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Abstract

This paper targets the execution of data science (DS) pipelines supported by
data processing, transmission and sharing across several resources executing
greedy processes. Current data science pipelines environments provide vari-
ous infrastructure services with computing resources such as general-purpose
processors (GPP), Graphics Processing Units (GPUs), Field Programmable
Gate Arrays (FPGAs) and Tensor Processing Unit (TPU) coupled with plat-
form and software services to design, run and maintain DS pipelines. These
one-fits-all solutions impose the complete externalization of data pipeline
tasks. However, some tasks can be executed in the edge, and the backend
can provide just in time resources to ensure ad-hoc and elastic execution
environments.

This paper introduces an innovative composable “Just in Time Archi-
tecture” for configuring DCs for Data Science Pipelines (JITA-4DS) and
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associated resource management techniques. JITA-4DS is a cross-layer man-
agement system that is aware of both the application characteristics and
the underlying infrastructures to break the barriers between applications,
middleware/operating system, and hardware layers. Vertical integration of
these layers is needed for building a customizable Virtual Data Center (VDC)
to meet the dynamically changing data science pipelines’ requirements such
as performance, availability, and energy consumption. Accordingly, the paper
shows an experimental simulation devoted to run data science workloads
and determine the best strategies for scheduling the allocation of resources
implemented by JITA-4DS.

Keywords: Disaggregated data centers, data science pipelines, edge
computing.

1 Introduction

Data infrastructures such as Google, Amazon, eBay, and E-Trade are powered
by data centers (DCs) with tens to hundreds of thousands of computers
and storage devices running complex software applications. Existing IT
architectures are not designed to provide an agile infrastructure to keep up
with the rapidly evolving next-generation mobile, big data, and data science
pipelines demands. These applications are distinct from the “traditional”
enterprise ones because of their size, dynamic behavior, and nonlinear scal-
ing and relatively unpredictable growth as inputs being processed. Thus,
they require continuous provisioning and re-provisioning of DC resources
[13, 18, 28] given their dynamic and unpredictable changes in the Service
Level Objectives (SLOs) (e.g., availability response time, reliability, energy).

This paper targets the execution of data science (DS) pipelines sup-
ported by data processing, transmission and sharing across several resources
executing greedy processes. A Data Science Pipeline consists of a set of
data processing tasks organized as a data flow defining the data dependen-
cies among the tasks and a control flow defining the order in which tasks
are executed. Current data science pipelines environments promote high-
performance cloud platforms as backend support for completely externalizing
their execution. These platforms provide various infrastructure services with
computing resources such as general-purpose processors (GPP), Graphics
Processing Units (GPUs), Field Programmable Gate Arrays (FPGAs) and
Tensor Processing Unit (TPU) coupled with platform and software ser-
vices to design, run and maintain DS pipelines. These one-fits-all solutions
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impose the complete externalization of data pipeline tasks that assume
(i) reliable and completely available network connection; (ii) can be energy
and economically consuming, allocating large scale resources for executing
pipelines tasks. However, some tasks can be executed in the edge, and the
backend can provide just in time resources to ensure ad-hoc and elastic
execution environments.

Our research investigates architectural support, system performance met-
rics, resource management algorithms, and modeling techniques to enable
the design of composable (disaggregated) DCs. The goal is to design an
innovative composable “Just in Time Architecture” for configuring DCs
for Data Science Pipelines (JITA-4DS) and associated resource manage-
ment techniques. DCs utilize a set of flexible building blocks that can be
dynamically and automatically assembled and re-assembled to meet the
dynamic changes in workload’s Service Level Objectives (SLO) of current
and future DC applications. DCs configured using JITA-4DS provide ad-
hoc environments efficiently and effectively meet the continuous changes in
data-driven applications or workloads (e.g., data science pipelines). To assess
disaggregated DC’s, we study how to model and validate their performance in
large-scale settings. Accordingly, the paper shows an experimental simulation
devoted to run data science workloads and determine the best strategies for
scheduling the allocation of resources implemented by JITA-4DS.

The remainder of the paper is organized as follows. Section 2 discusses
related work identifying certain drawbacks and issues we believe remain
open. Section 3 JITA-4DS the just in time edge-based data science pipeline,
execution environment proposed in this paper. Section 4 describes prelim-
inary results regarding the use of JITA-4DS for executing data sciencce
workloads. Finally Section 5 concludes the paper and discusses future work.

