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Abstract

SPARQL is a powerful query language which has been widely used in various
natural language question answering (QA) systems. As the advances of deep
neural networks, Neural Machine Translation (NMT) models are employed
to directly translate natural language questions to SPARQL queries in recent
years. In this paper, we propose an NMT-based approach with Transformer
model to generate SPARQL queries. Transformer model is chosen due to its
relatively high efficiency and effectiveness. We design a format to encode
a SPARQL query into a simple sequence with only RDF triples reserved.
The main purpose of this step is to shorten the sequences and reduce the
complexity of the target language. Moreover, we employ entity type tags to
further resolve mistranslated problems. The proposed approach is evaluated
against three open-domain question answering datasets (QALD-7, QALD-8,
and LC-QuAD) on BLEU score and accuracy, and obtains outstanding
results (83.49%, 90.13%, and 76.32% on BLEU score, respectively) which
considerably outperform all known studies.

Keywords: SPARQL generation, neural machine translation, question
answering, transformer.
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1 Introduction

SPARQL is the W3C recommended query language for retrieving data from
knowledge graphs (KG) stored in the Resource Description Framework
(RDF), a directed and labelled graph data format [1]. Searching for informa-
tion with SPARQL is significantly more accurate and efficient than using a
regular search engine since SPARQL requires an understanding of the syntax
and semantics of a natural language and constructs structured queries [2].
Due to its highly powerful capability, SPARQL has already been widely used
in various information systems, making it an important and urgent task to
automatically generate SPARQL queries.

Question answering over linked data (QALD) is one of the applications
of SPARQL [3]. For instance, a well-designed question answering system
based on DBpedia (a famous linked data which extracted structured infor-
mation from Wikipedia [4]) might be able to convert a natural language
question ‘Where is Fort Knox located?’ to its SPARQL query ‘SELECT
DISTINCT ?ans WHERE {dbr:Fort Knox dbo:location ?ans.}’ and retrieve
the exact answer ‘Kentucky’ for this question from DBpedia. The RDF triple
‘dbr:Fort Knox dbo:location ?ans’ in this SPARQL query can be simply inter-
preted as follows: “The answer is stored under the property ‘dbo:location’ of
the named entity ‘Fort Knox’ in DBpedia.”, where ‘Fort Knox’ is the subject,
‘dbo:location’ is the relation, and ‘?ans’ is the object of this RDF triple, as
shown in Figure 1.

As the advances of deep neural networks, the encoder-decoder archi-
tecture with neural networks has become a de facto approach for solving
sequence-to-sequence (seq2seq) tasks as well as building neural machine
translation (NMT) models, while models under this architecture are able
to handle input and target sequences with variable lengths [5] as shown in
Figure 2. In recent years, NMT models are employed not only to trans-
late between two natural languages, but also to directly translate natural
language questions to SPARQL queries [2, 3, 6, 7]. Although the previous
studies [2, 3, 6, 7] have reached good results in some closed-domain question
answering datasets [6, 8], they failed to solve open-domain question answer-
ing datasets like LC-QuAD [9], mainly because of the high complexity of
SPARQL queries as well as the limited vocabulary size. Take the SPARQL
query ‘SELECT DISTINCT ?ans WHERE {dbr:Fort Knox dbo:location
?ans.}’ as an example, it is hard for a model to correctly put every single
punctuation (e.g., ‘.’ and ‘{’), variable (e.g., ‘?ans’), specific SPARQL syntax
(e.g., ‘SELECT DISTINCT’), and entity (e.g., ‘dbo:location’) in the right
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Figure 1 An DBpedia Example. Part of the properties and values of the named entity ‘Fort
Knox’ in DBpedia.

Figure 2 Encoder-decoder Architecture. An example of using a simple NMT model under
the encoder-decoder architecture to translate a natural language question to a SPARQL query.

position, not to mention that it is hardly possible for the model to be able
to generate unseen entities that do not exist in the training set. These diffi-
culties make it challenging to practically apply NMT models into question
answering systems to generate SPARQL by far.
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Traditionally, there are two main approaches to automatically gener-
ate SPARQL. The first one is to turn natural language questions into an
intermediary format (ex. entity type tags), generally with some multiclass
classifiers, followed by templates or dependency structure to generate the
final SPARQL queries [10–14]. The second one is to rely on the structure
of knowledge graph, applying algorithms for subgraph searching to find all
possible RDF triples [15]. These approaches are capable of handling some
complex SPARQL queries; however, the cost of querying stays at a relatively
high level. As for using NMT models to generate SPARQL, Convolutional
Sequence to Sequence Model (ConvS2S) [16] and Transformer model [17]
are mainly chosen to train the SPARQL generator, and most of the previ-
ous studies utilized the ‘one to one SPARQL encoding method’ to encode
SPARQL queries, while it is found that by shortening and simplifying the
SPARQL queries can improve the translation result [3, 7].

