a Web page) into simpler subsequences that will be labeled using
CRF. Moreover, the system solves the problem of automatic data extraction
from modern JavaScript sites in which data/schema are attached (on the client
side) in a JSON format. The experiments show an encouraging result as it
outperforms the CSP-based extractor algorithm (95% and 96% of recall and
precision, respectively). Moreover, it gives a high performance result when
tested on the SWDE benchmark dataset (84.91%).

Keywords: Wrapper induction, data extractor, wrapper verifier, sequence
labeling, CRFs model, JSON data extraction.

Journal of Web Engineering, Vol. 19 3-4, 371–404.
doi: 10.13052/jwe1540-9589.19342
© 2020 River Publishers

372 Mohammed Kayed and Khaled Shaalan

1 Introduction

The Deep Web, which contains between 400 and 550 times more public
information than the Surface Web, is generated dynamically using some pre-
defined templates embedded by data taken from databases. Although many
of these embedded data are publicly available as Web services, many others
are still not accessible through a programming interface. So, developing a
wrapper to extract such embedded data is useful for many Web intelligent
systems. Wrapper induction (WI) which aims to generate extraction rules
(wrappers) for Web data extraction is a key component for many sophisticated
Web mining applications. Many WI approaches are surveyed in [1]. These
approaches have different extraction targets/levels (field-level [2], record-
level [3] [4] or page-level [5] [6]), various automation degree (supervised or
unsupervised) and different features for rule representation (HTML tokens,
DOM tree, visual features, etc.). As the schema and template of a dynamic
Web site are usually changed with the time, researchers in the domain of
page-level Web data extraction aim not only to construct the Web site schema
and extract data based on this schema, but also to generate a “wrapper
maintenance” tool that will validate the constructed schema before extracting
data at a later time. The wrapper maintenance tool will check whether either
the site schema or the site template are changed or not. If no changes has
been occurred, the data extractor starts its extraction job, otherwise a wrapper
re-induction step must be done to get the new site schema or template.

This paper addresses two main shortages in the current Web data extrac-
tion approaches. First, all current approaches consider data to be extracted
from a Web site as embedded in the HTML tags of the site pages, and then
mine these pages (DOM trees) to detect the Web site schema and extract the
data (i.e., data and schema are unknown). Although, these approaches ignore
an important fact that both data and schema may be partially or completely
attached (on the client side) in modern JavaScript Web applications in a
structured format such as JSON. Once data to be extracted are identified and
accessed on the client side in a JSON format, the schema will be directly
generated as JSON data are represented as name/value pairs. Furthermore,
data/schema are labeled. Generally in a Web site, data to be extracted and its
schema are provided in either of the following three different manners:

• Data and schema are only embedded in the pages’ DOM trees (no JSON
data),

• Data to be extracted are completely provided in a JSON format and the
DOM trees as well (full JSON data),

GenDE: A CRF-Based Data Extractor 373

Figure 1 A part of LAZADA Web page (3 data records (a), (b) and (c)).

Figure 2 A full JSON objects ((a), (b) and (c)) corresponding to the 3 records in Figure 1((a),
(b) and (c), respectively).

• Data to be extracted are partially provided in a JSON format, while all
data are embedded in the DOM trees (partial JSON data).

Examples of these three types of Web sites are AMAZON1, LAZADA2

and SOUQ3, respectively. Figure 1 shows a part (3 data records: (a), (b) and
(c)) of a Web page taken from Lazada online shopping site. The whole data of
this Web page are attached in a JSON format on the client side. Figure 2((a),
(b) and (c)) shows the JSON data (objects) corresponding to the three data

1https://www.amazon.com/
2https://www.lazada.com/
3https://egypt.souq.com/eg-en/

374 Mohammed Kayed and Khaled Shaalan

Figure 3 A partial JSON objects ((a), (b) and (c)) corresponding to the 3 records in
Figure 1((a), (b) and (c), respectively).

records shown in Figure 1((a), (b) and (c), respectively). The three objects in
the figure and other similar objects (about 40 objects) are provided as a list
([]) with label “listItems”. For simplicity, we remove part of these JSON data
objects and replace it by “. . . ” to save space. All data displayed in Figure 1
and more are shown in the JSON format in Figure 2. Furthermore, these data
are labeled (e.g., “name”, “price”, etc.). Sometimes, data to be extracted are
partially provided in a JSON format in the Web page (for instance SOUQ
online shopping site). LAZADA Web site is chosen because it provides the
two types of JSON data at the same time. Figure 3((a), (b) and (c)) gives the
partial JSON data objects corresponding to the three data records shown in
Figure 1((a), (b) and (c), respectively). To the best of our knowledge, no prior
work has been proposed to automatically extracting JSON data from a Web
site ([7] suggested an approach that did that based on some extraction rules
and configurations defined manually).

Second, although many researches focused on wrapper induction, the
development of tools for wrapper maintenance (wrapper verification and
wrapper re-induction [8]) has received less attention. The wrapper main-
tenance problem becomes important because most web sites are always
dynamic, not static. Hence, tracking the correctness of a wrapper and repair-
ing it (when the schema is modified) have been a critical problem in practical
applications. Researchers thought that unsupervised Web data extraction
approaches don’t need to maintain their wrappers as these approaches are
designed to extract data without annotated training pages and can be used
to extract data for each test page. Thus, wrapper verification is not needed
for the unsupervised approaches, but schema matching is required to ensure
data extracted at different time are well corresponded as shown in Figure 4.
However, the process of generating a wrapper (extractor) and detecting a
schema in the unsupervised approaches usually takes longer time (several
seconds) than the process of using the generated wrapper and schema to

GenDE: A CRF-Based Data Extractor 375

Figure 4 Schema matching for unsupervised Web data extraction approaches.

extract data (several milliseconds). Also, schema matching is a challenge
for two schemas without labels. Therefore, both wrapper verification and
schema matching for unsupervised Web data extraction systems are still of
great necessity.

To the best of our knowledge, different from our proposed approach
which is working with a page-level WI system, most prior wrapper mainte-
nance approaches have been worked with record-level WI systems (e.g., [9],
[10] and [11]). Two prior wrapper maintenance approaches are designed to
work with page-level WI systems: Constrained Satisfaction Problem (CSP)
based approach [12] and the Joint Wrapper and Data Repair (WADaR)
approach [13] [14]. The former one constructs a finite state machine (FSM)
by using the schema detected and the data extracted at a specific time t.
This constructed FSM is then used to verify the schema and extract data at a
later time t′. But, the problem in this approach is that real Web sites usually
have complex schemas. So, generating a FSM from such complex schemas
is impractical and not effective. The later approach, WADaR, aligns data
extracted by a WI system to a target schema using a “Fitness” function which

376 Mohammed Kayed and Khaled Shaalan

is calculated based on missed, misplaced or under segmented data instances.
This approach has an assumption that, given a target schema at time t, data
extracted at a later time t′ using the wrapper are correct but need to realigned
which is incorrect in many real cases. As many Web sites are dynamic, so the
wrapper may totally extract wrong data or even fail to extract any data when
the site schema is changed.

Therefore, this paper proposes a Generic Data Extractor (GenDE) that
tries to handle the two shortages mentioned above and so it is able to
verify/extract data from JavaScript Web sites (contain JSON data) as well
as the other traditional Web sites (do not contain JSON data). Our proposed
wrapper maintenance approach uses the CRFs model for schema verification
and data extraction. To the best of our knowledge, CRFs hasn’t been used
for wrapper maintenance (it is only be used for wrapper induction). We don’t
choose to solve this problem using the recent deep learning sequence model
Recurrent Neural Network (RNN) which outperforms the traditional CRFs
model in many domains. As RNN requires big training data to learn, although
data available for wrapper maintenance is small (the data extracted previously
by an unsupervised WI system using just few pages).