2 Related Work

The work introduced in this paper is related to two types of approaches:
(i) disaggregated data centers willing to propose alternatives to one fits all
architectures; and (ii) data science pipelines’ execution platforms relying on
cloud services for running greedy data analytics tasks.

2.1 Disaggregated Data Centers

Disaggregation of IT resources has been proposed as an alternative con-
figuration for data centers. Compared to the monolithic server approach,
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in a disaggregated data center, CPU, memory and storage are separate
resource blades interconnected via a network. The critical enabler for the
disaggregated data center is the network and management software to create
the logical connection of the resources needed by an application [27]. The
industry has started to introduce systems that support a limited disaggregation
capability. For example, the Synergy system by Hewlett Packard Enterprise
(HPE) [5], and the Unified Computing System (UCS) [10] M series servers
by Cisco are two commercial examples of composable infrastructures.

HPE Synergy allows the CPU to be decoupled from the storage and
memory, but components remain physically close together. Liqid [6] provides
proprietary software that dynamically composes physical servers from the
pools of bare metal resources such as compute pool, graphics pool, stor-
age pool, and networking pool. DriveScale’s composable infrastructure [2]
collocates the cluster of diskless compute units and storage units within
a rack. The work introduced in [27] proposes a disaggregated data center
network architecture, with a scheduling algorithm designed for disaggregated
computing.

2.1.1 Data science environments
Data analytics stacks: These environments provide the underlying infrastruc-
ture for managing data, implementing data processing workflows to transform
them, and executing data analytics operations (statistics, data mining, knowl-
edge discovery, computational science processes). For example, the Berkeley
Data Analytics Stack (BDAS) from the AMPLAb project is a multi-layered
architecture that provides tools for virtualizing resources, addressing stor-
age, data processing and querying as underlying tools for big data-aware
applications. AsterixDB from the Asterix project is a full-fledged big data
stack designed as a scalable, open-source Big Data Management System
(BDMS [1]).

Cloud based Data Science Environments: Three families of environments
provide tools to explore, engineer and analyse data collections. They are
notebook oriented environments externalised on the cloud. A notebook is a
JSON document, following a versioned schema, and containing an ordered
list of input/output cells which can contain code, text using Markdown [7]
mathematics, plots and rich media. They provide data labs and environments
with libraries for defining and executing notebooks. Examples of existing
data labs are Kaggle [4] and CoLab [3] from Google, and Azure Notebooks
from Microsoft Azure [8].
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2.1.2 Externalised data programming environments
The data programming environments can be installed locally or externalised
in clouds. Thereby, experiments can become completely and absolutely repli-
cable. Data Labs with Runtime Environments allow data scientists to find and
publish data sets, explore and build models in a web-based data-science envi-
ronment, and work with other data scientists and machine learning engineers.
Data labs offer a public data platform, a cloud-based workbench for data
science, and Artificial Intelligence experiments.

Platforms for custom modelling provide a suite of machine learning tools
allowing developers with little experience to train high-quality models. Tools
are provided as services by commercial cloud providers that include storage,
computing support and environments for training and enacting greedy arti-
ficial intelligence (AI) models. The leading vendors providing this kind of
platforms are Amazon Sage Maker, Azure ML Services, Google ML Engine
and IBM Watson ML Studio.

All except Azure ML Service provide built-in machine learning and
artificial intelligence algorithms, prediction tools like linear regression, and
operation for processing data structures such as tabular data representations.
They also support the most commonly used machine learning and artificial
intelligence libraries and frameworks for executing tasks that can be wrapped
as pipelines.

Machine Learning and Artificial Intelligence Studios give an interac-
tive, visual workspace to build, test, and iterate on analytics models and
develop experiments. An experiment consists of data sets that provide data
to analytical modules connected to construct an analysis model. An exper-
iment can be created from scratch or derived from an existing sample
experiment as a template. Data sets and analysis modules can be drag-and-
dropped onto an interactive canvas, connecting them together to form an
experiment, which can be executed on a machine learning runtime (cloud)
environment.

Machine learning runtime environments provide the tools needed for
executing machine learning workflows, including data stores, interpreters
and runtime services like Spark, Tensorflow and Caffe for executing ana-
lytics operations and models. The most prominent studios are, for example,
Amazon Machine Learning, Microsoft Artificial Intelligence and Machine
Learning Studio, Cloud Auto ML, Data Bricks ML Flow and IBM Watson
ML Builder.