In [18], we proposed an NMT-based approach with the Transformer
model to automatically translate natural language questions to SPARQL
queries and presented our preliminary results. A Transformer model is chosen
to train our SPARQL generator due to its relatively high efficiency than
RNN-based models as well as the effectiveness in various natural language
processing tasks [17]. To simplify SPARQL queries and overcome mistrans-
lation problems, which commonly happen in punctuations and specific syntax
in SPARQL, we design a new format to encode a SPARQL query, where
only RDF triples are reserved as the target language for the NMT model.
Moreover, a new NER string-like variable is designed in our approach to
reduce the complexity of both the natural language question and SPARQL
for named entities. For the input sequences (ie. natural language questions),
pre-trained word embedding is utilized to minimize the out-of-vocabulary
problem. Another specialty of our presented approach is that we modify
translation results by entity type tags [11, 14] to help making up for the
limited target vocabulary size.

Experimental results of this approach on the QALD-7 dataset have been
published in our preliminary study [18]. The outstanding results encouraged
us to pursue further. To systematically study the proposed approach and
the architecture of the Transformer model, a complete series of experi-
ments are conducted in this study, including two extra open-domain question
answering datasets (QALD-8 and LC-QuAD). LC-QuAD dataset is involved
to better compare our approach to the previous ones [2, 3]. Furthermore,
QALD-8 dataset is tested not only to benchmark QALD-7, but the QALD
series is considered as significantly more complex datasets having richer
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characteristic than LC-QuAD [19], which can further prove the effective-
ness of our approach. All results are evaluated with both BLEU score and
accuracy, where BLEU score presents the correctness of words and phrases
appear in the output sequence, and accuracy mainly accentuates whether
every single token is in the right position. Our approach achieved outstanding
83.49%, 90.13%, and 76.32% on BLEU score using QALD-7, QALD-8,
and LC-QuAD, respectively, while the accuracy score using the LC-QuAD
dataset is 72%, considerably outperform all previous studies [2, 3], which
only reached about 10% on accuracy.

2 Related Works

2.1 Neural Machine Translation

Deep neural networks under the encoder-decoder architecture have shown
to be powerful in not only machine translation but any other sequence to
sequence tasks [20]. One of the characteristics of a sequence to sequence
task is that the input and target sequences can have different lengths [5].
As shown in Figure 2, in the training phase, the encoder learns and extracts
important information from the input sequence into a context vector, where
the length of the input sequence is five, while the decoder considers and
absorbs information from both the context vector and the gold-standard
target sequence, learning how to generate the output sequence with a totally
different length from the input sequence. Additionally, in the inference phase,
the model chooses from the dictionary of the target language to find the most
suitable word for each position. In most of the prevalent approaches, the
encoder and decoder were based on recurrent neural networks (RNN) that
benefit sequential learning until the ConvS2S model [16] and Transformer
model [17] were launched.

Google’s Neural Machine Translation system (GNMT) [21] is con-
structed by a deep LSTM network which consists of 8 encoder and 8 decoder
layers with attention mechanism between the bottom layer of the decoder to
the top layer of the encoder. ConvS2S [16] is a fully convolutional archi-
tecture uses convolutions and gated linear units in its encoder and decoder
layers, including attention mechanism as well to capture the relation between
input and target language. Transformer model [17] is, on the other hand,
the state-of-the-art machine translation model which based solely on atten-
tion mechanism, with its encoder and decoder layers are all constructed by
self-attention. Both ConvS2S and Transformer models are way more efficient
and better exploit the hardware than RNN-based methods [16, 17].
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2.2 SPARQL Generation Using NMT Models

