
RealTE: Real-time Trajectory Estimation
Over Large-Scale Road Networks

Qibin Zhou1, Qingang Su2,∗ and Dingyu Yang3

1School of International Education, Shanghai Jian Qiao University, Shanghai,
China
2School of Kaiserslautern Intelligent Manufacturing, Shanghai Dian Ji University,
Shanghai, China
3Alibaba Group, Shanghai, China; School of Electronics and Information,
Shanghai Dian Ji University, Shanghai, China
E-mail: zqbin@gench.edu.cn; suqg@sdju.edu.cn; dingyu.ydy@alibaba-inc.com;
yangdy@sdju.edu.cn
∗Corresponding Author

Received 31 August 2021; Accepted 21 September 2021;
Publication 03 January 2022

Abstract

Real-time traffic estimation focuses on predicting the travel time of one
travel path, which is capable of helping drivers selecting an appropriate
or favor path. Statistical analysis or neural network approaches have been
explored to predict the travel time on a massive volume of traffic data.
These methods need to be updated when the traffic varies frequently, which
incurs tremendous overhead. We build a system RealTE, implemented on a
popular and open source streaming system Storm to quickly deal with high
speed trajectory data. In RealTE, we propose a locality-sensitive partition
and deployment algorithm for a large road network. A histogram estimation
approach is adopted to predict the traffic. This approach is general and able
to be incremental updated in parallel. Extensive experiments are conducted
on six real road networks and the results illustrate RealTE achieves higher

Journal of Web Engineering, Vol. 21 2, 365–390.
doi: 10.13052/jwe1540-9589.21210
© 2022 River Publishers

366 Q. Zhou et al.

throughput and lower prediction error than existing methods. The runtime of
a traffic estimation is less than 1 seconds over a large road network and it
takes only 619 microseconds for model updates.

Keywords: Trajectory prediction, road network partition, histogram
estimation.

1 Introduction

Real-time traffic estimation focuses on predicting the travel time of one travel
path immediately, which is capable of helping drivers selecting an appropriate
or favor path. Transportation managers can control the traffic flow to reduce
the congestion when a traffic jam happens. Vehicles could avoid passing some
busy roads or rush hours in advance [1]. As a result, it is significant for drivers
and transportation managers to forecast the traffic condition in real-time.

In the last decades, with the development of global positioning systems,
mobile computing and sensor networking techniques, a massive volume of
traffic data has been released from transportation devices and automobiles.
It is possible to systematically track and predict the traffic condition. One
problem is that, how to efficiently analysis the huge trajectory data, and then
accurately estimate the traffic condition immediately [1, 2, 4, 16, 17, 24, 32].

Numerous methods have been applied for traffic prediction. For example,
traditional time series methods, autoregressive (AR), autoregressive inte-
grated moving average (ARIMA) [3], machine learning method such as
MM-GMRF model [6], and neural network model [7] techniques are explored
to estimate the condition. AR or ARIMA are utilized as standard approaches
to predict the future values in finance and bank field, but they cannot forecast
unexpected variations at rush hours or when some accidents happen. MM-
GMRF model [6, 8] presents learning-based algorithms to represent the
distributions of traffic conditions on a large road network, but it ignores the
specific features of each road, such as idle or busy.

In fact, the traffic condition varies regularly. If the distribution of a road
segment has been changed, for example, road congestion, the learning model
needs to be modified quickly. The drivers through the busy road segment have
to be informed instantly. However, existing transportation systems are unable
to support traffic condition forecasting in real-time. The cost of training a
deep learning model is very high and the process needs more than several
hours or few days, which is not suitable for real-time prediction. For this

RealTE: Real-time Trajectory Estimation Over Large-Scale Road Networks 367

purpose, this work is designed to deal with three major challenges on real-
time traffic prediction:

(1) Updating the training model instantly. Current approaches adopt linear
or neural network models to forecast the following numbers. Once new
data is collected, the models have to be re-trained. If this training process
takes many hours or days, it is not strong enough to support real-time
prediction.

(2) A general learning model. As every road has an independent travel time
distribution, for example, a prediction model of one busy road cannot
directly be applied for an idle road. Some complex models might be
suitable for some traffic estimation, but not general for the whole road
networks.

(3) The scalability of the whole system. Once new trajectory data have been
collected from multiple road segments, it will trigger model updates for
each road. The performance and scalability of the processing system will
be impacted by high frequency updates, large road segments and limited
resources.

In this paper, we revisited our previous work Hite [13] and extended it
in several aspects. The platform of distributed stream system is Storm [10]
instead of S4 [22]. The new system named RealTE has higher throughput
and lower overhead for model updates. A new locality-sensitive algorithm
is proposed to partition a large road network into multiple sub-partitions.
Moreover, the whole experiments have been redesigned with more datasets,
new performance metrics, and more existing methods.

Overall, the main contributions of our work can be listed as below:

1. This paper develops a processing system RealTE to predict the travel
time on a massive volume of real traffic data. A locality-sensitive par-
tition and deployment algorithm is proposed to process a large road
network in parallel to reduce the communication cost and balance the
computation cost.

2. We adopt a histogram estimation approach to forecast the traffic. This
approach is general for complex traffic prediction and able to be incre-
mental updated in parallel. Since each partition of a large road network
are independent, the estimation and road update can be executed con-
currently to improve the scalability. Furthermore, this work provides a
HistogramUpdate technique to in a low overhead as soon as fresh data
is obtained.

368 Q. Zhou et al.

3. Extensive experiments are conducted on six real road networks and
the results illustrate RealTE performs higher throughput and lower
prediction error than existing methods. The runtime of a traffic estima-
tion is less than 1 seconds on a large road network and it takes 619
microseconds for model updates.

The main content of the work is arranged as follows. It firstly presents
the problem definition in Section 2. System framework is depicted in Sec-
tion 3. We report the estimation approach in Section 4, which includes
graph partition, histogram-based algorithm, traffic update, and traffic query.
Experiments have been conducted in Section 5. Literature review is reported
in Section 6. We give a conclusion in Section 7.