The rest of the paper is organized as follows. Our research problem is
formulated in Section 2. Related works are presented in Section 3. The details
of the proposed system are given in Section 4, while the experimental results
are shown in Section 5. Finally, Section 6 concludes our work.

2 Problem Formulation

Web data extractor is considered as a reverse engineering tool for the Deep
Web in which data are taken from a database, embedded into a predefined
template T and submitted to users (in the HTML format) in response to their
requests. Data instances in the database conform to a common schema which
could be represented in an XML, JSON or any other format. Data to be
extracted are allocated in the leaf nodes (text/image) while composite data
(e.g. tuple, set, option, etc.) are allocated in the internal nodes of the site
pages. Figure 5(a) shows the schema of the data records (instances) shown
in Figure 1, where it has one set/list type ([]1), three tuples (<>2, <>4,
<>8) and seven basic types (β3, β5, β6, β9, β10, β11, β12) such that the two
types (β9, β10) are optional (()?7). This kind of Web site schema could be
generated automatically by unsupervised WI systems such as FiVaTech [5]
[15] and TEX [6]. We call this schema “DOM Schema”. Another simpler but
rich schema (called “JSON schema”) could be generated directly by a simple

GenDE: A CRF-Based Data Extractor 377

Figure 5 A DOM schema (a) and JSON schema (b) for the data shown in Figures 1 and 2.

algorithm from JSON data. In this JSON schema, sets (lists) are denoted by
brackets ([]), tuples are denoted by braces () and basic types are denoted by
δi (i = 2, 3, ...). An instance of the basic type is a name/value pair, where
value may be string, number, true/false or null (optional). This means, JSON
schema basic types are labeled. Figure 5(b) shows the schema of the JSON
data in LAZADA Web site shown in Figure 2. Note that, δ2 has a label “name”
and three instances “Apple iPhone 8 256GB Silver”, “Apple iPhone 8 Plus
64GB Space Gray” and “Apple iPhone 8 Plus 64GB Gold” in the three JSON
data objects (records) in Figure 2. The label is shown in Figure 5(b) inside a
text box beneath each JSON basic type.

Definition 1 (Co-Basic Type). A basic type δ in the JSON schema is called
a co-type if there exists a basic type β in the DOM schema such that the two
types δ and β have the same instance values. Each of the two types δ and β
would be called a co-type of the other.

As an example, the type δ2 (with label “name”) has a correspond-
ing basic type β5 in the DOM schema, so δ2 and β5 are co-basic types.
Also, the types δ5, δ8, δ10, δ12, δ13, δ14 are co-basic types of the basic types
β3, β9, β6, β10, β11, β12, respectively (a co-basic DOM schema type is shown
inside a filled circle in Figure 5(b) beneath each JSON basic type). The other
JSON schema basic types δ3 (with label “nid”), δ4 (with label “productURL”
), δ7 (with label “originalPrice”), δ9 (with label “price”), δ15 (with label
“installment”), δ16 (with label “tItemType”) and δ17 (with label “location”)
have no corresponding basic types in the DOM schema, so they are not
co-basic types.

378 Mohammed Kayed and Khaled Shaalan

Definition 2 (Partial/Full JSON Schema). If each basic type (β) in the DOM
schema is a co-basic type for some basic type δ in the JSON schema, we call
this JSON schema full, otherwise we call it a partial JSON schema. This
means, a Web site has a full JSON schema if all data displayed by the Web
browser attached in some JSON objects. For example, the schema shown in
Figure 5(b) is a full JSON schema.

Our proposed generic data extractor GenDE is divided into two main
phases: schema detection (both DOM and JSON schemas) and wrapper
verification/extraction. In the first phase, given some input pages from a Web
site, GenDE uses the unsupervised page-level Web data extraction system
FiVaTech to generate the DOM schema of the site. Also, a JSON parser along
with a simple algorithm are used to directly generate the JSON schema (if
there is a full or partial one) as we shall discuss later. Finally in this phase, the
generated DOM schema is updated (co-basic types are marked in the DOM
schema) using the JSON schema to get a generic schema. In the second phase,
a wrapper verifier will decide whether an input test page follows the template
and the constructed schema; and if the answer is “Yes”, an extractor will
extract data instances for each basic type.

3 Related Works

The Conditional Random Field (CRF) model is widely used to solve many
problems in different applications such as speech, audio and language pro-
cessing [16]. Many researchers have used CRF in the field of addresses
extraction [17] and Web information extraction in general. Different from
our proposed approach that uses CRF for page-level data extraction and
verification, almost all other approaches adapted CRF to solve the record-
level data extraction [15, 16] ignoring the maintenance problem. [18] used
an existing record-level WI system to segment the Web pages into object
blocks that are further segmented into atomic extraction entities called object
elements. It suggested a two dimensional (2D) CRF model to label these
elements. The 2D CRF model assumed that the object (record) elements have
a two dimensional grid according to their position and size information, then
associated each element with a state (hidden label). [19] used some heuristics
to divide the pages into object blocks (data records), then used Information
Entropy to filter out noisy blocks. It then used the edit distance to identify
similar blocks and finally applied CRF to label (extract elements) from these
blocks.

GenDE: A CRF-Based Data Extractor 379

Wrapper maintenance (wrapper verification and wrapper re-induction)
has received less attention from most researchers in the field of Web data
extraction which has been widely studied from various aspects [1]. Most of
the studies have focused on wrapper maintenance for record-level wrappers.
RAPTURE [8] [9] [20] is an example of such record-level wrapper verifiers
which exploited nine features: digit density, letter density, upper-case density,
lower-case density, punctuation density, HTML density, length, word count,
and mean word length to measure similarities between previously observed
data by the wrapper and the data to be extracted in the future. As another
example of a record-level wrapper verification is DATAPROG [10], in which
two types of features from the previously extracted data are used: the learned
patterns by DATAPROG (such as common beginnings or ending of the
specific data fields) and the global numeric features. For each data field in the
record to be extracted, the algorithm of wrapper verification decided whether
an instance of this field is correct by statistically comparing training instances
and the new data instance. If they are statistically similar, the wrapper is
considered as correct. In fact, the verification of data semantic is not nec-
essary if the extraction process is not complete or failed. Therefore, Pek et
al. [11] introduced an adjacency-weight method to validate Web wrappers.
The method used three features in the validation of the wrapper: HTML tree
paths, number of children nodes per parent node and the number of possible
data nodes that are extractable using this extraction path. If the number of
extracted leaf nodes is less than or equal to the number of previously extracted
nodes, the wrapper is considered as valid. Otherwise, it is considered as
invalid. In a way, the consideration based on DOM tree is complementary
to RAPTURE which is based on data semantic. This means both RAPTURE
and DATAPROG tracked the semantic changes of data instances using the
similarity of two distributions, while Pek et al. tracked the structural changes
of the page DOM tree. The semantic features are used by RAPTURE and
DATAPROG because data may be extracted successfully but it is semantically
incorrect. If the extractor is failed, there is no need for semantic verification.
Instead, wrapper re-induction is required.