Using NMT models in SPARQL generation has been a popular field in
recent years. Soru et al. [6] proposed an architecture to translate natural lan-
guage questions to SPARQL queries with a basic LSTM-based NMT model.
In this study [6], SPARQL is encoded into a sequential format that opera-
tors, brackets, and URIs are replaced by string-like variables as the target
language of the NMT model. For instance, a SPARQL query ‘SELECT DIS-
TINCT ?uri WHERE {dbr:Fort Knox dbo:location ?uri.}’ would be encoded
into ‘select distinct var uri where brack open dbr Fort Knox dbo location
var uri sep dot brack close’. Results of this approach were evaluated with
the Monument Dataset, a closed-domain dataset expanded from the class
‘dbo:Monument’. The Monument Dataset is built with templates, meaning
that only queries that satisfied the corresponding SPARQL patterns will be
fetched from DBpedia, and the named entities are also restricted by specific
properties [6], making it considerably less complex than LC-QuAD [9] or any
other open-domain datasets. Moreover, a closed-domain question answering
dataset seldom runs into out-of-vocabulary problem, since the named entities
and property entities are all limited to a specific class. A further research also
done by Soru et al. [7] proved that shortening SPARQL sequences and adding
direct entity translations can improve the translation results.

Yin et al. [2] utilize eight NMT models, including 6 LSTM-based models,
ConvS2S model, and Transformer model, as well as three question answering
datasets (The Monument Dataset [6], DBNQA [8], and LC-QuAD [9]) to
investigate suitable models for SPARQL generation. ConvS2S outperformed
the other 7 models in this task, reaching a 97.12% in the Monument Dataset
and a 59.54% in LC-QuAD on BLEU score. The six LSTM-based models
used in this study are mainly on the basis of GNMT [21] but with different
structure, hyperparameter and attention mechanism; these models, however,
perform badly in the SPARQL generation task. As for the Transformer model,
it was in the second place and performed well in smaller datasets but failed to
handle DBNQA [8] which contains about 900,000 question pairs. In addition,
none of the eight models produced one fully correct query in LC-QuAD,
where the highest accuracy was only 8% by the ConvS2S model, meaning
that there are still defects on these approaches to solve an open-domain and
complex dataset.

Rather than directly translate a natural language question to SPARQL,
Diomedi and Hogan [3] employ NMT models to produce an appropriate
template with generic placeholders for a question, combining the result of
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sequence labelling and entity linking to get the final SPARQL query. For
instance, the phrase ‘Fort Knox’ is marked as ‘subj’ in the question ‘Where
is Fort Knox located?’ in the sequence labelling component, while entities
related to ‘Fort Knox’ found in the entity linking component will be put into
the placeholder ‘<subj>’ in the generated template ‘SECLCT DISTINCT
?obj WHERE {<subj> dbo:location ?obj.}’. The best BLEU score and accu-
racy of this approach reached 59.3% and 14.0% respectively in LC-QuAD
dataset, showing that this approach can partially fix the out-of-vocabulary
problem that the previous studies [2, 6] suffer from; however, it still run into
problem in complex questions.

As can be seen, the previous studies [2, 3] which can perfectly deal
with closed-domain question answering datasets all fail to handle the
LC-QuAD [9] dataset, where the highest accuracy they reached is only about
60%. On the contrary, our preliminary study [18] shows an outstanding
accuracy (78.07%) using QALD-7 dataset, where the QALD datasets are
considered as significantly more complex datasets LC-QuAD [19]. The pre-
liminary experimental results not only show that our approach is feasible to
solve open-domain question answering datasets, but also encourage us for
further investigation.

3 Our Approach

In this section, the architecture of our presented approach will be introduced
in details, separated into training and inference phases.

3.1 The Training Phase

As illustrated in Figure 3, there are mainly three components in our train-
ing phase, including the data pre-processing, embedding layer, and the
Transformer model. Similar to any other machine translation model, in our
approach, the input and target sequences must be turned into an expected for-
mat at first, followed by an embedding layer to transform the string-type data
to a numeric one, and lastly, a sequence to sequence model, the Transformer
model in our case, is utilized to train the pre-processed data. After training,
the trained Transformer model turns out to be the SPARQL generator in our
inference phase to generate the preliminary SPARQL queries.

