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Abstract

With recent increases in the number of network-connected devices, the num-
ber of edge computing services that provide similar functions has increased.
Therefore, it is important to recommend an optimal edge computing service,
based on quality-of-service (QoS). However, in the real world, there is a cold-
start problem in QoS data: highly sparse invocation. Therefore, it is difficult
to recommend a suitable service to the user. Deep learning techniques were
applied to address this problem, or context information was used to extract
deep features between users and services. However, edge computing environ-
ment has not been considered in previous studies. Our goal is to predict the
QoS values in real edge computing environments with improved accuracy.
To this end, we propose a GAIN-QoS technique. It clusters services based on
their location information, calculates the distance between services and users
in each cluster, and brings the QoS values of users within a certain distance.
We apply a Generative Adversarial Imputation Nets (GAIN) model and
perform QoS prediction based on this reconstructed user service invocation
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matrix. When the density is low, GAIN-QoS shows superior performance
to other techniques. In addition, the distance between the service and user
slightly affects performance. Thus, compared to other methods, the proposed
method can significantly improve the accuracy of QoS prediction for edge
computing, which suffers from cold-start problem.

Keywords: Edge computing, Service recommendation, QoS prediction,
Cold-start problem.

1 Introduction

Edge computing provides cloud services by connecting users and nearby
edge networks [1]. The main characteristic of edge computing is that it
significantly reduces latency; therefore, the response time is fast, and network
information can be accessed in real-time [2].

As the edge computing market grows, many service providers are offering
various services with identical or similar functions. Therefore, when users
pass through the edges of different networks, the most suitable service needs
to be selected from many similar services. One of the main selection criteria
is quality-of-service (QoS) [3]. QoS is defined as a set of quality properties
that affect service quality and includes properties such as response time,
accessibility, and throughput [4].

QoS allows users to distinguish the degree of quality between different
suitable services. In reality, it is difficult to obtain the QoS values of all
service candidates. Because not all users use all services, there are almost
inevitably missing QoS values; this is referred to as a cold-start problem, and
as presented in Table 1. The values filled in the table indicate the response
time, and the ‘·’ indicates a missing response time for the services. If QoS
values are missing, the corresponding user-service pairs cannot be used for
service recommendations. Therefore, it is necessary to predict the missing
QoS values for optimal service recommendations for the user.

Various methods have been proposed to predict QoS. QoS predic-
tion methods are grouped into Collaborative Filtering (CF) and content-
based methods [5]. CF shows the best performance and is widely used.
There are two CF categories: neighborhood-based CF and model-based CF.
Neighborhood-based CF predicts missing QoS values using similar users or
similar services in the neighborhood. Wang et al. [6] predicted QoS values by
applying neighborhood-based CF after combining Web service QoS data and
the Shanghai telecom dataset.
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Table 1 Example of user service invocation matrix
Service1 Service2 Service3 Service4 Service5

User1 0.32 · · 0.17 ·
User2 · 0.71 0.2 · ·
User3 0.12 0.23 · · ·
User4 1.56 · · · 0.45
User5 · 0.9 · · ·

Figure 1 Service location information of Web service QoS data.

Model-based CF learns latent features via the inner product of the user
latent vector and service latent vector in service invocation: the QoS value
is then predicted using this. A representative method is Matrix Factorization
(MF). It has been demonstrated that MF outperforms the neighborhood-based
CF method [7–9]. However, MF has a limitation in that it is challenging to
learn deep features by only learning the linear relationship between users and
services [7, 10]. Yin et al. [11] presented an approach for performing MF first
and then applying autoencoder to learn deep features. Yin et al. [12] applied
a Convolutional Neural Network (CNN) to learn deep features and learned
deep features.

In the edge computing QoS prediction studies, the real environment of
edge computing has not been considered. Because there are no public QoS
data in edge computing, the WSDream [13] dataset is used in the edge
computing QoS research.