The problem of computing joint repairs for wrappers and their extracted
data (wrapper maintenance) has been studied in WADaR [13]. Given as input
data generated by a wrapper in a structured format (a set of rows where each
row is a sequence of instance values for specific attributes), this approach
modified these data as follows. Misplaced data are handled by re-arranging
it using an oracle function, which could also be replaced by an ensemble
of entity recognizers that tagging data instances with types corresponding

380 Mohammed Kayed and Khaled Shaalan

to the schema attributes. Also, data instances are re-segmented or merged
to handle under or over segmentation, respectively. Further, unwanted data
are removed. Finally, the main aim of this study is to align the relation
to a target schema, and then adjusting the wrapper as much as possible. It
quantified the agreement between a relation and a schema using a “Fitness”
function which is based on the amount of misplaced or under segmented
data instances. A CSP-based wrapper verification for page-level Web data
extraction is proposed in [12]. The verification is done in consecutive phases
based on the previously extracted data and the constructed schema/template.
These phases are path-guided verification, data semantic verification and
schema verification. Schema verification is done using a finite state machine,
which is further used for data extraction. If a verification is failed at any
of these phases, the unsupervised wrapper induction would be called for
wrapper re-induction.

4 GenDE: The Proposed Approach

To avoid the threads to validity of Web data extraction approaches due to
the dynamic nature of Web sites (schemas and templates are changed with
time), wrapper verification and data extraction are combined to produce a
comprehensive data extraction system (GenDE). Moreover, GenDE assumes
that a Web site schema and data to be extracted are either attached in a JSON
format provided by the Web pages on the client side or embedded in the
pages DOM tress. As mentioned before and shown in Figure 6, the proposed
system GenDE has two phases. The aim of the first phase is constructing the
(JSON/DOM tree) schema and extracting data from the pages input to the
unsupervised WI system FiVaTech at time t. Later at a different time t′ in
the second phase, given an input page from the site, GenDE includes two
main alternative steps. First, if the generated schema is a full JSON schema,
it will use a JSON verifier to verify and extract data from the embedded
JSON data (see left hand side of Figure 6). Otherwise, the second step will
apply the two modules “Template Verifier” and “CRF-Based Verifier” for the
template verification and the semantic/schema verification of the input page,
respectively. In this section, we shall discuss the two phases in details.

4.1 Generic schema construction

As shown in Figure 7, a core step to generate the schema of a Web site given
some pages as input is constructing the DOM schema using an unsupervised

GenDE: A CRF-Based Data Extractor 381

Figure 6 The structure of the proposed GenDE data extractor.

page-level Web data extraction system. GenDE uses FiVaTech which con-
structs the DOM schema of the Web site and extract data from the input
pages (it needs about 2-3 pages as input). Similar to most of the existing Web
data extraction systems, FiVaTech detects the DOM schema with unlabeled
types as in Figure 5(a). Also, almost all Web data extraction systems ignore
the attached JSON data in the DOM trees of some modern JavaScript Web
applications at the client side. These JSON data (if exist) contain (partially
or totally) the data to be extracted as well as the schema of these data.
Furthermore, these JSON data have a label for each schema type. So, GenDE
looks for JSON data corresponding to data rich blocks (blocks of DOM trees
that contain data to be extracted) in the Web site, and then uses these JSON
data to generate the JSON schema of the Web site.

The proposed system has four main steps as shown in Figure 7. First, it
filters out template blocks (navigation, advertisement and other blocks that
don’t have any data to be extracted) of the input DOM trees and only keep
the data rich blocks. Second, it constructs the unlabeled DOM schema using
FiVaTech. Third, using the constructed DOM schema s, it looks automatically
for a JSON data block (if there) that has a schema s′ with common co-
basic types from s (i.e., partial or full). Last, the constructed DOM schema is
updated by marking the detected co-basic types using the JSON schema. In
this subsection, we shall discuss all of these steps in details.

4.1.1 Extract data rich blocks
An important step which enhances the efficiency of generating a DOM
schema is identifying/extracting the data rich blocks in the pages DOM trees.

382 Mohammed Kayed and Khaled Shaalan

Figure 7 Generic Schema Detection of GenDE.

Our proposed system (similar to [15]) will remove template blocks of the
input DOM trees visually by using image comparison. Template data are the
blocks of the Web pages that contain advertisements, navigational panels and
so on. Data rich blocks are the parts of the Web pages that contain relevant
data of interest to the user.

The algorithm uses the block’s images rendered by Web browsers. As
shown in Figure 8, each tag in the DOM tree has a corresponding image
displayed by the browser. The whole image of the page displayed by the
browser corresponds to the <body> tag node. The image corresponding
to each child node in the DOM tree is presented totally by the browser
inside the parent of this node (i.e., images are nested). The dimension and
position of a displayed image are provided by the browser via “offsetWidth
and offsetHeight” and “offsetLeft and offsetTop”, respectively. The algorithm
has two main assumptions/observations:

GenDE: A CRF-Based Data Extractor 383

Figure 8 Area Percentages of the pages in Figure 1 at different DOM tree levels.

• Template blocks of the Web pages (in a Web site) are identical (have the
same content). Not only the displayed images look the same, but also
the tags corresponding to such template blocks are located in the same
path of the DOM trees.

• A data rich block often occupies the biggest area in the whole page.

Thus, the algorithm recursively traverses the input DOM tree from the
root downward, identifies all child nodes with dimension area percent-
ages greater than a threshold (40%) and labels each of these nodes as a
“rich block”. If there is no any child nodes marked as “rich block”, the
algorithm stops. Otherwise, the algorithm removes each child node that are
not marked as a “rich block” if it has the same path/content in all pages,
and then continuously traverses “rich block” nodes recursively. For example,
as shown in Figure 8, the algorithm starts at the root node which has two
child nodes with corresponding images (displayed in red solid rectangles)
of area percentages 8% and 73% (Level 1). So, the algorithm will mark the
second node (bottom rectangle) as a “rich block” and remove the first node
from all input DOM trees. Similarly, at Level 2, the algorithm will remove
the first node (left blue dashed rectangle) and mark the second one (right

384 Mohammed Kayed and Khaled Shaalan

blue dashed rectangle with percentage (63%) as a “rich block”. Again, at
Level 3, the two nodes (top dotted rectangles) will be removed and the one
with percentage area 56% is marked as a “rich block”. Finally, it stops at this
node because all child nodes have small percentage area (data records in solid
rectangles).

4.1.2 DOM schema detection
Given some input DOM trees (data rich blocks) as shown in Figure 7,
FiVaTech merges these trees into a single tree (a fixed/variant pattern tree) in
which data to be extracted (has a basic type) are identified and marked by an
asterisk (“*”), while other HTML tag and text nodes are marked as template.
The constructed pattern tree is then used to generate the DOM schema after
identifying tuples and lists.

Merging the DOM trees into a single pattern tree has four main steps [5]:
peer nodes recognition, matrix alignment, pattern mining and optional node
detection. Starting by the root nodes, similar subtrees (peer nodes) on the
same level from the input DOM trees are merged and recursively continue
until reaching leaf nodes. Peer nodes could be recognized by different algo-
rithms. For example, the tree edit distance algorithm is designed to calculate
a matching score for two nodes with the same tag name. If the score is higher
than a threshold (0.5), the two trees are considered peer nodes. Although, we
use this algorithm for peer nodes recognition, other algorithms are suggested
such as using machine learning tools based on visual/content information of
the nodes for peer nodes recognition [15].