Each provide different families of built-in models such as classification,
regression, clustering, anomaly detection, recommendation and ranking.
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2.1.3 Serverless and edge based approaches
Serverless computing is a computing execution model where the cloud
provider allocates machine resources on demand. Serverless computing does
not hold resources in volatile memory; computing is done in short bursts
with the results persisted to storage. Developers of serverless applications
do not address capacity planning, configuration, management, maintenance,
fault tolerance, or scaling of containers, VMs, or physical servers. Serverless
vendors offer compute runtimes, also known as Function as a Service (FaaS)
platforms, which execute application logic but do not store data. Kubeless
and Fission are two Open Source FaaS platforms which run with Kubernetes.

Amazon AWS Lambda proposes an abstract serverless computing model
supported by additional AWS serverless tools such as AWS Serverless Appli-
cation Model (AWS SAM) Amazon CloudWatch. Google Cloud Platform
created Google Cloud Functions. IBM offers IBM Cloud Functions in public,
IBM Cloud and IBM Cloud Code Engine. Microsoft Azure offers Azure
Functions, offered both in the Azure public cloud or on-premises via Azure
Stack. Cloudflare offers Cloudflare Workers.

Edge computing [14] is a distributed computing paradigm that brings
computation and data storage closer to the sources of data. The increase
of devices at the edge of the network produces a massive amount of data –
storing and using all that data in cloud data centers pushes network bandwidth
requirements to the limit. The aim is to move the computation away from data
centers towards the edge of the network, exploiting smart objects, mobile
phones, or network gateways to perform tasks and provide services on behalf
of the cloud [26]. One definition of edge computing is any computer program
that delivers low latency nearer to the requests [15]. Moving services to
the edge enables content caching, service delivery, persistent data storage
resulting in better response times and transfer rates.

2.1.4 Discussion
Machine learning studios address the analytics and data management divide
with integrated backends for efficient execution of analytics activities
pipelines allocating the necessary infrastructure (CPU, FPGA, GPU, TPU)
and platform (Spark, Tensorflow) services. These descriptions provide insight
to data scientists about the size of the data collections, licences, provenance
as well as data structure and content distributions that can be visually
observed. Curated data collections associated with a search engine can be
shared and used in target data science projects. Data labs offer storage space
often provided by a cloud vendor (e.g., users of CoLab use their google
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drive storage space for data collections, notebooks and results). Execution
environments associate computing resources for executing notebooks that use
curated data collections. Other open and private spaces can be coupled and
used as persistence support for decoupling the enactment environment from
the data persistence support (e.g., data can be initially stored in github and
then uploaded to the data lab for analytics purposes). In both cases available
space depends on the type of subscription to the data lab.

These environments provide resources (CPU, storage and main memory)
for executing data science tasks. These tasks are repetitive, process different
amounts of data and require storage and computing support. Data science
projects have life cycle phases that imply in-house small scale execution
environments, and they can evolve into deployment phases where they can
touch the cloud and the edge resources. Therefore, they require underlying
elastic architectures that can provide resources at different scales. Disaggre-
gated data centers solutions seem promising for them. Our work addresses the
challenges implied when coupling disaggregated solutions with data science
projects.

3 JITA-4DS: Just in time Edge Based Data Science
Pipelines Execution

The Just in Time Architecture for Data Science Pipelines (JITA-4DS), illus-
trated in Figure 1, is a cross-layer management system that is aware of
both the application characteristics and the underlying infrastructures to
break the barriers between applications, middleware/operating system, and

Figure 1 Just in time architecture for data science pipelines – JITA-4DS.



8 G. Vargas-Solar et al.

hardware layers. Vertical integration of these layers is needed for building a
customizable Virtual Data Center (VDC) to meet the dynamically changing
data science pipelines’ requirements such as performance, availability, and
energy consumption.

Our approach to design and development of the proposed JITA is
illustrated in Figure 1.

The overall JITA design approach focuses on the following interrelated
research tasks:

1. JITA middleware to support building VDCs that are optimised for each
application type.

2. Development of a system that will support efficient and dynamic
management of VDC software and hardware building blocks.