Figure 1 shows the service locations of the WSDream dataset. The ser-
vices are spread across the world, indicating that the environment of edge
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computing should be considered when using this dataset for edge computing
QoS prediction studies. Yin et al. [11] emphasized that 91% of the WSDream
data had a response time of less than 2s. However, it is difficult to say
that the response time of less than 2 seconds reflects the edge computing
environment.

We propose a novel method referred to as GAIN-QoS to build a real edge
computing environment and improve the QoS prediction performance in this
environment to address these problems. In this study, the edge computing
environment is premised on the fact that the edge server must be adjacent
to the user based on the geographical distance. Therefore, we first cluster
services in adjacent locations to build an edge computing environment. Then,
by calculating the distance between the service of each cluster and the users
who called the service, the QoS values of users within the adjacent distance,
i.e., 0.3 km, 0.5 km, 1 km, 2 km, 5 km, 10 km, 20 km, 50 km and 100 km
are obtained. As a result, a user service invocation matrix that reflects the
environment of edge computing is created for each cluster.

To perform QoS prediction, we apply Generative Adversarial Imputation
Nets (GAIN) [14], which addresses missing values among deep learning
models. The GAIN can generate both numerical and categorical data. It is
superior to other techniques when the ratio of missing values is high, and
the amount of data is small [15]. Considering that QoS data are sparse, i.e.,
there is a cold-start problem [4], it is a suitable model for QoS research. We
train the GAIN model using the reconstructed user service invocation matrix
and predict the missing QoS values. Consequently, our method outperform
related methods at lower density.

The contributions of this paper are as follows.
• To the best of our knowledge, this is the first study that considers both the

edge computing environment and the cold-start problem in predicting
the edge computing QoS. The main characteristic of the edge computing
environment is the close distance between the user and the edge server.
First, we cluster the services based on the location information of the
service. Subsequently, the QoS information of the user who invoked the
corresponding service is obtained, and a user service invocation matrix
is created for each cluster.

• We investigated whether the GAIN model can be successfully applied
in an edge computing QoS study. So far, there has been no case of
applying the GAIN model to edge computing QoS prediction studies.
The GAIN model is a deep learning model that generates high-quality
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numerical data even when the missing rate is high and the data are
small. Considering that QoS data are sparse, we experimentally confirm
whether GAIN is suitable for edge computing QoS prediction.

• To verify the performance of GAIN-QoS, we compared it with recent
related techniques in QoS studies.

• We use real-world datasets to demonstrate that our technique has
superior performance.

The remainder of this paper is organized as follows. In Section 2, we
present the related work, and Section 3 introduces the proposed GAIN-QoS.
Section 4 describes our experimental setting, and Section 5 presents the
experimental results and analysis. Section 6 discusses in detail, and Section 7
describes the threats to the validity of our study. Finally, in Section 8, we
conclude the paper and discuss future work.

2 Related Work

In this section, we mainly introduce related work on QoS prediction. The
primary assumption of CF is that users A and B show similar QoS in
other services if they have similar historical QoS data (e.g., throughput and
response time) [16]. CF can be grouped into neighborhood-based CFs and
model-based CF.

The neighborhood-based CF calculates the similarity of a user or service
and uses similar user or service values to predict the missing QoS value. Shao
et al. [17] proposed a user-based CF that utilizes a user QoS data to predict the
QoS value. However, these neighborhood-based CF underperform in sparse
data [18]. A key feature of QoS data is that the user service invocation matrix
is very sparse because the user tends to use only a few services.

Model-based CF provides a solution to the cold-start problem of
neighborhood-based CF, which is challenging with highly sparse data. Pre-
vious studies have shown that model-based CF performance is superior to
that of neighborhood-based CF [7–9]. Model-based CF uses models, such
as clustering [19], MF, and machine learning techniques. MF is known for
outperforming in QoS prediction. Yang et al. [20] proposed a location-based
MF technique that uses the context information of users and services as well
as the QoS information of users and services. Chen et al. [21] combined
the knowledge of geographical neighbors with MF to solve the cold start
problem. They indicated that users and web services had a positive correlation
with geographic neighbors. Ryu et al. [8] proposed a location-based matrix
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factorization using a preference propagation method (LMF-PP) to address the
cold-start problem.