Child nodes of peer parent nodes are added to a matrix such that all peer
child nodes have denoted with the same symbol. The matrix (sequences)
alignment algorithm is then used to align child nodes. Many alignment
algorithms could be used to solve this problem [21]. The aligned sequence
(child nodes) are then mined to discover repeated patterns (set types). The
proposed system uses the Tandem repeat mining algorithm for this problem.
Finally, optional nodes are identified based on the occurrence vectors. If a set
of adjacent nodes have the same occurrence vectors, they will be grouped as
optional. By the end of the tree merging step, basic, set and optional types
are already detected. The DOM schema is fulfilled by identifying tuples in
the pattern tree. This will be done by traversing the pattern tree from the root
downward and marking a node as a k-order (if the node is already marked
as some data type) or a k-tuple as follows. To avoid too many 1-tuple nodes,
nodes with only one child that are not marked as set or optional types are
not marked as 1-tuple. Nodes with more than one children are marked as

GenDE: A CRF-Based Data Extractor 385

k-order if k children contain a data type. Finally, the DOM schema can then
be constructed by removing all tag nodes that have no types.

4.1.3 JSON schema detection
Most Web data extraction approaches use DOM trees of a Web site to detect
the schema and extract data from this site. To the best of our knowledge,
none of the researchers has focused on automatically extracting JSON data
attached in the Web site to be analyzed for schema detection. Only, as
mentioned before, [7] has proposed an approach that extracts data from
JavaScript Web applications based on some extraction rules and configura-
tions defined manually. Our proposed system will solve the JSON schema
detection automatically as follows.

Our approach extracts data rich blocks of the Web pages and generates a
DOM schema of these blocks. As emphasized by a doubled-line in Figure 7,
the constructed DOM schema shall be used to both decide whether the Web
site has some JSON blocks with data to be extracted and (if so) construct
the schema of this JSON block by identifying the name/value patterns to be
extracted in the found JSON blocks. Given a set A of all basic types in the
DOM schema, it will be easy using a JSON parser to calculate the set B
which has all basic types δi that are co-types for some βi in A:

B = {δi; δi is a co-basic type for some βi in A}

The set B will be calculated for each JSON data block attached in the
Web page. Now, we have three different alternatives (cases):

(i) There is a JSON data block with a set B such that |B| = |A|
(ii) There is a JSON data block with a set B such that |B| < |A|

(iii) B = φ (i.e., B is empty) for all JSON data blocks

The first case (i) means that the Web site has a full JSON schema,
the second case (ii) means that the site has a partial JSON schema, while
the last case (iii) means that the site has no JSON schema. The JSON
schema is constructed (for the first two cases) using the set B. For example,
the set B = δ2, δ5, δ8, δ10, δ11, δ13, δ14 for LAZADA Web site which has
JSON data shown in Figure 2. At the same time, the set of basic types
A = β3, β5, β6, β9, β10, β11, β12 for the constructed DOM schema shown
in Figure 5(a) (i.e., |B| = |A| = 7). So, our proposed algorithm considers
LAZADA to have a full JSON schema (shown in Figure 5(b)). The con-
structed JSON schema is then used to identify the part (node) in the JSON
data block that exactly contains the data to be extracted. Usually such JSON

386 Mohammed Kayed and Khaled Shaalan

blocks contain many other data. The system marks the node which is the
direct parent (type) for all instances of the basic types in B as the root of the
JSON data to be extracted. For example, the root of the full JSON schema
in Figure 5 is the list ([set]1) with label “listItems” in the JSON data block.
The constructed JSON schema (partial/full) is then used to update the DOM
schema by labeling each type using its corresponding label in the JSON
schema. For example, the basic types of the constructed unlabeled DOM
schema β3, β5, β6, β9, β10, β11 and β12 will take the labels “image”, “name”,
“priceShow”, “originalPriceShow”, “discount”, “ratingScore” and “review”,
respectively. Many tools (such as Schema Guru4) available to generate the
JSON schema from JSON data. Practically, we have used some heuristics to
fast the process of looking for a JSON data block such as ignoring <script>
tags with an attribute “text/html”.

4.2 Wrapper verification

As mentioned before, given a new page from a Web site at a future time
t′, wrapper verification is the process of tracking any change in the site
template/schema in this page. Consequently, it reconstructs the extraction
rules (wrappers) if some changes have been detected, and extracts the data
from this new page otherwise. To do that, our proposed wrapper verifier
uses the previously extracted data, the detected template and the constructed
schema of the site at a previous time t. If the site has a full JSON schema,
our verifier will extract the attached JSON data and decide whether it follows
the previously constructed JSON schema or not. The verification here simply
searches for the labels (names) in the name/value pairs of the JSON data
from the new page. It starts by searching about the root label that contains all
data to be extracted (e.g., “listItems” in the Lazada JSON schema mentioned
above). If some of the existing labels (names) are missed in the new JSON
data, our verifier would be failed and the unsupervised wrapper induction is
called again to generate a new wrapper for the site (see Figure 6). Otherwise,
the verifier will straightforwardly extract data (values) from the name/value
pairs in the new page. For a type τ which is labeled by a name l, instances of
this type will be all values in the embedded JSON data with a name (label) l.

In general for the generated site schema, given a new page as input, a data
extractor compares between the input page DOM tree and the constructed
schema which has nested sets and options. Comparing schema types from

4https://github.com/snowplow/schema-guru

GenDE: A CRF-Based Data Extractor 387

top to down is a challenge as it is very tricky to handle mismatch of tags at
internal nodes and to backtrack alternative matches for adjacent optional or
set data with the same tag name. In this paper, the data extractor based on
the sequence labeling model “Conditional Random Fields” which constructs
a distribution over labels, conditioned on observations sequence. The CRF-
based data extractor will be used to verify both data semantic and schema
structure, and then extract (label) data instances from the input page. Before
going to apply the proposed CRF-based data extractor and verifier, to enhance
the efficiency of the proposed algorithm, we first check if there is some
changes in the template of the Web site using a module called “Template
Verifier”. The template verifier utilizes an XML validation algorithm to detect
whether the page follows the generated XML schema based on the template.
If there is some change in the template, the verifier would be failed and our
wrapper induction would be called again to generate a wrapper for this site.
If the template does not change, the verifier will apply the proposed CRF-
based algorithm to verify the schema and extract data from the input page.
In this subsection, we shall discuss the two verifiers in details as well as we
introduce the CRF sequence labeling model.

4.2.1 Template verifier
Given some pages from a Web site at time t that are used to construct the
site schema, the main purpose of the template verifier is to check whether
the template of a new result page from this site (at time t′) is different
from the old template of the pages at time t. Instead of direct comparison
of the new page with the template tree, we propose a simple method that
uses XML validation to check whether the XML file (transformed from the
new page) conforms to the XML schema transformed from the old pages.
The template verifier includes three modules: HTML2XML, XML2XSD
and XML validation. The first module (HTML2XML) transforms an HTML
page into an XML file. The second module (XML2XSD) summarizes an
XML schema representation, i.e. XSD (XML Schema Description) from a
set of XML pages. The third module checks the validity of the XML page
against the XSD specified. The verifier works as follows. It first generates
the schema description xsd from the xml files corresponding to the pages at
time t. Then, it validates the xml file (corresponding to a new page at t′)
using the constructed xsd. The benefit here is that all these modules can be
done with existing tools. For example, the W3C-defined XML Schema is
supported by .NET Framework’s Base Class Library, which has a namespace
called “System.xml” that provides standards-based support for processing

388 Mohammed Kayed and Khaled Shaalan

XML, including reading, writing, schemas searching, transforming and XML
validation. However, the issue here is that XSD requires each element at the
same level to have distinct names. For HTML tags that are used at the same
level, they would be considered as repeated elements even if they contain
different subtrees, leading to incorrect schema. Thus, the XML validation
module takes the XSD file of the template (at time t) and the XML file of the
new page as inputs, and checks whether the XML file is valid with respect
to the XSD file. The XML validation module is utilized to only verify the
template (not the schema) of a new HTML page, while the rest is handled by
the CRF-based verifier.