2 Problem Definitions

We define terminology for our ensuing discussion and formally present the
traffic estimation problem over road networks.

Definition 1 Road Network G.
A road network is a directed, edge-weighted graph and can be defined as

G → (Vm, En,Weight). Vm denotes that the number of vertices is m, and
n is the number of edges or roads. Each vertex in a road network is a road
junction, and is shared with some connected road segments. Every road (or
edge) has a start and end vertices with some weights, which can be denoted
as e = (vi, vj , we). The weight we is the travel time.

A vehicle with some sensor devices continuously collects the direction
and location information, for example, the speed, latitude, longitude and
direction of the vehicle, and transmits to a processing or database server.

Definition 2 Trajectory Path P .
A Trajectory path P is defined as a numerical sequence with sev-

eral time-ordered places, P = {p1, p2, . . .}, and each place p includes
{timestamp, longitude, latitude, speed , direction}.

In different hours, the amount of duration required to pass a certain road
in G is different, which is an important factor for self-driving. We can define
it as travel time.

Definition 3 Travel Time T .
A travel time T is the trip time of going through a certain edge at one

timepoint.

RealTE: Real-time Trajectory Estimation Over Large-Scale Road Networks 369

The travel time of one edge over time is not static and always evolved.
From the open dataset [30], the path of each vehicle can be extracted accord-
ing the location information. At each sample timestamp, we can apply the
average travel time of several vehicles as the condition of one edge.

This work focuses on the problem of predicting the traffic condition
timely based on the Trajectory data P .

Definition 4 Traffic Time T ′ Prediction. We define the traffic time T ′ cal-
culated via one prediction function F (). The function F combines some
dimensions such as the timepoint t, the edge e, and the Trajectory data P .
Then the function is able to be computed by T ′ = F (t, e, P)

As more vehicles consecutively gather their trajectory information to
processing nodes, then the system quickly process the data and update
the condition as soon as possible. If the execution time is very long, the
estimation values will be obsolete.

Figure 1 is an example to show this case. We have three cars and three
travel paths(Q1, Q2, Q3 respectively). The blue router is from Q1 to v8, the
red one is fromQ2 to V11, and the brown one is also traveling fromQ3 to V11.
There exist common sub-paths from these three travel paths. At timepoint t =
8, both Q1 and Q2 plans to pass the road v3 → v5. At timepoint t = 11, Q2

and Q3 will enter road v5→ v10 and v10 → v11. The travel time of v3 → v5
will be affected if several vehicles passing this road at timepoint t = 8, and it
has to be re-computed to replace the obsolete value traveltime = 3.

Figure 1 An example road network with three routes.

370 Q. Zhou et al.

Figure 2 Architecture of RealTE.

One simple update method trains the model again whenever new data is
received. It is simple to be implemented and can consider not only the history
data, but also the real-time data. To forecast the travel time, the estimation
model has to be incremental updated with more real-time traffic.

Definition 5 Real-time Traffic Time Prediction T ′

Assuming that one new trajectory data Pnew is received, the function
F () needs to be re-computed from Pnew. Given an edge e, we can make the
prediction as: T ′ = F (t, e, P ′), in which the P ′ equals to Pold + Pnew.

Let’s take an example for real-time prediction. At timestamp t0, our
system receives some trajectory data Pt0 , the model F () is trained based
on the data Pt0 at t0. The traffic time of the edge e can be estimated by
F (t0, e, Pt0). After a period of time, i.e., t1, some new trajectory data Pt1

are collected at the duration t0 t1. The model F () is deprecated and needs
to be updated. The real-time prediction will be calculated by new model
F (t1, e, Pt0+t1). The model at t1 could be updated based on the model at
t0 or re-trained by the trajectory data Pt0+t1 .

3 An Overview of Our System

To efficiently support time-dependent traffic estimation and querying in real-
time, this paper proposes a distributed architecture, defined as RealTE. The
details of our system is presented in Figure 2, which contains three major
components:

. Historical Trajectory Processing Our system firstly partitions a large
graph into multiple sub-graphs and deploys them on multiple nodes in

RealTE: Real-time Trajectory Estimation Over Large-Scale Road Networks 371

a cluster. Meanwhile, the trajectory data are mapped to corresponding
graph edges and deployed to some partitions. We design a general
algorithm based on histogram to estimate the future travel condition on
each edge.

. Real-time Traffic Estimation Once a new request is received, an estima-
tion task is generated instantly and sent to the process engine. Request
Parser analyzes the task, and gets some parameters ofRealTE. Then in
this module, we can know how many partitions for this road network and
how many nodes in this cluster. Some request parameters (such as the
source, or the target) are also returned from this parser, which are used
for traffic estimation and model update. Request Deployment dispatches
the task to the corresponding partition through a locality method. Traffic
Estimation in specific partition analyzes the request task (e.g., the edge,
timestamp) and predicts the traffic condition. Recall that in Section
Problem Definition, the algorithm is processed in an asynchronous mode
to support real-time prediction. The results can immediately be served
for other applications (e.g., path planning).

. Real-time Traffic Update In order to support traffic prediction just in
time, the model needs to be updated for each road segment. For a
given trajectory data, Real-time Graph Mapping parses the original
data into an identifiable format, aiming to mapping it to a processing
partition in Real-time Deployment. Once the partition receives the real-
time data, Model Update Engine will be triggered to update the model
incrementally. The whole process can be executed in parallel to improve
the efficiency and scalability.

4 Distributed Traffic Estimation

The original trajectory includes the vehicle’s location information, such as
one timestamp and position, that cannot be immediately mapped to the
road segment. These data cannot be directly applied for traffic scheduling
or navigation. For example, one vehicle has a speed with 30 kilometers,
which denotes normal traffic in a living area, while in an arterial road,
this speed might represent to be congestion. Meanwhile, different time
regions also have different travel time distributions due to various influ-
encing factors, for example, time of day and day of week. Considering the
special features of each road, the estimation model should be adaptive for
all road segments, meanwhile, each road segment has its own prediction
model.