ITA-4DS benefits from virtualization techniques in the following aspects.
Virtual Machine (VM) technologies such as VMware [11] and Xen [9]
provide a flexible management platform useful for both the encapsulation
of application execution environments and the aggregation and accounting
of resources consumed by an application [24]. Consequently, VMs have
been widely used to provide a layer that is well-positioned in the hard-
ware/software stack of computer systems. Virtual Machine (VM) technolo-
gies provide fine-grain resource monitoring and control capabilities necessary
for the JITA-4DS approach. Indeed,

JITA-4DS fully exploits the virtualization from the virtual machine (VM)
level into the VDC level (e.g., fine-grain resource monitoring and control
capabilities). JITA-4DS can build a VDC that can meet the application SLO,
such as execution performance and energy consumption to execute data sci-
ence pipelines. The selected VDC, then, is mapped to a set of heterogeneous
computing nodes such as GPPs, GPUs, TPUs, special-purpose units (SPUs)
such as ASICs and FPGAs, along with memory and storage units.

JITA-4DS encourages a novel resource management methodology that
is based on the time dependent value of service (VoS) metric to guide the
assignment of resources to each VDC that maximizes the overall system-
wide VoS metric. To predict the execution time and energy consumption of
each application type, we use statistical and data mining techniques [20–23],
which represent the execution time and energy consumption as a function of
the VDC resources. A complete study of these aspects for JITA-4DS have
been described as a preliminary work in [12].

DS pipelines running on top of JITA-4DS VDC’s apply sets of big data
processing operators to stored data and streams produced by the Internet
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of Things (IoT) farms (see the upper part of Figure 1). In the JITA-4DS
approach, the tasks composing a data science pipeline are executed by
services that implement big data operators. The objective is to execute as
just in time edge-based processes (similar to lambda functions), and they
interact with the VDC underlying services only when the process to execute
needs more resources. This means that services are running on the edge, on
processing entities with different computing and storage capacities. They can
totally or partially execute their tasks on the edge and/or on the VDC.

This, in turn, creates the need for novel resource management approaches
in streaming-based data science pipelines (see experimental discussion in
Section 4). These approaches should support and satisfy the data management
strategy and stream exchange model between producers and consumers,
invoke tasks with the underlying exchange model constraints on the compute
and storage resources in the suitable form and modality and meet multi-
objective competing performance goals. Next, we describe the architecture
of big data operators, and we show how they interact with the VDC. Later we
will introduce our resource management approach for JITA-4DS.

The data management strategy stream exchange model. thanks to the
following interrelated research thrusts: (1) JITA Design Approach, and
(2) Modeling, Analysis, and Simulation of JITA.

3.1 Big Data/Stream producing and processing services

We assume that services that run on the edge produce and process data in
batch or as streams. Data and stream processing services implement operators
to support the analysis (machine learning, statistics, aggregation, AI) and
visualise big data/streams produced in IoT environments. As shown in Fig-
ure 1, data and stream producing services residing on edge rely on underlying
message-based communication layers for transmitting them to processing and
storage services. These services can reside on edge or a VDC. A data/stream
service implements simple or complex analytics big data operations (e.g.,
fetch, sliding window, average, etc.). Figure 2 shows the general architecture
of a streaming service.

A service consists of three key components, Buffer Manager, Fetch and
Sink, and OperatorLogic. The service logic is based on a scheduler that
ensures the recurrence rate in which the analytics operation implemented
by the service is executed. Stream/data processing is based on unlimited
consumption of data ensured by the component Fetch that works if streams
are notified by a producer. This specification is contained in the logic of
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Figure 2 Architecture of a Big data/stream processing service.

the components OperatorLogic and Fetch. As shown in the figure, service
communicates asynchronously with other micro-services using a message
oriented middleware. As data is produced, the service fetches and copies the
data to an internal buffer. Then, depending on its logic, it applies a processing
algorithm and sends the data to the services connected to it. The general
architecture of a service is specialized in concrete services implementing the
most popular aggregation operations. These services can process data and
streams on edge or a VDC.

These services are able to:

– process data and streams on the edge or on a VDC on-line using tree
window based strategies [17, 19] (tumbling, sliding and landmark) well
known in the stream processing systems domain;

– combine stream histories with continuous flows of streams of the same
type (the average number of connections to Internet by Bob of the last
month until the next hour).

Since RAM assigned to a service might be limited, and in consequence its
buffer, every service implements a data management strategy by collaborating
with the communication middleware and with the VDC storage services to
exploit buffer space, avoiding losing data, and processing and generating
results on time. Big stream/data operators combine stream processing and
storage techniques tuned depending on the number of things producing
streams, the pace at which they produce them, and the physical computing
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resources available to process them online (on edge and VDC) and deliver
them to the consumers (other services). Stores are distributively installed on
edge and on the VDC.