4.2.2 Conditional random fields
Conditional Random Fields (CRFs) are discriminative graphical models that
can model non-independent features. Linear-chain CRF is a special case
of this model which is considered the undirected graphical model version
of HMM. Given a set of observations x = x1, x2, ..., xN and a set of
hidden labels y = y1, y2, ..., yN , a linear chain CRF defines the conditional
probability p(y/x) as:

p(y/x) = 1
Z exp(

∑N
t=1

∑F
i=1 λifi(yt−1, yt, x, t))

The first sum runs over each position in the sequence and the second
sum runs over each real-valued feature function fi which is weighted by
a parameter λi. The feature functions express some characteristic of the
empirical distribution that we wish to hold in the model distribution. The
factor Z is called a normalization (partition function) scalar which makes
the conditional probability valid and it depends on the observation x and the
parameters λ. The factor Z is defined as:

Z =
∑

y exp(
∑N

t=1

∑F
i=1 λifi(yt−1, yt, x, t))

Given a trained model, finding the most likely label sequence could be
measured as follows.

ŷ = arg max log p(y/x) = arg max
∑N

t=1

∑F
i=1 λifi(yt−1, yt, x, t)

This inference could be measured efficiently using a dynamic program-
ming algorithm such as Viterbi algorithm. The parameters λi are estimated
and learnt from training data D by using gradient ascent. Figure 9 shows the
structure of a linear chain CRF. Shaded boxes represent factorization between
states (Transition Factors) or between observations and a state (Emission
Factors), shaded circles represent observations x (multiple observations for
each state), while white circles represent hidden labels y.

GenDE: A CRF-Based Data Extractor 389

Figure 9 A structure of a linear chain CRF in which each state depends on multiple
observations.

4.2.3 CRF-based data extractor
Our proposed CRF-based verifier takes as input data extracted and a schema
generated by our WI system, and it aims to verify and extract data from
a new test page from the same Web site. Fortunately, the extracted data
received are labeled. Although, these labels are anonymous (βi), our CRF-
based algorithm would use them as training data to calculate the feature
functions and estimate the CRF model parameters. Sometimes, as discussed
before, data labels are updated (with sematic labels) from the JSON schema,
if there. Therefore, the observations x to be labeled are the data instances
embedded as leaf text/image nodes in the DOM tree of the new page, while
the hidden labels are the basic types βi (anonymous or named) identified in
the schema of the Web site. The challenge here is that, data instances of these
basic types (labels) are sometimes missed, multi-valued or embedded in the
DOM tree using similar template (HTML path). As an example, Figure 10
shows a fictional part of a Web page to be labeled, where the schema of
this segment of DOM tree is shown at the top right of the figure. As shown
in the figure, data (observations) to be extracted and labeled are embedded
as leaf text/image nodes. This means, x = {x1 = ”prod-name”, x2 =
10, x3 = ”IMG1”, x4 = ”Name 1”, x5 = ”$80”, x6 = ”$100”, x7 =
”-20%”, x8 = ”IMG2”, x9 = ”Name 2”, x10 = ”$150”,x11 = ”50”}. Based
on the schema of this segment, the most likely label sequence for x will be
y = {y1 = β2, y2 = β4, y3 = β5, y4 = β6, y5 = β7, y6 = β10, y7 =
β11, y8 = β5, y9 = β6, y10 = β7, y11 = β12}.

The challenge of applying CRF to label such sequence corresponding to
a new Web page is that the sequence length is very long (a whole page), it has
missing observations, some observations occurred multiple times, etc. In this
subsection, we shall present the details of the proposed CRF-based extractor
algorithm and discuss our suggestion to handle this challenge.

390 Mohammed Kayed and Khaled Shaalan

Figure 10 A fictional segment of a Web page and its schema (at the top-right).

4.2.3.1 CRF-based extractor algorithm
The proposed “CRF-Based-Extractor” algorithm takes three arguments as
input for a Web site. The first input is a DOM tree of a new page p from
the site rooted at node root (< body >), the second one is the schema s
extracted previously by the unsupervised WI system and finally the training
set D = (xi, yi); i = 1, ...,m of m sequences, where each sequence vector
is labeled by a vector of types from the schema s (D is also provided by the
WI system). As mentioned above, it is a challenge to label a big sequence
using CRF. So, to handle this problem, our proposed CRF-based extractor
algorithm will break down this big sequence into smaller sub-sequences as
follows. As shown in Algorithm 1, the algorithm starts by adding and marking
a virtual node called “virtual-set” in the DOM tree for each set type in the
schema s. This will be done by calling a module “MarkVirtualSetNodes”
(step 2), which uses the template of each set type in s (constructed by the
unsupervised WI system), identifies all instances of this set type and adds a
virtual node (virtual-set) as a parent for all of these set instances in the DOM
tree of p. Instances of this set type will be identified based on the node path

GenDE: A CRF-Based Data Extractor 391

and the tree-edit distance between each instance subtree and the template of
the set type [5]. For example, for the set type ([]5) of the schema at the top
right of Figure 10, a virtual-set is added as a parent for the instances of this set
type in the DOM tree (a dashed oval in the DOM tree). Finally, in step 3, the
module “CRF-BasedSequenceLabeling” is called to recursively break down
the observation vector into smaller sequences and then label each sequence
as follows.

Algorithm 1: CRF-Based-Extractor
Input :

p→ A new input test page

s→ A Web site schema

D → A set of sequences and their corresponding labels

1 root =< Body > node of the page p
2 MarkVirtualSetNodes(root, s, D)
3 CRF-BasedSequenceLabeling(root, s, D)

As shown in Algorithm 2, the module starts with an empty observation
sequence x and an empty set of hidden labels, then it calls the method
“PathGuidedObservationLabelMarking”, which is used to get (update) the
subsequence x from the DOM tree rooted at “root”. Recursively, the later
method traverses the DOM tree starting at the node “root” in a pre-order
traversing fashion (steps 6-7 in Algorithm 3). At each node, it checks whether
the node is an observation node or not (step 1 in the algorithm). The node
is an observation either if it is a text/img node which has a corresponding
basic type β in the schema s with the same path as the node or it is a
virtual set node (added previously by the method MarkVirtualSetNodes).
There may be more than one basic types with a similar path as the node.
If so, all of these basic types (a set τ in the algorithm) are considered as
candidate types and added to the set of hidden labels Υ (steps 2-3), while
the node is added to the observation sequence x (step 4). The proposed
algorithm does not aim to label virtual-set nodes, they are just used to
simplify and breaking down the sequence into simpler subsequences. After
the module “PathGuidedObservationLabelMarking” gets the sequence x at

392 Mohammed Kayed and Khaled Shaalan

step 3 in Algorithm 2, the CRF model shall be used to label this sequence
x by the types from Υ (step 4 in the algorithm). Finally, next subsequences
will be obtained (and then labeled) by recursively calling the module “CRF-
BasedSequenceLabeling” for each virtual set in the detected sequence x
(steps 5-7 in Algorithm 2).