372 Q. Zhou et al.

4.1 Locality-Sensitive Partition and Deployment

Our system starts with partitioning a road network (structured as graph) G
into multiple subgraphs such that each subgraph has fewer vertices. The
value of partition number N is hard to decide when the graph is larger. In
our experiment, we have estimated the parameter N to achieve a suitable
number. Two more partitions might share some vertices, which are boundary
vertices.

The random partition is simple, and is randomly partitioning some fixed
number of vertices into subgraphs. It is the default method in existing
big data processing platforms (e.g., Spark [25] or Storm [10]). While the
metis-balanced algorithm [9] is a clustering method which considers the
density of the graph. For example, some dense area might have fewer
vertices while some sparse regions have more vertices. In this paper, we
adopt the metis-balanced algorithm to balance the computation cost of each
partition.

After the graph partition, we need to allocate the partitions to the cluster
nodes. The traditional approach adopts a Hash function and assigns each
subgraph to one processing machine in a cluster. However, the performance
would be considerably affected because of frequently edge updates. Specifi-
cally, some partitions might appear repeatedly in some cases, and there exist
some partitions occur irregularly. That is, the “round-robin deploy method”
incurs some imbalance computation, causing some problems such as hotspot
partition.

In this paper, we present a locality-sensitive algorithm to improve the
performance of our system. After analyzing the dataset, we find that when
passing through one subgraph, the neighbors of this partition constantly
receive request messages from upper partitions. The network overhead will be
consumed when the neighbor partitions are deployed in different processing
nodes.

Thus, with the purpose of decreasing the network overhead, we deploy
the neighbors as near as possible, and relocated them on same nodes instead
of Hash deployment. As a result, when traversing the road network, the
proportion of local computation will be largely improved.

4.2 NLT Histogram-Based Estimation

A partition in our system can be regarded as a subgraph. It contains the
features of the vertices and edges. It is able to compute the traffic duration
passing through each edge on any timestamp.

RealTE: Real-time Trajectory Estimation Over Large-Scale Road Networks 373

Let’s give the example again in Figure 1. When t = 1, the car Q1 is at
edge v1 → v2. The speed ofQ1 is defined as speed1, then we obtain a sample
data with traffic duration on road v1 → v2 by (t = 1, Tv1→v2 = length(v1 →
v2)/speed1). Note that, at timepoint t = 8, there exist two cars running on
the edge v3 → v5 simultaneously. In this case, the traffic condition needs to
be considered all the cars. Since each car has one speed, then the computing
formula is (t = 8, Cv3→v5 = length(v3 → v5)/avg(speed)).

In a real scenario, the traffic condition of each segment might be variable
at any time and each of them has its own distribution. Given a time interval,
it is inefficient to estimate the travel time for one road segment. For instance,
the road network of New York contains 733K road segments, thus the model
needs to process 63 billion traffic data with each second in a whole day. If
a car passes a road segment spending half of one minute, in this duration,
we would collect 30 values to denote the travel time for this road. It needs
great overhead to maintain the estimation model in a high frequency data
collection. Thus, an approximate algorithm is needed to estimate the traffic
condition in a large scale of road network.

Histogram models are widely used to represent the data distribution. It is
concise and easy to understand for data prediction. A lot of works such as
estimating the query size, approximate evaluation, and knowledge discovery
have been studied [11]. In the histogram model, the dataset is partitioned into
several buckets or sub-sets. In each partition, it stores some statistical metrics
to summarize the distribution, which is fewer than the original dataset. The
metrics contain the partition boundaries, the average values, the number of
values, and the variance. We can query the traffic condition by re-calculating
the data model to answer the query.

Our model propose the N-Level-Tree(NLT) [14] to build the histogram
with defining partitions in a hierarchical style. The x axis in our model g is
time dimension t, and the y axis is the travel time g(t). Given a road segment,
the minimal time is t0, while tmax is the maximum time for all cars at one
segment. Then we can compute the tmax according to the trajectory data. In
this way, it removes the invalided numbers and improves the performance of
model construction.

For the time dimension t, the range of t is partitioned intoK buckets. One
bucket can build its own histogram model NLT . The number of buckets K
can be calculated by K = 2N−1, where N is the level.

In order to construct the NLT model, we start to divide the dimension t
into several buckets with equal-size sub-ranges. Then each bucket is assigned
to a left node. The leaf number can be calculated by the sum up of related

374 Q. Zhou et al.

buckets. The whole process is a bottom-up style to continuously insert the
values to the parent nodes by accumulating the sibling nodes. The build task
will be stop when reaching the root node.

That is, in this model, we only store the left node of the tree and the right
node can be computed by a difference of the left node and its parent node.
Exactly, we can apply a 32 bits to represent the root node as L0, and the left
child node L1 could be defined as k bits where k = 31. Subsequently, the
node representation decreases the size of bits by 1 along with the increasing
level.

The details of NLT could be depicted by the example 4LT [14]. It is
combining 32 bits to represent the tree in Figure 3. The raw data in a partition
Sk will be separated into several same sizedK sub partitions, whereK equals
to 24−1 = 8 δi/j is computed as summing up its child nodes in following
stage, for instance, δ3/4 = δ5/8 + δ6/8. The value Li/j is calculated as the
approximate value δi/j . We can find that Li/j also have some bits to reduce
the storage space, i.e., Li/8 only needs 4-bits strings, Li/4only needs 5-bits
strings, and Li/2 only needs 6-bits strings. The construction can be listed in
the following statements:

L1/2 =<
δ1/2

δ1/1
∗ (26 − 1) > .