Services adopt the tuple oriented data model as stream exchange model
with the IoT environment producing streams and the services. From a service
point of view, a stream is a series of attribute value couples where values
are of atomic types (integer, string, char, float). The tuples are timestamped,
where we assume that one of the attributes of the tuple corresponds to its
timestamp. The timestamp represents the time of arrival of the stream to
the communication infrastructure. Data processing tasks navigate through the
structure of the tuple for accessing attribute values.

3.2 Interval Oriented Storage Support for Consuming Streams

Big stream/data operators combine stream processing and storage techniques
tuned depending on the number of things producing streams, the pace at
which they produce them, and the physical computing resources available
for processing them on-line (on edge and VDC) and delivering them to con-
sumers (other services). A service that aggregates historical data and streams
includes a component named HistoricFetch. The component HistoricFetch
is responsible for performing a one-shot query for retrieving stored data
according to an input query. Stores are distributively installed on edge and
on the VDC. As described above, we have implemented a general/abstract
micro-service that contains a Fetch and Sink micro-services. The historical
fetch component has been specialized to interact with two stores that can be
distributedly installed on the edge and on the VDC.

– InfluxDB: a time series system accepting temporal queries, useful for
computing time tagged tuples.

– Cassandra: a key-value store that provides non-temporal read/write
operations that might be interesting for storing huge quantities of data.

3.3 Edge Based Data Science (DS) Pipelines

The DS Pipelines are expressed by a series of data processing operations
applied to streams/data stemming from things, stores or services. A DS
pipeline is implemented by mashing up services implementing operators
based on a composition operation that connects them by expressing a data
flow (IN/OUT data). Aggregation (min, max, mean) and analytics (k-means,
linear regression, CNN) services can be composed with temporal windowing
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tuples
(stream)

historical 
tuples

Figure 3 Services architecture for analyzing society connectivity with the neubot dataset.

services (landmark, sliding) that receive input data from storage support or a
continuous data producer for instance, a thing. The connectors are Fetch, and
Sink services that determine the way services exchange data from/to things,
storage systems, or other services (on-demand or continuous). Services can
be hybrid (edge and VDC) services depending on the number of underlying
services (computing, memory, storage) required. To illustrate the use of a
JITA-4DS, we introduce next a use case that makes full use of edge and VDC
services configured ad-hoc for the analysis requirements.

3.4 Use Case: Analysing the Connectivity of a Connected
Society

The experiment scenario illustrated in Figure 3 aims at analysing the
connectivity of the connected society. The data is used then to answer
queries such as:

– Connection speed of one internet provider: Am I receiving the network
speed I am paying for all the time?

– Internet availability with different Internet providers: Which are the
periods of the day in which I can upload/download files at the highest
speed using different network providers?

The data set used was produced in the context of the Neubot project.
Neubot is a project on measuring the Internet from the edges by the Nexa
Center for Internet and Society at Politecnico di Torino (https://www.ne
ubot.org/). It consists of network tests (e.g., download/upload speed over

https://www.neubot.org/
https://www.neubot.org/
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HTTP) realized by different users in different locations using an application
that measures the network service quality delivered by different Internet
connection types. The Neubot data collection was previously used in the
context of the FP7 project S2EUNET. The type of queries implemented as
data science pipelines were the following:

EVERY 60 seconds compute the max value of download_speed

of the last 3 minutes

FROM cassandra database neubot series speedtests and streaming

RabbitMQ queue neubotspeed

EVERY 5 minutes compute the mean of the download_speed

of the last 120 days

FROM cassandra database neubot series speedtests and streaming

rabbitmq queue neubotspeed

EVERY 30 seconds compute the mean value of upload_speed

starting 10 days ago

FROM cassandra database neubot series speedtests and streaming

rabbitmq queue neubotspeed

We built an IoT farm for deploying our experiment and implemented
a distributed version of the IoT environment on a clustered version of
RabbitMQ. This setting enabled us to address a scaleup setting regarding
several data producers (things) deployed on edge. We installed aggregation
operators as services distributed on the things and an edged execution envi-
ronment deployed on servers deployed in different devices. The challenge
is to consume streams, create a history of connectivity information, and
then combine these voluminous histories with new streams to answer the
queries. Depending on the observation window size, the services access the
observations stored as post-mortem data sets from stores at the VDC level
and connect to online producers currently observing their connections (on
edge). For example, the second query observes a window of 10 days size.
Our services could deal with histories produced in windows of size 10 days or
even 120 days. Such massive histories could be combined with recent streams
and produce reasonable response times (order of seconds).