Algorithm 2: CRF-BasedSequenceLabeling
Input :

root→ The root node of the new page DOM tree

s→ A Web site schema

D → A set of sequences and their corresponding labels

1 Observation x = φ
2 Label set Υ = φ
3 PathGuidedObservationLabelMarking(root, s, D, x, Υ)
4 ŷ = MostLikelyLabel(x,Υ) // using CRF model
5 foreach virtual-set node υ in x do
6 CRF-BasedSequenceLabeling(υ, s, D)
7 end

As an example, the observation sequence of the input page in Figure 10
is divided into two simpler subsequences as follows. The first call of the
method PathGuidedObservationLabelMarking on the DOM tree in Figure 10
will assign the four observations (dashed line nodes in Figure 10) as the
first subsequence (i.e., x = {o1 = ”Prod Name”, o2 = ”10”, o3 =
”virtual-set”, o4 = ”50” }). The set of candidate labels for this subsequence
is Υ = {S0, β2, β4, [set]5, β14, Send}. The second subsequence after the
second traversing will be the doubled line nodes with red color in the subtree
rooted at the virtual-set (o3) in Figure 10. The set of candidate labels for this
subsequence is Υ = {S0, β7, β8, β9, β12, β13, Send}, where a start state S0
and an end state Send are added for each sequence. The algorithm does not
consider the leaf nodes that are part of the schema template as observation
nodes. For example, the dotted line nodes in Figure 10 are considered as
template nodes and they are not considered as observations. For each sub-
sequence, the module CRF-BasedSequenceLabeling (step 4 in Algorithm 2)
applies the CRF model to get the most likely labels ŷ for the subsequence

GenDE: A CRF-Based Data Extractor 393

x given the candidate labels Υ. The CRF model uses the emission and the
transition feature functions that will be discussed in the next subsection. The
model uses gradient ascent that maximizes the feature functions to estimate
the model parameters.

Algorithm 3: PathGuidedObservationLabelMarking
Input :

root→ The root node of the new page DOM tree

s→ A Web site schema

D → A set of sequences and their corresponding labels

x→ A sequence of observations

Υ→ A sequence of labels

1 if root is an observation node then
2 τ = set of types in s having same path as root. // Candidate labels

3 Υ = Υ
⋃
τ

4 x = x
⋃
root

5 end
6 PathGuidedObservationLabelMarking(root.left, s, D, x, Υ)
7 PathGuidedObservationLabelMarking(root.right, s, D, x, Υ)

4.2.3.2 Emission and transition feature functions
As mentioned above, a node is considered as an observation node if it is either
a leaf text/img node of a basic type with the same path or it is a virtual-set
node. For a text/img leaf node, it may has many candidate basic nodes with
the same path. The proposed CRF-based algorithm will handle that by both
emission feature functions (characteristics of the text/img data instances) and
transition feature functions (previous labeled type).

For a basic type β, we use some features to characterize the text strings
of the previously extracted instances of β to calculate the emission feature
function (f(β, x)) of an instance x with the type β. These features are
alphabetic ratio (LetterDensity), digit ratio (DigitDensity), punctuation ratio
(PunDensity), capital-start token ratio (CapitalStartTokenDensity), whether
the string is a currency format or not (IsCurrency), whether the string is a
URL or not (IsHttpStart) and whether the leaf node is preceded by a template

394 Mohammed Kayed and Khaled Shaalan

node (IsPrecededByTemplateNode). These features could be described as
follows:

• LetterDensity: Density of letters in the string. E.g. LetterDen-
sity(“iPhone 8 256 GB”) =8/15.

• DigitDensity: Density of digits in the string. E.g. DigitDensity(“iPhone
8 256 GB”) = 4/15.

• PunDensity: Density of punctuations in the string. E.g. Pun-
Density(“iPhone 8 256 GB”) = 0.

• CapitalStartTokenDensity: Density of tokens that begins with upper
letter. E.g. CapitalStartDensity(“iPhone 8 256 GB”) = 1/4.

• IsCurrency: Whether the string is currency or not. E.g. IsCur-
rency(“iPhone 8 256 GB”) = 0.

• IsHttpStart: Whether the string starts with “http” or not. E.g. IsHttp-
Start(“iPhone 8 256 GB”) = 0.

• IsPrecededByTemplateNode: Whether a leaf node is preceded by a
template node or not. When traversing the DOM tree, each node comes
after a leaf node (such as dotted line nodes in Figure 10) is marked
and then be used to enhance the emission function of this node. As
an example, IsPrecededByTemplateNode(o4) = 1 for the dashed line
leaf node labeled by o4 in the figure as it has a preceding template leaf
(dotted-line) node labeled by “Reviews”.

The mean vector of the basic type training instances (µ(β)) in D are used
to denote the characters of this type. Finally, the emission function f(β, x) is
calculated as:

f(β, x) = 1
[ε+dist(x,µ(β))]

The distance dist(x, µ(β)) is calculated based on the normalized
Euclidean distance as:

dist(x, µ(β)) =

√∑
i
(xi−µi)2
σ2
i +ε

Where x denotes the feature vector for a new instance, (µ(β)) denotes
the mean feature vector of the basic type training instances, σ2i is the vari-
ance vector of the features and ε (0.0001) is a small value to avoid zero
denominator. For the basic types with image instances, simpler boolean
feature functions such as ImageClass (that defines a classname of the image),
ImageID (that define a specific name of the image), ImageAlt (an alternate
text of the image), IsMap(whether the image is a server-side image-map),

GenDE: A CRF-Based Data Extractor 395

IsPrecededByTemplateNode (similar to the text nodes), etc. The formula
f(β, x) is used in the CRF model to calculate the most likely label, but the
proposed algorithm adds a restriction to label x by the type β that f(β, x) ≥
ς , where ς is a threshold that is determined experimentally. If f(β, x) < ς , the
extractor would call the un-supervised WI system to re-construct the wrapper.

Finally, the transition function f(yt−1, yt, x, t) for the two types yt−1 and
yt is simply calculated by counting the number of times the type yt is pre-
ceded by the type yt−1 (count(yt−1yt)) and the total number of occurrences
of the type yt (count(yt)) in the training set D as:

f(yt−1, yt, x, t) = count(yt−1yt)
count(yt)

Also, the proposed algorithm decides to label x by the type yt if the type
yt comes after the preceding type yt−1 at least once in the training data,
otherwise the WI system is called to re-construct the wrapper.

5 Experiments

Two different experiments are conducted to evaluate the two main addressed
problems in the proposed GenDE system. The first experiment evaluates
the performance of the system with JavaScript Web sites in which JSON
data are embedded to the site pages. The second experiment evaluates the
performance of the proposed CRF-based extractor/verifier and compares it
with CSP-based extractor/verifier [12], respectively. The details of these
experiments are given in the following subsections.

5.1 JSON-based data verification and extraction

In this experiment, we evaluate the performance of the proposed algorithm
to identify JSON data embedded in JavaScript Web sites. To the best of our
knowledge, no prior benchmark datasets available to evaluate data extraction
using the embedded JSON data objects. Therefore, Google search engine is
used to randomly collect Web pages from top shopping Web sites. Manually,
for each Web site, we identify whether the site pages are embedded by JSON
data objects or not. Also, we manually marked the schema of this site as
full, partial or not. Some sites such as “Etsy” and “Target” have no JSON
data to be extracted although the pages of these sites have some attached
JSON blocks, but data in these blocks are embedded for configuration and
other setting purposes. Other sites such as “forever21” have added JSON
blocks that only contain a part of the data displayed by the browser (to