Li/4 =<
δi/4

δj/2
∗ (25 − 1) > . And (i = 1 ∧ j = 1), (i = 3 ∧ j = 2)

Li/8 =<
δi/8

δj/4
∗ (24 − 1) > . And (i = 1 ∧ j = 1),

(i = 3 ∧ j = 2), (i = 5 ∧ j = 3), (i = 7 ∧ j = 4).

We can calculate the approximate numbers via summing up the partial
values:

δ̃i/j =<
Li/j

2h − 1
∗ δ̃i∗/j∗ >

Note that h is the size of values Li/j , δ̃i∗/j∗ is the estimated number of
δi/j’s parent point. In Figure 3, the estimated number of any δ1/j is displayed
in parentheses. For instance,

δ̃1/1 = δ1/1 = 100

δ̃1/2 =
L1/2

26 − 1
∗ δ̃1/1 = 52

RealTE: Real-time Trajectory Estimation Over Large-Scale Road Networks 375

Figure 3 An example of NLT model.

δ̃2/2 = δ̃1/1 − δ̃1/2 = 48

. . .

δ̃5/8 =
L5/8

24 − 1
∗ δ̃3/4X = 7

. . .

Thus, 4th level tree contains the whole accumulative number, which are
the root number δ1/1, and the extra 32-bit number L. Other number could
be computed by δ1/1 and L. It has been verified that NLT performs better
than the models, such as Maxdiff [18], V-Optimal [19], and Wavelet [20].
Moreover, the overhead of NLT is lower when constructing the model or
answering one query request.

4.3 Estimation Model Update

After building the trajectory estimation model, we can track the travel time
based on the timestamp t0. When the system receives new trajectory data, the
estimation model has to be updated to accommodate changes. We can define
the update into two categories: model structural adjustment and estimation
value modification.

The idea of model structural adjustment is shifting left node on the time
dimension and building the tree. When the newest time tmax has been varied,

376 Q. Zhou et al.

Figure 4 Estimation model update.

the model will trigger to generate a new bucket to store the values, or it will
join in the current newest bucket. Take Figure 4 as an example of model
update. When the timepoint t0 has passed and the time is up to t1, the model
has to be updated by moving left or internal adjustment. We can find that
tmax will be shifted left from t1− t0 to t4 → t3. However, since the maximal
time has been modified by some vehicle paths, it gets a larger timestamp than
t3. In this instance, our system will generate another bucket to store the data
distribution in t3 → t4.

Another one is updating the node value in the NLT but not changing
the structure of NLT . When the traffic condition has been varied at time
t, the travel time on the former NLT model would be expired. The traffic
distribution has to be modified to adapt the variation. From previous state-
ment, the summary traffic time δ1/1 and the value L displayed in Figure 4
are store in the NLT That means we should update two values δ1/1 and
L at same time. After the value δ1/1 is computed by our algorithm, we can
update it straightforwardly through the node index. As the valueL denotes the
hierarchy of estimation model, it needs some effort to complete the updating.

In order to quickly update the value L, we propose an algorithm using
updating local. We first detect the affected branches by the update event. For
instance, one node is updated, its parent node is naturally affected. In the
same way, the parent’s parent also needs to be checked. If the parent belongs
to the left branch, the value L of the parent node will be modified. If not,
the value L in the right parent node would not be modified. The processes
are presented in the Algorithm 16 The time complexity of model update is
O(logM) at one timestamp t.

RealTE: Real-time Trajectory Estimation Over Large-Scale Road Networks 377

Algorithm 1 Histogram update algorithm

1: One branch δi/j is updated: δi/j = δi/j + ε
2: T0, T1, · · · , Tn, where T0 = δ0/0, Ti is Ti+1’s parent, Tn is the parent of δi/j
3: L(Ti) is the integer of Ti node
4: k is the integer length of T1 node
5: δ0/0 = δ0/0 + ε
6: c = δ0/0
7: for i ∈ (1, n) do
8: if Ti is the left node of Ti−1 then
9: tmp = L(Ti)

2k−i+1−1
∗ (c− ε)

10: L(Ti) =
tmp+ε
c
∗ (2k−i+1 − 1)

11: c = tmp+ ε
12: else if Ti is the right node of Ti−1 then
13: sb(Ti) is the left brother node of Ti
14: tmp = L(sb(Ti))

2k−i+1−1
∗ (c− ε)

15: L(Ti) =
tmp
c
∗ (2k−i+1 − 1)

16: c = c− tmp

4.4 Traffic Estimation

Based on former sections, we can naturally achieve the estimation algorithm
on the travel time. The training data are extracted by the trajectory data. The
model has been ready and we can input the timestamp and the road index.
Then we can get the travel time.

Furthermore, we can query a range between two vertices or two-time
duration due to the contribution of the histogram. The histogram model will
estimate all σ̃ numbers to deal with the values included in the request Q. We
attempt to apply this σ̃ numbers to the top stages of the NLT model, as they
own the most accurate values. If need be, the estimation can be executed to
predict the futures in a deeper granularity.

Supposing that the request area Q covers the former thirteen points in
Figure 3, the computation can be achieved by σ̃1/2+ σ̃3/4+0.5∗ σ̃7/8 = 52+
20+(0.5)(13) = 78.5. Note that, the first two points assess the contributions
of summing up the first eight and the next four. While the last point predicts
the thirteenth number using the continuous hypothesis. The exact result is
85, thus we can calculate the prediction error as 8%. When the request area
is larger than one bucket, the prediction is also able be computation in the
same way.

378 Q. Zhou et al.

5 Experiments

5.1 Experiment Setup and Datasets

Experiment Setup. We have implemented RealTE internally in Apache
Storm [10], which is a popular stream processing system which is easy to
develop applications to support real-time data processing. Since each road
has continuously vehicles and repeatedly provides events for transportation
systems, it is very suitable for us to apply streaming system to process
unbounded data.