4 Runtime Emulation Environment

To conduct experiments on the DS workloads, we configure a runtime envi-
ronment that models the flexible heterogeneous resource pool and schedulers.
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This environment allows us sweep across the design search space of varying
resource combinations and scheduling policies. For this purpose, we leverage
the Compiler-Integrated Runtime environment [25] that is an open-source
Linux based user-space runtime framework.

The integrated compiler in this environment converts the applications into
a Directed Acyclic Graph (DAG) representation, where

– A node is called a task representing a function used in the application
domain (e.g., k-means).

– An edge of the DAG represents a predecessor-successor dependency
between the task nodes of an application.

The compiler then generates a “flexible” binary structure for the runtime to
invoke each DAG node on any of the available compute resources.

The runtime executes as a daemon process and consists of three key
components:

– Application manager: parses the DAG and prepares handles for each
kernel in the “flexible-binary” structure.

– Workload manager: schedules the tasks of applications on available
PEs based on the user-defined scheduling policy and manages the data
transfers to and from the PEs.

– Resource manager: monitors the state of the PEs in the target hardware
configuration and maintains coordination with the workload manager.

Using this runtime environment, we modelled a hierarchical resource pool,
described next.

4.1 Hierarchical Resource Pool: A JITA4-DS Instance

As shown in Figure 4, the hierarchical resource pool consists of two layers-
the frontend, and the backend, with heterogeneous computing resources.

The frontend represents the low-power computing resources present at
the edge, such as Nvidia Volta GPU and ARM CPU cores.

The backend represents the high-performance compute resources such as
Intel Xeon CPU cores, Nvidia Tesla V100 GPUs and Xilinx Alveo FPGA
platforms.

The runtime is launched as a daemon process on one of the Xeon CPU
cores on the backend platform and provided with the list of available frontend
and backend resources. We assume that the user is submitting a job to the
server (backend). The data flow of this job starts on the edge (frontend), where
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Figure 4 Diagram of Hierarchical architecture model using our runtime environment.

real-time data from the sensors are captured. This raw data are processed
through the user-defined DS workflow.

Job submission involves providing the application task flow DAG gener-
ated from the DS workflow and the flexible binaries to enable execution on
the resources of the two-layer architecture. This DAG and flexible binary
file are obtained by compiling the source code of DS workflow through
the runtime environment-integrated compiler toolchain. At this stage, the
runtime manager determines the mapping of individual tasks on the DAG
to processing elements based on the state of computing resources at both the
frontend (edge) and backend (server).

This application submission process allows users to submit any desired
number of application instances to the runtime, either all instances submitted
at once or submitted with a periodic delay between each instance.

Upon receiving a job consisting of several tasks at the runtime, and after
raw data from the edge sensors are captured, the runtime can schedule each
task on either one of the heterogeneous resources available at the backend
platform. This task involves requesting input data from and sending output
data to the edge device or decide to schedule the task on one of the edge
resources, which alleviates the overhead of communicating with the backend
and exchanging necessary input-output data.

To enable the runtime schedulers in making an informed decision, each
task in the DAG file is assigned an expected execution time on the supported
compute platforms based on historical data. The expected execution time of
the tasks on the frontend resources denotes only the execution time, whereas,
for backend resources, this time consists of both execution time and data
communication overhead.
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4.2 Executing Data Science Workloads

We use the Data Science (DS) workloads as the application to run on the
hierarchical architecture for our experiments. The DS workload (see Fig-
ure 5) consists of 16 task nodes, including: frequently used data science
functions such as SQL Transform, data summarization, column selection
in dataset, filter-based feature selection, k-means clustering, time series
anomaly detection, sweep clustering, train clustering model etc.

We assume that there is historical execution time data for each task
node on each of the compute resources modeled. To further consider the
communication cost, we assume the data rate of the communication channel
to be 12 Mbps [16] and calculate the data transfer overhead by using the
volume of input and output data of each task that needs to be transferred.

With the experimental setup, we can conduct elaborate experiments to get
answers to some crucial questions. For example,

RQ1 Is it beneficial to hand off all the tasks of given workloads to the backend
resources.

RQ2 Should some of the tasks be assigned to the frontend resources instead?
RQ3 Can the communication cost of executing some tasks on the backend

resources grow large enough for the runtime to decide to run it on a
frontend resource?

In order to find these answers, we conduct two experiments on the
hierarchical architecture model in our runtime environment.