Data Pre-processing. To encode a SPARQL query into a sequential for-
mat is an essential step when adopting an NMT model for SPARQL



1478 J.-H. Lin and E. Jui-Lin Lu

Figure 3 Architecture of Training Phase. The training phase of our approach with an
example.

generation [7]. In our data pre-processing component, question-query pairs
in the training datasets are artificially turned into a newly designed format.
The question-query pairs are the natural language questions and their cor-
responding SPARQL queries originally from the QALD-7, QALD-8, and
Lc-QUAD datasets. We encode a SPARQL query into a simple sequence
to shorten and simplify the target language, because it is found in previous
studies [3, 6] that the simpler the target language is, the better the translation
result will be. Figure 4 shows the comparison among different SPARQL
encoding methods using the same Fort Knox example. It is clear that our
newly designed format can not only provide the minimum length and the
least complexity of the target language (the encoded SPARQL queries), but
still sustain sufficient information to answer questions. In our newly designed
format, only RDF triples in a SPARQL query are reserved for presenting
the query intention, while punctuations and specific syntax in SPARQL are
removed since they can be easily added back by some simple post processing.

In our data pre-processing component, for input sequence, named entities
are marked with a natural language processing tool such as NLTK NER
tagger. If any phrase in the input natural language question is recognized as
a named entity, we replace the phrase with a variable ‘NER’ since named
entities are usually proper nouns like the name of a person or a place,
which are way too specific and complex for the model to get to ‘know’
every of them, leading to out-of-vocabulary problem. At the same time,
if the recognized named entity is used in the target SPARQL query, the
entity will also be replaced with variable ‘NER’. As shown in Figure 3,
for the question ‘Where is Fort Knox located?’, it is converted to ‘Where
is NER located’, because ‘Fort Knox’ was tagged as an NER. Also, the
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Figure 4 SPARQL Encoding Methods. Comparison among different SPARQL encoding
methods [3, 6].

entity ‘dbr:Fort Knox’ in the target SPARQL query is converted to NER
as well. The design of ‘NER’ has an extra advantage. If the input sequence
contains the word ‘USA’, the corresponding entity of this word in the target
sequence should be ‘dbr:United States’. Because ‘USA’ is now marked as
‘NER’, the post processing step can easily convert it to ‘dbr:United States’
based on the entity type tag [11, 14]. However, it is very hard for any other
translator to convert ‘USA’ to ‘United States’ and find the corresponding
entity ‘dbr:United States’ due to the lexical gap and ambiguity problem.

As for property or class entities in the target sequence, we look up every
single entity in the input sequence and find a most suitable word to replace
the entity. For example, ‘dbo:location’ is replaced by ‘located’.

Finally, less important tokens in the SPARQL queries are all removed
and only RDF triples are reserved, while commas are added between each
entity to separate subject, predicate, and object in an RDF triple. After all,
only ‘NER, located, ?ans.’ is reserved as the target language in our approach,
which is way more simplified for a machine translation model to learn than
the prior methods [2, 3, 6, 7].
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Table 1 Comparison of hyperparameters between the original version of Transformer model
and the presented one in this paper

Layer Multi-head Learning Embedding
Model Number Number Rate Size Embedding
Original 6 8 Noam Scheduler 512 Keras Embedding
Transformer Layer
The presented 2 4 0.00015 256 Pre-trained
Transformer (Word2Vec)

Word Embedding Pre-training. The original Transformer model utilized
the Tensorflow’s embedding layer in both the input and target language,
meaning that only the vocabularies appear in the training set are used to train
the word embeddings. In our approach, we do the same thing in our target
language (the encoded SPARQL), but pre-trained embedding is employed in
our input language to reduce unknown words since our datasets are relatively
smaller ones.

However, as introduced previously, our input language is not usual
English, but all named entities are replaced by the string ‘NER’s, such
as ‘Where is NER located?’. Therefore, we created our own pre-trained
embedding for our input language under the following process. Firstly, we
downloaded all English articles on Wikipedia (Oct. 2020 version), having
approximately 6 million articles, and marked every named entity in these
articles with the NLTK’s NER tagger. These processed articles are then used
to train our own word embeddings with the Gensim’s Word2vec model.

The Transformer Model. The SPARQL generator is then trained with the
pre-processed data using a Transformer model [17]. In this paper, we focus
only on Transformer model due to its relatively high efficiency. The hyperpa-
rameter tuning of our presented Transformer model will be described in detail
in Section 4.2. After experiments, Table 1 lists the best hyperparameters of
our presented model, while pre-trained Word2Vec embedding is employed.

3.2 The Inference Phase

Figure 5 illustrates the complete process of our inference phase with an exam-
ple. In the following paragraphs, the process will be described accompany
with the example ‘Where is Fort Knox located?’.