396 Mohammed Kayed and Khaled Shaalan

Table 1 Results of JSON schema identified by the proposed algorithm
Shopping Embedded Detected Valid
Web Site JSON Data JSON Schema JSON schema
Lazada Yes Full Full
Walmart Yes Full Full
Etsy Yes None Node
Target Yes None None
Aliexpress Yes None None
Costco None None None
Kohls shoes Yes Full Full
Boohoo None None None
Lululemon Yes Full Full
Athleta Yes None None
American Eagle Outfitters Yes Partial None
Luckybrand None Partial None
Topshop Yes Full Full
Uniqlo Yes None None
forever21 Yes Partial Partial
Nasty gal None None None
Allsaints Yes Full Full
Farfetch Yes Full Full
Simmi Yes None None
Butterflytwists Yes None None

be extracted). Finally, other sites have JSON blocks that contain all data
(and more) displayed on the site pages (e.g., Lazada, Walmart, Kohls shoes,
Lululemon, etc). As shown in Table 1, out of 20 Web sites, only two
schema are incorrectly identified as “Partial JSON schema” while they are
not (shaded cells in the table). The results show that many JavaScript Web
sites (50%) have data to be extracted embedded in the pages on the client
side and could be preferably used rather than extracting these data from
DOM trees. Also, to compare the proposed algorithm with a similar work [7],
we have downloaded the three URLs: https://www.lazada.co.th/shop-led-tv/,
https://www.lazada.co.th/shop-monitors/ and https://www.lazada.co.th/shop-
kitchen-and-dining/, that are mentioned and used in their experiment. For
each one, 5 Web pages are saved: 2 Web pages are used in FiVaTech (our WI
system) and the remaining are used for testing. The proposed extractor was
able to identifying the JSON block (along with marking the root node in the
identified JSON block) that includes the displayed data (data to be extracted)
for each test page in each group. Therefore, our system can perfectly extract
all data (with labels) without any error. So, not only the proposed system

GenDE: A CRF-Based Data Extractor 397

outperforms the algorithm in [7] which defines the extraction rules manually,
but also it identifies the schema and extracts data automatically.

5.2 DOM schema based wrapper verification and data extraction

As mentioned above, just two wrapper maintenance approaches are designed
to work with page-level Web data extraction systems: WADaR [13] and CSP-
based [12] approaches. To compare our approach with the CSP-based verifier
[12], we use the same dataset (Rapture). The schema is generated and data are
extracted for each Web site using the core unsupervised WI system FiVaTech.
We shall use “accuracy”, the ratio between the number of correctly extracted
pages and the total number of test pages, to measure the performance of the
most likely labels resulted by the proposed CRF-based verifier. Since the
CRF model parameters are estimated based on the training data which are
the instances extracted by the unsupervised WI system, we shall use different
number of pages (and so different sizes of training instances) to measure the
performance of the sequence labeling algorithm. Also, the accuracy will be
measured when either emission feature functions, transition feature functions
or both of them are used to model CRF. As shown in Figure 11, the perfor-
mance increases as the number of instances (number of pages) is increased
for the three cases when either emission functions, transition functions, or
both are used. There is no any significant changes when 4 or 5 pages are
used for the parameters estimation. Also, it is clear that the performance

Figure 11 The performance of the CRF sequence labeling algorithm with different number
of input pages (2-5) to WI system.

398 Mohammed Kayed and Khaled Shaalan

Figure 12 The percentage of pages pass the verifier with different number of input pages
(2-5) to WI system.

is the best (with 99.98% accuracy rate average) when both emission and
transition functions are used to model the CRF algorithm, while emission
feature functions has a better performance (with 96.65% accuracy average)
than transition functions (with 96.03 accuracy average).

For the verification problem, we use the same data set collected in [12]
which has pages from 9 Web sites (for each site, a set of 20 pages is used). A
set of k (2, 3, 4, 5) randomly selected pages are used to train the unsupervised
WI for each site. The generated wrapper is tested to see the number of pages
from the same site that would pass the verification and the data extraction
processes. The process is repeated five times for each site for a given k and
the average is taken. The results in Figure 12 show that CRF based verifier
outperforms the CSP one. For the two models, using more number of training
pages gives better results.

We could not compare our proposed approach with WADaR as the dataset
provided by the later approach only includes the data extracted (in Excel
format) from 100 different sites (100k Web pages) before and after the wrap-
per maintenance algorithm has been executed. Different from our proposed
approach that verifies Web sites templates/schemas and extracts data from
the site pages, WADaR just measures the quality increment of the extracted
data after executing the wrapper maintenance algorithm. The dataset used in
WADaR is an extension of the dataset used in SWDE [22] (a common Web
data extraction benchmark dataset). Therefore, we used SWDE dataset which
is collected from 80 Web sites (8 domains: auto, book, camera, job, movie,

GenDE: A CRF-Based Data Extractor 399

Table 2 The performance of the verification algorithm on SWDE dataset

Domain #Sites #Pages
#Correctly Verified

Pages
Percentage of Correctly

Verified Pages
Autos 10 17,923 16,009 89.32%
Books 10 20,000 16,967 84.84%
Cameras 10 5,258 5,008 95.25%
Jobs 10 20,000 15,984 79.92%
Movies 10 20,000 15,763 78.82%
NBA Players 10 4,405 3,979 90.33%
Restaurants 10 20,000 17,479 87.40%
Universities 10 16,705 14,345 85.87%
Total 80 124,291 105,534 84.91%

NBA player, restaurant and university) to measure the performance of the
verification algorithm. The performance results are shown in Table 2. In this
experiment, 2 pages are randomly selected from each Web site (a total of 80
Web sites, 10 sites for each domain) to construct the schema using the WI
system. Also, the generated wrapper is tested to see the percentage of pages
from the same site that would pass the verification and the data extraction
processes. The results show an average of 84.91% of the pages passes the
verification and the data extraction processes in a total of 124,291 Web pages.

6 Conclusion and Future Works

Web data extraction from JSON data is an interesting task of great necessity
as many Web sites on the Deep Web are attached with these JSON data. As
shown in our first experiment, 35% of the randomly selected 20 shopping
sites have full JSON schema and 50% of these sites have either partial
or full schema. Data extraction from JSON objects provided in currently
many modern JavaScript Web sites not only enhances the efficiency and the
effectiveness of the Web data extraction approaches, but also it has another
important advantage that the extracted data are labeled which is necessary for
many intelligent Web applications. We have proposed an algorithm that auto-
matically identifies the part of a JSON block to be extracted and generates its
schema. When the Web site has no JSON data, the constructed DOM schema,
the template detected and the data extracted previously are used to verify and
extract data from a new page at the future. Our proposed data extractor, based
on the CRF model, simplifies the sequence labeling problem by breaking
down the test page (DOM tree) to be labeled into simpler subsequences. A
set of emission and transition feature functions has suggested and used in

400 Mohammed Kayed and Khaled Shaalan

the proposed CRF-based data extractor GenDE. Our experiment shows an
encourage result as it achieves a very high accuracy (99.98% average). Most
existing benchmark datasets are designed to evaluate the wrapper induction
and schema construction steps. A threat to validity of this data extractor and
the other previously proposed extractors is the availability of well formed
benchmark datasets. From our point of view, the lack of such big and well
formed benchmark datasets is the reason behind not applying deep learning
models strongly in this domain. Therefore, researchers in this domain are
invited to create and form big and well designed benchmark datasets that are
able to perfectly evaluate the two mentioned tasks of wrapper maintenance
and data extraction from the Web sites provided or not provided by JSON
data.

References

[1] G. M. R. Chang C.-H., Kayed M., S. K. F., A survey of web infor-
mation extraction systems, IEEE Transactions on Knowledge and Data
Engineering 18 (110) (2006) 1411–1428. doi:10.1109/TKDE.2006.152.

[2] H. D. Verberne S., Sappelli M., K. W., Evaluation and analysis of
term scoring methods for term extraction, Information Retrieval Journal
19 (5) (2016) 510–545. doi:10.1007/s10791-016-9286-2.

[3] W. Q., N. Y.-K., An ontology-based binary-categorization approach
for recognizing multiple-record web documents using a probabilistic
retrieval model, Information Retrieval Journal 6 (3-4) (2003) 295–332.
doi:10.1023/A:1026024513043.