Note that our previous system Hite [13] is implemented on Apache S4,
which is an earlier platform for stream processing than Storm. The reason
to replace the platform is that S4 has been voted to stop maintaining the
codes. Moreover, the performance of S4 is lower than Storm, which has
been optimized and applied to process high speed real-time data in some big
data companies, such as Twitter and Alibaba.

Our system RealTE is deployed in a 10 nodes cluster. The CPU model
is Xeon E5607 Quad Core CPU (2.27GHz) and the memory size is 32GB.
The operating system is Ubuntu 14.04. All nodes are connected via Ethernet
with a bandwidth of 1Gbps. We pick up one as the master node and others
for slave nodes. The master node is responsible for resource management and
the scheduling. Although the master node can be shared with a slave node,
we still arrange it as an independent node because master node will consume
some CPU and memory resources. If one node is allocated as master node
and slave node, this node will have less resource for data processing. It might
incur some imbalance with other slave nodes.

Datasets. First, we use five real road networks with travel time from
US road networks [30]. The information of related road networks in our
experiment is listed in Table 1. The sizes of datasets are between 320K and
14 million vertices, and between 800K to 34 billion roads. In the experiment,
the default road network is CAL as it is a moderate size dataset to evaluate
the efficiency.

Meanwhile, we also assess Beijing’s real dataset, that includes the 10,357
vehicles’ GPS data from February 2 to February 8 [28]. In this dataset, it has
154K vertices and 337K edges of Beijing. Each tuple is a series of GPS data
including timepoint and position.

Evaluation methods. In order to evaluate the algorithm, we compare our
model Hist with four baseline methods for real-time traffic estimation.

• Auto-Regressive (AR). It uses a linear combination of past travel time
to predict the traffic conditions. It is a basic regression method.

RealTE: Real-time Trajectory Estimation Over Large-Scale Road Networks 379

Table 1 Road network datasets

Name Region Vertex Number Edge Number

BAY San Francisco Bay Area 321,270 800,172

FLA Florida 1,070,376 2,712,798

CAL California and Nevada 1,890,815 4,657,742

E Eastern USA 3,598,623 8,778,114

CTR Central USA 14,081,816 34,292,496

BJ Beijing 154,662 337,662

• Exponential Smoothing (ES). This approach adopts a rule to smooth
temporal data via an exponential time window model. It is applied to
compute the decreasing weights over time. This method is general for
time-series data analysis.

• Multi-modal Gaussian Markov Random Field (MM-GMRF). This
model captures the interrelationship on the travel time metric, including
adjacent edges, and the value of stoppings on the edges. It applies
Markov model to calculate the relation between stopping and unstopping
for neighboring edges.

• Deep origin-destination (DeepOD). It designs a consolidated deep net-
work method, which is able to completely explore historical trajectory
data, road networks. It also combines some other data (such as weather
data, and traffic data) to estimate the traffic duration.

Evaluation metrics. Our modelHist is evaluated with other models based
on several popular metrics. Mean relative error (MRE) is the average ratio of
the absolute error between a prediction and the real value in Equation (1).
Mean absolute error (MAE) is the average difference between between a
prediction and the real value in Equation (2). In the Equations, i denotes one
edge, n is the total number of edges in a road network, yi is the ground truth
of travel time of edge i, ŷi is the estimated value of edge i’s travel time:

MRE =

∑
i |ŷi − yi|∑

i yi
(1)

MAE =

∑
i |ŷi − yi|
n

(2)

Specifically, we utilize two other metrics to evaluate the performance of
our system: the runtime of the estimation and the throughput of the system.
The runtime refers that the latency of the query request. It can be computed by

380 Q. Zhou et al.

Table 2 Experiment parameters

Cluster nodes 1, 2, 3, 4, 5, 6, 7, 8, 9

Graph partition 10, 100, 500, 1000, 5000, 10000

Update frequency 1000, 5000, 10000, 50000, 100000

Queries 100, 500, 1000, 5000, 10000

the difference between the received timestamp and the processed timestamp.
The throughput is the highest number of queries supported by the system in
a time interval (e.g., 1 minute).

Experiment Parameters. In our experiment, we estimate the performance
efficiency when changing some parameter values, such as the number of
nodes, the number of graph partitions, the frequency of edge updates in
one minute, the number of requests in one minute. All the parameters are
described in Table 2. The bold one is the default value.

5.2 Effectiveness of Graph Partition

In order to evaluate the performance of graph partition, we compare the
performance of different partition strategies: Hash vs Locality-Sensitive
(LS). Hash is randomly mapping each sub-graph to one certain physical
machine via a hash function, while LS utilizes a locality sensitive method
and deploys the neighbor partitions to the same machine as possible.

We evaluate the efficiency of the system by changing the number of
processing machines. The dataset used in this experiment is CAL, which
is a moderate road network. From Figure 5, it is easy to find that LS partition
is superior to Hash partition on runtime and throughput. The main reason is
that LS adopts the locality-sensitive partition and deployment, that allocates
neighbor partitions together. Then this method can largely reduce the network
overhead when querying neighbor traffic condition.

We also study the performance on Hash and LS by changing the
size of graph partitions. Figure 6 depicts that, in the partition set S =
[10, 100, 500, 1000, 5000, 10000], the optimal number is 1000. That means
the number of partitions numpartition = 1000 achieves the minimal runtime
and the maximal throughput. If the partition number is very small (such
as 10), the performance of both methods is not well. Meanwhile, if the
number is very large (such as more than 10000), the efficiency of the system
significantly decreases. An appropriate partition number will be conducive to
the parallelism ability and reducing the chance of CPU resource contention.

RealTE: Real-time Trajectory Estimation Over Large-Scale Road Networks 381

2 3 4 5 6 7 8 9

Node

500

750

1000

1250

1500

1750

R
u
n
ti

m
e
 (

m
s
)

Hash LS

(a) Runtime

2 3 4 5 6 7 8 9

Node

0

2000

4000

6000

8000

T
h
ro
u
g
h
p
u
t

(#
Q

u
e
ri

e
s
/m

in
)

Hash LS

(b) Throughput

Figure 5 Performance w.r.t. increasing number of nodes.