First, named entities in the input sentence will be marked with NLTK
NER tagger, just like what we do in the training phase. In this example,
‘Fort Knox’ will be marked as a named entity, so the input sentence is now



SPARQL Generation with An NMT-based Approach 1481

Figure 5 Process of Inference Phase. The process of the inference phase of our presented
approach with an example.

turned to ‘What is NER located’. Then, the trained SPARQL generator will
generate the corresponding SPARQL query for this sentence. However, since
the dictionary of our target language is too small to have enough vocabularies
for the model to choose, it’s highly possible that the model can’t find a
most suitable property for the sentence. For instance, as shown in Figure 5,
the generated SPARQL query by the SPARQL generator is ‘NER, married,
?ans.’, instead of ‘NER, located, ?ans.’. It is obvious that the generated
SPARQL query ‘NER, married, ?ans.’ is a wrong triple. When this situation
happens, we employee an entity type tagger to help modify the translation
result.

The Modification Phase. The modification component is designed as a rem-
edy for mistranslation problems. Since vocabulary mistranslation is profusely
found in translation results, we employ entity type tagger from Chen et al.
Study [11] to help modify the result. Thus, the final SPARQL queries are
decided jointly by both the result of Transformer model and the entity type
tags. V, N, E, R, and C are five main entity type tags, where V represents
the interrogatives, N represents the unimportant or stop words, as well as
E, R, and C, respectively represent the name entities, relation (property)
entities, and classes in the DBpedia. For input question ‘Where is Fort Knox
located?’, the entity type tagger will give an output ‘V-B N E-B R-B’.

For the same question ‘Where is Fort Knox located?’, the correct transla-
tion result should be ’NER, located, ?ans.’. If the question was incorrectly
translated into ‘NER, married, ?ans.’, where the word ‘married’ does not
exist in the input question, it is identified as a vocabulary mistranslated
word. Once a vocabulary mistranslated word is found, the mistranslated
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words will be replaced by words with E, R, or C tags, depending on their
position. Because ‘married’ is at the relation position, and because ‘located’
is tagged as R (which means relation), ‘married’ will be replaced by ‘located’.
Finally, after entity mapping, we will get a correct SPARQL query ‘SELECT
DISTINCT ?ans WHERE {dbr:Fort Knox dbo:location ?ans.}’, which is the
output sequence of our proposed model. In consideration of space, entity
mapping will not be discussed in this paper. For readers who are interested in
entity mapping, they can reference Chen et al. Study [11].

4 Experiments

4.1 Dataset and Evaluation Metrix

As one of the main purpose of this paper is to present an approach to
automatically generate SPARQL queries and make sure that these queries
can be used in an open-domain question answering system, the Large-Scale
Complex Question Answering Dataset (LC-QuAD) [9], a commonly used
question answering dataset with significantly greater size, variety and com-
plexity, is utilized to evaluate our presented approach, having totally 5000
question-query pairs in it.

In addition to LC-QuAD, datasets from the 7th and the 8th Open Chal-
lenge on Question Answering over Linked Data (QALD-7 and QALD-8)
[22, 23] are also utilized. This challenge is one of the most popular ques-
tion answering competition that provides up-to-date benchmark and datasets
annually. In the current state of our research, we select only ‘simple question’
in both QALD-7 and QALD-8 dataset. The ‘simple question’ here means
that in these questions, the corresponding SPARQL queries do not contain
any ‘filter’ in it, such as the SPARQL syntax ‘FILTER’ or ‘ORDER BY’,
which commonly appear in comparative or superlative questions; however,
these ‘simple’ SPARQL queries are still relatively more complicated than
LC-QuAD, where SAPRQL queries in LC-QuAD dataset involve at most
three RDF triples, while in the QALD series, there are SPARQL queries
with more than five RDF triples and simultaneously having more variables.
In QALD-7, there are 186 question-query pairs in training set and 23 pairs in
testing set, while in QALD-8, 174 and 34 question-query pairs are included
in the training and testing set, respectively.