Figure 5 Data science workload.
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4.2.1 Experiment 1: Sweeping across resource pool
configurations

In the first experiment, we fix the scheduling policy to Earliest Finish Time
(EFT) and sweep across the combinatorial search space of resource pool con-
figurations. Each resource pool configuration refers to a unique combination
of front and backend heterogeneous resources with a specific count of each
resource type.

For our experiment, we vary the number of ARM cores and Xeon CPUs
between 1 to 3 each, whereas we keep the number of Volta GPUs, Tesla V100
GPUs and Xilinx Alveo FPGAs fixed at 1. On each configuration, we run 100
instances of the DS workload submitted to the runtime at once. Upon receiv-
ing the execution time of the DS workload on all the tested configurations,
we identify the configuration that gives the minimum execution time. Once
this configuration is identified, we use it to conduct a second experiment.

The result of experiment 1 is presented in Figure 6. This bar chart plots
varying resource pool configurations along X-axis and their corresponding
execution times for processing 100 instances of DS-workflow along Y-
axis. The first 9 configurations (from left) include 1 Nvidia Volta GPU (at
frontend), 1 Nvidia Tesla GPU and 1 Xilinx Alveo FPGA (at backend),
along with the varying number of ARM and Xeon cores denoted by the
label of the barplot. In the remaining two configurations, the Edge only

Figure 6 Execution time of 100 DS workflow instances for different resource pool config-
urations. First 9 columns of barchart also consist of 1 Nvidia Volta GPU (frontend), 1 Nvidia
Tesla V100 GPU (backend) and 1 Xilinx Alveo FPGA (backend). The 10th configuration uses
3 ARM CPUs and 1 Volta GPU. The 11th configuration uses 3 Xeon CPUs, 1 Nvidia Tesla
V100 GPU, and 1 Xilinx Alveo FPGA.
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configuration consists of 3 ARM CPU cores and 1 Nvidia Volta GPU only,
and executes all of the DS workload instances at the frontend. The Server
only configuration consists of 3 Xeon CPU cores, 1 Nvidia Tesla GPU and 1
Xilinx Alveo FPGA, and executes the entire application at the backend after
collecting input data from frontend. In this plot, the two largest execution
times are resulted by the Edge only or Server only configurations, whereas the
remaining configurations consisting of a mixture of edge and server resources
demonstrate lower execution times. The Edge only configuration consists of
low-power compute resources, which cause the overall workload execution
on the edge slower. On the other hand, the Server only configuration relies
on the frontend to send larger amount of input data at the very beginning
of workload execution, which increases the execution time significantly.
Another observation we make here is that, with increasing number of avail-
able parallel resources (CPU, GPU or FPGA), the execution time reduces.
Therefore, the lowest execution time is delivered by the configuration which
holds the maximum number of resources of all types considered in this
experiment (3 ARM, 1 Volta, 3 Xeon, 1 Tesla, 1 Alveo). Hence we choose
this configuration to be used in conducting the second experiment.

Depending on the above observations, we can answer the research
questions as follows:

RQ1 In terms of execution time, it is not beneficial to hand off all the tasks
of a given workload to the backend resources. The initial data transfer
overhead of large raw data from frontend to backend increases the exe-
cution time significantly, compared to if the data was to be used to run all
the tasks at the frontend. Additionally, it is not beneficial to execute the
entire workload on the frontend, as the frontend is constrained in terms
of computation power. Hence, a mixture of both frontend and backend
resources can be more beneficial.

RQ2 Yes, to reduce the execution time, the data transfer overhead should be
reduced, therefore some of the tasks should be executed at the frontend.

RQ3 Yes, in some scenarios the communication cost of transferring the data
from frontend to backend might grow large enough for the runtime
to decide to run those tasks on the frontend. This can be seen in the
configurations with a mixture of frontend and backend resources. In
these configurations the runtime decides to offload some tasks onto the
frontend resources, which eventually reduces the execution time of the
workload significantly (by upto 57%) compared to running the entire
workload on backend.
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4.2.2 Experiment 2: Sweeping across scheduling policies
In this experiment, we sweep across different scheduling policies by running
100 instances of the DS workload submitted at once, using three different
scheduling policies – ‘EFT’, ‘Earliest Task First (ETF)’, and ‘Round Robin
(RR)’. The EFT and ETF are sophisticated scheduling policies that take into
account the hierarchy of the resource pool, expected execution time and data
communication overhead of the underlying tasks in order to make scheduling
decisions, while the RR is a simple scheduler that assigns tasks to resources in
a round robin manner. We aim to identify the scheduling policy that gives the
lowest execution time and highest mean resource utilization on the optimal
configuration from experiment 1.