10 100 500 1000 5000 10000

Partition

500

1000

1500

2000

2500

R
u
n
ti

m
e
 (

m
s
)

Hash LS

(a) Runtime

10 100 500 1000 5000 10000

Partition

2000

4000

6000

8000
T
h
ro

u
g
h
p
u
t

(#
Q

u
e
ri

e
s
/m

in
)

Hash LS

(b) Throughput

Figure 6 Performance w.r.t. increasing number of partitions.

5.3 Effectiveness of Traffic Estimation

We compare the estimation accuracy with existing algorithms on six datasets.
The queries are generated by randomly selecting two vertices in different sub-
graphs for each dataset. The default settings are: numqueries equals to 1000,
numnodes is 9, and numpartitions is 1000. The metrics in this experiment
are MAE and MRE. Figure 7 illustrates that all methods perform vari-
ous prediction results on different road networks. We find that none-linear
methods outperform than linear methods. The reason is that the travel time
is not linearly related. Moreover, we find that when increasing the scale of
the road networks, the MAE and MRE metrics of all methods display
similar tendency in Figure 7. The larger road network is, the higher prediction
error they perform. WE can see that CTR has higher prediction error than
road networks Bay and BJ . Last but not least, DeepOD is a deep learning
technology, which can approximately fits any function. DeepOD has close
prediction accuracy with our method Hist. On road networks CAL and
CTR, DeepOD has lower error than Hist, while Hist is better on other

382 Q. Zhou et al.

BAY FLA CAL E CTR BJ

Road Networks

0

50

100

150

M
A

E
 (

s
e
c
/e

d
g
e
)

AR

ES

MM-GMRF

DeepOD

Hist

(a) MAE

BAY FLA CAL E CTR BJ

Road Networks

0

5

10

15

20

25

M
R

E
 (

%
)

AR

ES

MM-GMRF

DeepOD

Hist

(b) MRE

Figure 7 The accuracy evaluation of all methods.

BAY FLA CAL E CTR BJ

Road Networks

0

1000

2000

3000

R
u
n
ti

m
e
 (

m
s
)

AR

ES

MM-GMRF

DeepOD

Hist

(a) Runtime

BAY FLA CAL E CTR BJ

Road Networks

0

5000

10000

15000

20000

T
h
ro

u
g
h
p
u
t
(#
Q
u
e
ri
e
s
/m

in
)

AR

ES

MM-GMRF

DeepOD

Hist

(b) Throughput

Figure 8 The performance of all methods.

road networks. In general, our methodHist performs the better on all metrics
than existing methods.

We also compare the performance of traffic estimation on all methods.
The setting is similar with Figure 7. The results show that the runtime and
throughput on six road networks in Figure 8. Linear methods AR and ES
have less estimation time than non-linear methods. Deep learning methods,
such DeepOD need more prediction overhead than other methods. With
increasing the size of road network, all methods require more time to com-
plete the prediction and the throughput is decreasing on all road networks.
Generally, we can find that Hist outperforms other methods.

5.4 Performance of Traffic Updates

In order to support real-time traffic estimation, we study the performance
of model update once the road network is changed. The update frequency
is 10000, which means that the system will receive 10000 edge-updating

RealTE: Real-time Trajectory Estimation Over Large-Scale Road Networks 383

Table 3 Performance of traffic updates (ms)

Road Network AR ES MM-GMRF DeepOD Hist

BAY 848 1340 3.7 ∗ 106 5.4 ∗ 106 360

FLA 950 1519 X X 490

CAL 1046 1756 X X 653

E 1273 1916 X X 843

CTR 1850 2865 X X 988

BJ 980 1402 X X 380

requests in one minute. The results are shown in Table 3. We can find that
the methods MM −GMRF and DeepOD have a huge latency (more than
1 hour) to complete the updates. The reason is that MM − GMRF and
DeepOD have to run a complex or deep network training process to achieve
a stable state, which shows that they are not suitable for real-time update.
Moreover, the average runtimes of AR, ES and Hist are 1157 ms, 1799
ms and 619 ms, respectively. Our method has a lower update runtime than
the linear models AR and ES, since we adopt a locality algorithm for edge
updates, instead of re-training the model.

6 Related Work

We summarize some works on data mining for traffic prediction in a vehicular
network. Both academic and industrial communities have published several
papers and released some products on this area. For example, traditional
time series methods, autoregressive (AR), autoregressive integrated moving
average (ARIMA) [3], exponential smoothing [5] are popular to predict the
traffic condition. Statistical or machine learning approaches [7, 12, 15, 23,
33–35, 39, 40, 42] are recently adopted to estimate the travel distribution or
navigation recommendation.

Historical traffic estimation: Lal et al. [36] adopt an independent server
to consistently process the trajectory events through a sensor network. They
classify the vehicles into some clusters, and connect the similar class with an
ad-hoc network. The clusters can share the data with its neighbors in a low
overhead.

The work [33] utilizes network storage for historical location information
of vehicles, and gathers vehicle paths through the network between vehicles
and sensor devices. Some papers [21, 33, 38] focus on past trajectories with
massive tracing data for taxi scheduling.

384 Q. Zhou et al.

Real-time traffic estimation: Several researches employ both past and
real-time data to estimate the traffic condition. [40] collects sensor data by a
probe framework. The model in this work considers the new data of each edge
in a vehicle network and predicts the future condition. The authors in [35]
combine past and real-time traffic data to forecast the short and long period of
travel speed for each vehicle. The proposal in [41] analyzes the original data
to infer the position, and to predict the travel duration using a linear model.
This model can be executed in a low latency and be suitable for real-time
prediction. The work [38] combines real time trajectory data and past data to
learn the behavior of drivers according the GPS data. Then they recommend
a new and faster path for each driver through a public service.