A combination of evaluation metrics is chosen to present and evaluate the
output result in this paper, including the BLEU score as well as accuracy.
BLEU score is a quick, inexpensive, and language-independent method of
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machine translation evaluation, considering the similarity between the pre-
dicted sequence and the gold-standard target sequence [24]. However, as
shown in Equation (1) [24], BLEU score somehow lacks consideration of
the order and position of the whole generated sequence [2], because the
former part (BP; Brevity Penalty) of the equation considers only the lengths
of the predicted sequence (i.e. c) and the gold-standard target sequence (i.e. r)
(see Equation (2)), and the latter part utilizes n-gram to compare each word
and phrase between the predicted sequence and the gold-standard target
sequence. Therefore, accuracy is also employed to evaluate whether every
single element in the output sequence is in the right position. We utilize the
sklearn.metrics.accuracy score, which compares token by token between the
predicted and the gold-standard target sequence, indicating the percentage of
correctly generated tokens.

BLEU = BP · exp

(
N∑

n=1

Wn logPn

)
(1)

BP =

{
1 if c > r

e(1−
r
c
) if c ≤ r

(2)

4.2 Hyperparameter Experiments and Tuning

Generating SPARQL queries with an NMT model is different from an
ordinary machine translation task between two natural languages, since its
target language is a query language (SPARQL), where the regularity is
higher than any natural language. Moreover, datasets involve natural lan-
guage question and SPARQL query pairs are usually smaller than machine
translation datasets. For instance, as one of the established benchmark for
machine translation, WMT 2014 Dataset [25] contains 4.5 million sentence
pairs in English-German translation task and 36 million sentence pairs in
English-French translation task. On the contrary, the biggest dataset we use
(LC-QuAD) contains only 5000 question-query pairs, while there are only
hundreds of question-query pairs in both QALD-7 and QALD-8 datasets.
Hence, a set of experiments are done to find out the most suitable hyper-
parameters for SPARQL generation with an NMT model among the three
datasets we use.

To start with, we focus on the number of layers in the encoder and
decoder, keeping all the other hyperparameters the same as the original Trans-
former model (see Table 1) except for the embedding size, since a pre-trained
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Table 2 BLEU scores (after modification phase) among different layer number
Layer Number 2 4 6
QALD-7 72.56% 62.33% 63.86%
QALD-8 85.22% 79.81% 82.14%
LC-QuAD 73.44% 68.75% 65.25%

Table 3 BLEU scores (after modification phase) among different multi-head number
Multi-head Number 4 8 16
QALD-7 80.83% 72.56% 76.18%
QALD-8 86.84% 85.22% 85.09%
LC-QuAD 76.21% 73.44% 69.45%

Word2Vec embedding is employed in our approach and the dimension of the
pre-trained embedding is fixed. As can be observed in Table 2, generally, the
BLEU scores sharply decrease when using a larger layer number, meaning
that a deep model is unnecessary in this task as the depth of a neural network
usually depends on the size of the training dataset.

The layer number is now fixed at 2 in both the encoder and decoder
according to the previous experiments. The second step aims to figure out
an appropriate multi-head number for our task. In the Transformer model,
the embedding of every single word will be projected into many subspaces
(heads) during the calculation of attention mechanism to better retrieve
information from different dimension, so called the multi-head attention [17].
As shown in Table 3, increasing the multi-head number does not seem to be
more effective in our task, while using 4 as the multi-head number of our
model is already good enough due to the embedding size as well as the lower
complexity and the fewer vocabulary of our target language.

As learning rate is considered as one of the most important hyperparame-
ter while training neural networks, two different strategies on tuning learning
rate are conducted in this step.

For the first one, we follow the original Transformer model using the
Noam learning rate scheduler [17]. In this scheduler, learning rate starts from
a small value, linearly increases during the warm up steps to stabilize the
neural network, and then exponentially decays over steps (see Equation (3)).
Based on our various experiments, the batch size and the number of epochs
were fixed at 32 and 150; respectively. Although the default warm up step
number is 4000 for the original Transformer model, only 900 steps (150
epochs * 6 batches) are required while training the QALD-7 and QALD-8
datasets. Therefore, smaller warm up step numbers for QALD-7 and QALD-8



SPARQL Generation with An NMT-based Approach 1485

Table 4 BLEU scores (after modification phase) among different warm up step of the Noam
learning rate scheduler on QALD-7 and QALD-8

Warm Up Steps 100 200 300 4000
QALD-7 81.35% 75.29% 83.13% 80.83%
QALD-8 88.83% 79.81% 87.73% 86.84%

Table 5 BLEU scores (after modification phase) among different warm up step of the Noam
learning rate scheduler on LC-QuAD