This configuration includes 3 ARM CPU cores and 1 Nvidia Volta GPU at
the frontend, along with 3 Xeon CPU cores, 1 Nvidia Tesla GPU and 1 Xilinx
Alveo FPGA at the backend. We identify the resource utilization as the
fraction of application execution time during which a particular resource is
busy executing tasks. We take the mean of resource utilization of all resources
to obtain the mean resource utilization.

Figure 7(a) and (b) presents bar plots with the schedulers plotted along
X-axis, and the execution time and mean resource utilization plotted along
Y-axis respectively. Both these figures show that ETF and EFT schedulers
perform very closely in terms of execution time and mean resource utiliza-
tion. From Figure 7(a), we notice that both ETF and EFT schedulers reduce
the execution time by around 57% compared to the RR scheduler. Further-
more, looking at Figure 7(b), we notice that both ETF and EFT schedulers
increase the mean resource utilization by upto around 21% compared to the

(a) (b)

Figure 7 Resource pool configuration: 3 ARM CPU cores, 1 Nvidia Volta GPU (Frontend),
3 Xeon CPU Cores, 1 Nvidia Tesla GPU and 1 Xilinx Alveo FPGA (Backend). Using EFT,
ETF and RR schedulers, (a) presents execution time of 100 DS-workflow jobs, and (b) presents
average resource utilization.
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RR scheduler. These results demonstrate that the runtime using hierarchy
aware schedulers can significantly improve the execution time and mean
resource utilization compared to the simpler scheduling heuristics.

4.2.3 Discussion
In the JITA-4DS environment, the resource management problem can be
more complex and requires the design of new heuristics. The computing
resources allocated to the VDC for a given class of applications are a hetero-
geneous mixture of different processing devices (different CPUs, different
GPUs, different accelerators, etc.) with various execution performance and
energy consumption characteristics. They depend on each of the specific
applications being executed by that VDC. Our future work will consider
this variables in the decision making process. For example, several aspects
remain open, like the ad-hoc design of the JITA-4DS resource management
system for a VDC built from a fixed set of components. The design of a JITA-
4DS instance is determined by the execution time and energy consumption
cost, and resources requirements of a data science pipeline. Therefore, it
is necessary to dynamically identify the configuration choices for a given
pipeline and define VDC resources’ effective resource allocation strategies. In
general, for determining the dynamic resources requirements of data science
pipelines at runtime, it is necessary to consider two challenges. First, calculate
a VDC-wide Value of Service (VoS) for a given interval of time, weigh
individual values of various instances of pipelines. We have started providing
a study on VoS for JITA-4DS [12], we will integrate these observations
in further experiments on the current emulation. Second, propose objective
functions that can guide heuristics to operate in the large search space of
resource configurations. The objective is to derive possible adequate alloca-
tions of the shared and fixed VDC resources for several instances of data
science pipelines. We have observed that decisions must be made regarding
the resource management system for JITA-4DS to divide the shared, fixed
resource pool across different VDCs to maximize the overall system-wide
VoS. All of the above single VDC challenges still apply and interact across
VDCs. Additional problems, such as determining when resources should be
reallocated across VDCs and do so in an online fashion, must be addressed.
This includes the methodologies for reassigning resources that do not inter-
fere with currently executing applications on different VDCs affected by the
changes and measuring and accounting for the overhead of establishing new
VDC configurations.
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5 Conclusion and Future Work

This paper introduced JITA-4DS, a virtualized architecture that provides a
disaggregated data center solution ad-hoc for executing DS pipelines requir-
ing elastic access to resources. DS pipelines process big streams and data
coordinating operators implemented by services deployed on edge. Given that
operators can implement greedy tasks with computing and storage require-
ments beyond those residing on edge, they interact with VDC services. We
have set the first simulation setting to study resources delivery in JITA-4DS.

We are currently addressing challenges of VDCs management in simpler
environments, on cloud resource management heuristics, big data analysis,
and data mining for performance prediction. We give the first experimental
results of these aspects. To simulate, evaluate, analyze, and compare dif-
ferent heuristics, we will further build simulators for simpler environments
and combine open-source simulators for different levels of the JITA-4DS
hierarchy. We are currently defining a “benchmark” with different types of
data science workloads that share data collections and functions and study
complex resource allocation patterns.
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