7 Conclusion

We revisited our previous work Hite [13] and extended it in several aspects,
such as the new implementation platform Storm, a locality-sensitive parti-
tion and deployment method to improve the parallelism. We also redesigned
the experiments with more datasets, new performance metrics, and more
existing methods. The new system RealTE has been evaluated on six real
road networks to predict the travel time on a massive volume of real traffic
data. A histogram estimation approach is adopted to predict the traffic. This
approach is general and able to be incremental updated in parallel. The results
illustrate RealTE achieves higher throughput and lower prediction error than
existing methods. The runtime of a traffic estimation is less than 1 seconds
on a large road network and it takes 619 microseconds for model updates.

Acknowledgements

This work is supported by the National Nature Science Foundation of China
under grants No. 61702320 and Shanghai Municipal Education Commission
Funds of Young Teacher Training Program No. ZZSDJ17021.

References

[1] Guerrero-Ibáñez, Antonio and Flores-Cortés, Carlos and Damián-
Reyes, Pedro and Andrade-Aréchiga, M and Pulido, JRG (2012).
Emerging technologies for urban traffic management. Urban Develop-
ment, 59.

RealTE: Real-time Trajectory Estimation Over Large-Scale Road Networks 385

[2] Ma, J., Chan, J., Ristanoski, G., Rajasegarar, S., and Leckie, C. (2019).
Bus travel time prediction with real-time traffic information. Transporta-
tion Research Part C: Emerging Technologies, 105, 536–549.

[3] Lee, S., and Fambro, D. B. (1999). Application of subset autoregressive
integrated moving average model for short-term freeway traffic volume
forecasting. Transportation Research Record, 1678(1), 179–188.

[4] Zhang, D., Yang, D., Wang, Y., Tan, K. L., Cao, J., and Shen, H. T.
(2017). Distributed shortest path query processing on dynamic road
networks. The VLDB Journal, 26(3), 399–419.

[5] Chan, K. Y., Dillon, T. S., Singh, J., and Chang, E. (2011). Neural-
network-based models for short-term traffic flow forecasting using
a hybrid exponential smoothing and Levenberg–Marquardt algo-
rithm. IEEE Transactions on Intelligent Transportation Systems, 13(2),
644–654.

[6] Hunter, T., Hofleitner, A., Reilly, J., Krichene, W., Thai, J., Kouvelas, A.,
and Bayen, A. (2013). Arriving on time: estimating travel time distribu-
tions on large-scale road networks. arXiv preprint arXiv:1302.6617.

[7] Yuan, H., Li, G., Bao, Z., and Feng, L. (2020). Effective travel time
estimation: When historical trajectories over road networks matter. In
Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data (pp. 2135–2149).

[8] Box, G. E., Jenkins, G. M., Reinsel, G. C., and Ljung, G. M. (2015).
Time series analysis: forecasting and control. John Wiley and Sons.

[9] Karypis, G., and Kumar, V. (1998). A fast and high quality multilevel
scheme for partitioning irregular graphs. SIAM Journal on scientific
Computing, 20(1), 359–392.

[10] Twitter Storm. https://github.com/nathanmarz/storm
[11] Babcock, B., Babu, S., Datar, M., Motwani, R., and Widom, J. (2002).

Models and issues in data stream systems. In Proceedings of the twenty-
first ACM SIGMOD-SIGACT-SIGART symposium on Principles of
database systems (pp. 1–16).

[12] Hua, Y. A. N. G., and Xing, W. E. I. (2020). An Application of CHNN for
FANETs routing optimization. Journal of Web Engineering, 830–844.

[13] Yang, D., Wang, F., and Ji, C. (2016). Hite: Histogram-based traffic
estimation on real-time trajectory. In IEEE ICSAI (pp. 444–449). IEEE.

[14] Buccafurri, F., Lax, G., Sacca, D., Pontieri, L., and Rosaci, D. (2008).
Enhancing histograms by tree-like bucket indices. The VLDB journal,
17(5), 1041–1061.

386 Q. Zhou et al.

[15] Fu, K., Meng, F., Ye, J., and Wang, Z. (2020). Compacteta: A fast
inference system for travel time prediction. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (pp. 3337–3345).

[16] Yang, D., Zhang, D., Tan, K.L., Cao, J. and Le Mouël, F., 2014. CANDS:
continuous optimal navigation via distributed stream processing. Pro-
ceedings of the VLDB Endowment (PVLDB), 8(2), pp.137–148.

[17] Zhang, D., Yang, D., Wang, Y., Tan, K.L., Cao, J. and Shen, H.T., 2017.
Distributed shortest path query processing on dynamic road networks.
The VLDB Journal, 26(3), pp. 399–419.

[18] Poosala, V., Haas, P. J., Ioannidis, Y. E., and Shekita, E. J. (1996).
Improved histograms for selectivity estimation of range predicates.
ACM Sigmod Record, 25(2), 294–305.

[19] Jagadish, H. V., Koudas, N., Muthukrishnan, S., Poosala, V., Sevcik, K.
C., and Suel, T. (1998). Optimal histograms with quality guarantees. In
VLDB (Vol. 98, pp. 24–27).

[20] Matias, Y., Vitter, J. S., and Wang, M. (1998). Wavelet-based histograms
for selectivity estimation. In Proceedings of the 1998 ACM SIGMOD
international conference on Management of data (pp. 448–459).

[21] Yang, D., Guo, J., Wang, Z. J., Wang, Y., Zhang, J., Hu, L., . . . and
Cao, J. (2018). Fastpm: An approach to pattern matching via distributed
stream processing. Information Sciences, 453, 263–280.

[22] Neumeyer, L., Robbins, B., Nair, A., and Kesari, A. (2010, December).
S4: Distributed stream computing platform. In 2010 IEEE International
Conference on Data Mining Workshops (pp. 170–177). IEEE.