[4] C. B. Wei X., M. A., Table extraction for answer retrieval, Information
Retrieval Journal 9 (5) (2006) 589–611. doi:10.1007/s10791-006-9005-
5.

[5] K. M., C. C.-H., Fivatech: Page-level web data extraction from template
pages, IEEE Transaction on Knowledge and Data Eng. 22 (2) (2010)
249–263. doi:10.1109/ICDMW.2007.95.

[6] S. H.A., C. R., Tex: an efficient and effective unsupervised web
information extractor, Knowledge Based Systems 39 (2013) 109–123.
doi:10.1016/j.knosys.2012.10.009.

[7] N. W., P. K., Towards data extraction of dynamic content from javascript
web applications, International Conference on Information Networking
(ICOIN). doi:10.1109/ICOIN.2018.8343218.

http://dx.doi.org/10.1109/TKDE.2006.152
http://dx.doi.org/10.1007/s10791-016-9286-2
http://dx.doi.org/10.1023/A:1026024513043
http://dx.doi.org/10.1007/s10791-006-9005-5
http://dx.doi.org/10.1007/s10791-006-9005-5
http://dx.doi.org/10.1109/ICDMW.2007.95
http://dx.doi.org/10.1016/j.knosys.2012.10.009
http://dx.doi.org/10.1109/ICOIN.2018.8343218

GenDE: A CRF-Based Data Extractor 401

[8] H. D. Meng X., L. C., Schema-guided wrapper maintenance for web
data extraction, 5th ACM international workshop on Web information
and data management (2003) 1–8. doi:10.1145/956699.956701.

[9] A. M. Raposo J., Pan A., H. J., Automatically maintaining wrappers
for semi-structured web sources, Data & Knowledge Engineering 62 (2)
(2007) 331–358. doi:10.1016/j.datak.2006.06.006.

[10] M. S. N. Lerman K., K. C. A., Wrapper maintenance: A machine
learning approach, Journal of Artificial Intelligence Research 18 (1)
(2003) 149–181. doi:10.1613/jair.1145.

[11] L. X. Pek E.-H., L. Y., Web wrapper validation, Proceedings of the 5th
International Asia-Pacific Web Conference. doi:10.1007/3-540-36901-
5 40.

[12] L. K.-C. Chang C.-H., Lin Y.-L., K. M., Page-level wrapper verifi-
cation for unsupervised web data extraction, International Conference
on Web Information Systems Engineering (WISE) (2013) 454–467.
doi:10.1007/978-3-642-41230-1 38.

[13] F. T. Ortona S., Orsi G., B. M., Joint repairs for web wrappers,
IEEE 32nd International Conference on Data Engineering (ICDE).
doi:10.1109/ICDE.2016.7498320.

[14] B. M. Ortona S., Orsi G., F. T., Wadar: Joint wrapper and
data repair, Proceedings of the VLDB Endowment 8 (12).
doi:10.14778/2824032.2824120.

[15] C. C.-H. Chang C.-H., K. M., Fivatech2: A supervised approach to role
differentiation for web data extraction from template pages, 26 th annual
conference of the Japanese Society for Artifical Intelligence, Special
Session on Web Intelligence & Data Mining (2012) 1–9.

[16] P. J. Eric F.-L., Yanzhang H., P. R., Conditional random fields in speech,
audio, and language processing, Proceedings of the IEEE 101 (5).
doi:10.1109/JPROC.2013.2248112.

[17] L. X., B. D., Extracting addresses from news reports using condi-
tional random fields, 15 th IEEE International Conference on Machine
Learning and Applications. doi:10.1109/ICMLA.2016.0141.

[18] W. J.-R. Z. B. Zhu J., Nie Z., M. W.-Y., 2d conditional random
fields for web information extraction, Proceedings of the 22 nd inter-
national conference on Machine learning (ICML) (2015) 1044–1051.
doi:10.1145/1102351.1102483.

[19] X. R. Liu R., G. K., A crf-based approach for web object extraction,
3 rd International Conference on Computer Science and Information
Technology. doi:10.1109/ICCSIT.2010.5563787.

http://dx.doi.org/10.1145/956699.956701
http://dx.doi.org/10.1016/j.datak.2006.06.006
http://dx.doi.org/10.1613/jair.1145
http://dx.doi.org/10.1007/3-540-36901-5_40
http://dx.doi.org/10.1007/3-540-36901-5_40
http://dx.doi.org/10.1007/978-3-642-41230-1_38
http://dx.doi.org/10.1109/ICDE.2016.7498320
http://dx.doi.org/10.14778/2824032.2824120
http://dx.doi.org/10.1109/JPROC.2013.2248112
http://dx.doi.org/10.1109/ICMLA.2016.0141
http://dx.doi.org/10.1145/1102351.1102483
http://dx.doi.org/10.1109/ICCSIT.2010.5563787

402 Mohammed Kayed and Khaled Shaalan

[20] K. N., Wrapper verification, World Wide Web Journal 3 (2) (2000)
79–94. doi:10.1023/A:101922961.

[21] K. M., Peer matrix alignment: a new algorithm, Pacific-Asia Conference
on Knowledge Discovery and Data Mining (ICDM) (2012) 268–279.
doi:10.1007/978-3-642-30220-6 23.

[22] P. Y. Hao Q., Cai R., Z. L., From one tree to a forest: a unified solu-
tion for structured web data extraction, SIGIR, Beijing, China (2011)
775–784. doi:10.1.1.229.2837.

Biographies

Mohammed Kayed received his M.Sc. degree in Computer Science from
Minia University, Minia, Egypt, in 2002 and the Ph.D. degree in Computer
Science from Beni-Suef University, Beni-Suef, Egypt, in 2007. From 2005 to
2006, he was a Research&Teaching Assistant in Department of Computer
Science and Information Engineering at the National Central University,
Taiwan. From 2008 to 2015, he was an Assistant Professor, IT Department,
College of Applied Science, Sultanate of Oman. He is currently an Associate
Professor and Head of Computer Science Department, Faculty of Computer
and Artificial Intelligence, Beni-Suef University, Egypt. He is the author of
more than 25 articles. His research interests include Web mining, Opinion
Mining, Information Extraction and Information Retrieval.

http://dx.doi.org/10.1023/A:101922961
http://dx.doi.org/10.1007/978-3-642-30220-6_23
http://dx.doi.org/10.1.1.229.2837

GenDE: A CRF-Based Data Extractor 403

Khaled Shaalan is a full professor of Computer Science/Artificial Intelli-
gence at the British University in Dubai (BUiD), UAE. He is an Honorary
Fellow at the School of Informatics, University of Edinburgh (UoE), UK.
Over the last two decades, Prof Khaled has been contributing to a wide
range of research topics in AI, Arabic NLP, Knowledge management, health
informatics, and educational technology. Prof Khaled has published 200+
referred publications. Prof Khaled’s research work is cited extensively world-
wide and the impact of his research using GoogleScholar’s H-index metric
is 35+. Prof Khaled has been actively and extensively supporting the local
and international academic community. He acts as the chair of international
Conferences, journals & books editor, keynote speaker, external member of
promotions committees, among others.

	Introduction
	Problem Formulation
	Related Works
	GenDE: The Proposed Approach
	Generic schema construction
	Extract data rich blocks
	DOM schema detection
	JSON schema detection

	Wrapper verification
	Template verifier
	Conditional random fields
	CRF-based data extractor

	Experiments
	JSON-based data verification and extraction
	DOM schema based wrapper verification and data extraction

	Conclusion and Future Works