Warm Up Step 500 1000 2000 4000 4500
LC-QuAD 68.94% 72.72% 73.50% 76.21% 74.49%

Table 6 BLEU scores (after modification phase) among different learning rate
Learning Rate Noam Scheduler 0.0001 0.00015 0.0002 0.0005 0.001
QALD-7 83.13% 80.83% 83.49% 78.36% 73.74% 79.80%
QALD-8 88.83% 86.19% 90.13% 84.83% 83.37% 82.31%
LC-QuAD 76.21% 74.15% 76.32% 74.54% 75.42% 71.59%

were experimented, and both 100 and 300 were found to outperform the
default settings, as shown in Table 4. As for the LC-QuAD dataset (see
Table 5), due to its larger size, 4000 seems to be the best warm up step number
among its 18750 training steps (150 epochs * 125 batches).

lrate = d−0.5
model ·min(step num−0.5, step num · warmup steps−1.5) (3)

However, learning rate scheduler and warm up step strategy are more
suited for very deep neural networks with dozens or even hundreds of lay-
ers [26]. Generally, they are used in convolutional neural network (CNN)
for image processing but seldom employed in models for natural language
processing tasks which usually have less layer number [26]. Therefore, we
also try to fix learning rate values rather than using a learning rate scheduler.
As shown in Table 6, by fixing the learning rate on 0.00015, all the three
datasets can reach the highest BLEU score.

4.3 Results and Discussion

The final evaluation results of our approach are shown in Table 7, including
the effect of the modification phase we designed in this study. The BLEU
score of QALD-8 reached an outstanding 90.13% after the modification
phase, followed by 83.49% and 76.32% on QALD-7 and LC-QuAD, respec-
tively. The accuracies of QALD-7, QALD-8, and LC-QuAD are 76.69%,
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Table 7 Results before and after the Modification Phase
Dataset Evaluation Metrix SPARQL Generator Entity Type Tags Modified
QALD-7 BLEU Score 60.95% 83.49% (+22.54%)

Accuracy 60.74% 76.69% (+15.95%)
QALD-8 BLEU Score 58.45% 90.13% (+31.68%)

Accuracy 49.09% 88.15% (+39.06%)
LC-QuAD BLEU Score 75.06% 76.32% (+1.26%)

Accuracy 71.27% 72.00% (+0.73%)

Table 8 Comparison among our approach and the other studies for SPARQL generation on
LC-QuAD dataset
Evaluation Our Approach Yin Diomedi and
Metrix SPARQL Generator Entity Type Tags Modified et al. [2] Hogan [3]
BLEU Score 75.06% 76.32% 59.54% 59.30%
Accuracy 71.27% 72.00% 8.00% 14.00%

88.15%, 72.00%; respectively. It is noted that, the translation results of
our SPARQL generator without the modification phase are also well per-
formed no matter in BLUE score or accuracy among open-domain question
answering datasets.

A comparison on BLEU scores and accuracies among our presented
approach and the previous ones [2, 3] is summarized in Table 8. It is obvi-
ous that our approach, with or without modification phase, is significantly
superior than all previous studies. It is noted that the best performances of
the two previous studies are based on ConvS2S model. Lc-QuAD seems to
have enough vocabularies to overcome most mistranslation problems, so the
translation result without the modification phase is already good and way
better than the previous studies [2, 3]. Yin et al. [2] performed badly on
accuracy, but still get acceptable BLEU score. The low accuracy was caused
by many misplaced punctuations and tokens in the generated sequence.
Diomedi and Hogan [3] attempted to overcome the problem by translating
the natural language questions to templates, however, their performance is
still limited.

5 Conclusion

In this work, we propose an NMT-based approach using the Transformer
model to automatically translate natural language questions to SPARQL
queries. Our approach is evaluated with QALD-7, QALD-8, and LC-QuAD
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datasets, reaching an outstanding result among open-domain question
answering datasets. Considering our high accuracy, this SPARQL generation
approach is feasible to develop as a complete and well performed end-to-end
question answering system.

In addition, there is a main drawback of our current approach that can be
improved in the future. The current approach heavily relies on named entity
recognition and entity type tagging, which can be a waste of training cost.
Moreover, if the effectiveness of the named entity recognizer and the entity
type tagger is not satisfactory, the final performance of our approach will
reduce greatly. For future works, generating a pre-trained embedding under
DBpedia entities can be an option to replace the modification phase.
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