[23] Yang, D., Cao, J., Fu, J., Wang, J. and Guo, J., 2013. A pattern fusion
model for multi-step-ahead CPU load prediction. Journal of Systems
and Software, 86(5), pp. 1257–1266.

[24] Zhang, D., Ding, M., Yang, D., Liu, Y., Fan, J. and Shen, H.T., 2018.
Trajectory simplification: an experimental study and quality analysis.
Proceedings of the VLDB Endowment, 11(9), pp. 934–946.

[25] Spark. http://spark.incubator.apache.org
[26] Flink. http://flink.apache.org
[27] Hilger, M., Köhler, E., Möhring, R. H., and Schilling, H. (2009). Fast

point-to-point shortest path computations with arc-flags. The Shortest
Path Problem: Ninth DIMACS Implementation Challenge, 74, 41–72.

[28] Zheng, Y., Liu, Y., Yuan, J., and Xie, X. (2011). Urban computing
with taxicabs. In Proceedings of the 13th international conference on
Ubiquitous computing (pp. 89–98).

RealTE: Real-time Trajectory Estimation Over Large-Scale Road Networks 387

[29] Wei, H., Wang, Y., Forman, G., Zhu, Y., and Guan, H. (2012). Fast
Viterbi map matching with tunable weight functions. In Proceedings of
the 20th international conference on advances in geographic information
systems (pp. 613–616).

[30] US Road Network. http://www.dis.uniroma1.it/challenge9/download.
shtml

[31] Nakata, T., and Takeuchi, J. I. (2004). Mining traffic data from probe-
car system for travel time prediction. In Proceedings of the tenth ACM
SIGKDD international conference on Knowledge discovery and data
mining (pp. 817–822).

[32] Lei, J., Chu, X., and He, W. (2021). Trajectory Data Restoring: A Way
of Visual Analysis of Vessel Identity Base on OPTICS. Journal of Web
Engineering., 20(2), 413–430.

[33] Merah, A. F., Samarah, S., and Boukerche, A. (2012). Vehicular
movement patterns: a prediction-based route discovery technique for
VANETs. In 2012 IEEE International conference on communications
(ICC) (pp. 5291-5295).

[34] Zhang, B., Xing, K., Cheng, X., Huang, L., and Bie, R. (2012). Traffic
clustering and online traffic prediction in vehicle networks: A social
influence perspective. In 2012 Proceedings IEEE Infocom (pp. 495–
503).

[35] Pan, B., Demiryurek, U., and Shahabi, C. (2012). Utilizing real-world
transportation data for accurate traffic prediction. In 2012 IEEE 12th
International Conference on Data Mining (pp. 595–604).

[36] Abraham, S., and Lal, P. S. (2012). Spatio-temporal similarity of
network-constrained moving object trajectories using sequence align-
ment of travel locations. Transportation research part C: emerging
technologies, 23, 109–123.

[37] Chen, L., Lv, M., and Chen, G. (2010). A system for destination
and future route prediction based on trajectory mining. Pervasive and
Mobile Computing, 6(6), 657–676.

[38] Yuan, J., Zheng, Y., Xie, X., and Sun, G. (2011). Driving with knowledge
from the physical world. In Proceedings of the 17th ACM SIGKDD
international conference on Knowledge discovery and data mining
(pp. 316–324).

[39] Chen, F., Chen, D., Wang, L., and Botao, Y. (2021). Optimal Design of
Electrical Capacitance Tomography Sensor and Improved ART Image
Reconstruction Algorithm Based On the Internet of Things. Journal of
Web Engineering, 1027–1052.

388 Q. Zhou et al.

[40] Nakata, T., and Takeuchi, J. I. (2004). Mining traffic data from probe-
car system for travel time prediction. In Proceedings of the tenth ACM
SIGKDD international conference on Knowledge discovery and data
mining (pp. 817–822).

[41] Lee, W. H., Tseng, S. S., and Tsai, S. H. (2009). A knowledge based real-
time travel time prediction system for urban network. Expert systems
with Applications, 36(3), 4239–4247.

[42] Xu, H., and Ying, J. (2017). Bus arrival time prediction with real-time
and historic data. Cluster Computing, 20(4), 3099–3106.

Biographies

Qibin Zhou, received her M.Sc. degree from Huazhong University of Sci-
ence and Technology in 2013. She is the deputy director of the Information
Office and the vice president of the college of International Education in
Shanghai Jianqiao University now. Her present research interests include
network security, data analysis, smart campus construction, etc.

RealTE: Real-time Trajectory Estimation Over Large-Scale Road Networks 389

Qinggang Su, received the B.Sc. degree in Computer Science from Anhui
University of Technology in 2002, and got the M.Sc. degree in Communica-
tion Engineering in Shanghai Jiao Tong University, and is studying for Ph.D.
degree at East China Normal University. He became a faculty member in
the school of electronic information, Shanghai Dianji University China from
2002, and he is the vice dean of Chinesisch-Deutsche Kolleg für Intelligente
Produktion of Shanghai Dianji University now. He is a member of China
Computer Federation (CCF), and his research is currently focused on wireless
networks, 5G application and smart manufacturing.

Dingyu Yang received the B.E. and M.E. degrees from the Kunming Uni-
versity of Science and Technology, and the Ph.D. degree from the Shanghai
Jiao Tong University. He is currently a data scientist at Alibaba Group.
His research interests include resource prediction, anomaly detection in cloud
computing and distributed stream processing.

	Introduction
	Problem Definitions
	An Overview of Our System
	Distributed Traffic Estimation
	Locality-Sensitive Partition and Deployment
	NLT Histogram-Based Estimation
	Estimation Model Update
	Traffic Estimation

	Experiments
	Experiment Setup and Datasets
	Effectiveness of Graph Partition
	Effectiveness of Traffic Estimation
	Performance of Traffic Updates

	Related Work
	Conclusion