Furthermore, several researchers have recently constructed QoS predic-
tion models for edge computing. Yin et al. [11] combined an autoencoder
with MF to learn a nonlinear representation of users and services to alleviate
the cold-start problem. They highlighted that autoencoder has difficulty in
learning local features, which can be addressed by taking advantage of the
ability of local features learning in neighborhood-based CF. Yin et al. [12]
proposed a new MF model with deep features learning, which incorporates
a CNN. Yin et al. [5] pointed out that there have been few attempts to build
a neural network in edge computing QoS prediction studies, and the model
can suffer from overfitting if the sparsity of the data is high. They proposed
a denoising autoencoder with a fuzzy clustering (DAFC) technique that uses
contextual information to solve overfitting problems. DAFC has shown that
it outperforms other methods at various training set densities and can solve
the overfitting problem. Wang et al. [6] proposed a service recommendation
approach based on collaborative filtering and mixed QoS data, and edge
server data to represent user mobility.

Although web service data and edge computing data are different, many
existing service recommendation approaches for edge computing validate the
feasibility and effectiveness of various QoS methods with web service data. A
difference between edge computing and web services is the physical location
of users and services. In edge computing, users and servers are located nearby.
Because there is no edge computing QoS data, we cluster services based on
the location information and reconstruct the user service invocation matrix
from web service data based on distance.

In this study, we propose a method to solve the cold-start problem in a
real edge computing environment.

3 Our Approach: GAIN-QoS

In this section, we describe how we build edge computing data and pre-
dict QoS using GAIN. Our approach mainly consists of two parts, that is,
location-based data reconstruction and GAIN-QoS, as shown in Figure 2.
The location-based data reconstruction part reflects the environment of edge
computing and the result of this step is the reconstructed QoS matrix. How-
ever, this reconstructed QoS matrix still has a cold-start problem. Therefore,
the GAIN-QoS solves the cold-start problem. We describe our approach in
detail in sub-sections 3.1 and 3.2.



GAIN-QoS: A Novel QoS Prediction Model for Edge Computing 33

Figure 2 Proposed overall prediction architecture.

3.1 Location-based Data Reconstruction

We propose location-based data reconstruction to create an edge computing
environment. It is divided into two steps k-means clustering with service
location and user service invocation matrix reconstruction. The pseudocode
is presented in Algorithm 1.

In the first step, the services are clustered using the location information
of the services (line 1). The clustering algorithm provides a method for
searching for hidden patterns in data by classifying data through similarity
calculations [22]. In particular, k-means clustering has proven to be effective
in producing good clustering results [23, 24]. In the proposed approach, the
k-means clustering algorithm is used to group services in adjacent locations;
i.e., the web service QoS data is divided into k sets of services through
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Algorithm 1 Pseudo-code of location-based reconstruction
Input:

QoS data Q
Service Location Set S
User Location Set U
The number of clusters K

Output: Reconstructed QoS Matrix Q̃
1: (1) k-means clustering with service location
2: initialize centroid ci ∈ (c1, . . . , ck) of each cluster
3: while no change do
4: for i = 1, . . . , N do
5: zi ← argminkDis(si, ck)
6: end for
7: for k = 1, . . . ,K do
8: ck ← mean({si : zi = k})
9: end for
10: end while
11: (2) user service invocation matrix reconstruction
12: for k = 1, . . . ,K do
13: for i = 1, . . . , n do
14: xi ← {si : zi = k}
15: for j = 1, . . . ,m do
16: ej ← {uj : Dis(uj , xi) = k}
17: end for
18: end for
19: Q̃k ← Q({si : zi = k AND ui : ei = k})
20: end for

k-means clustering for reconstruction to suit the edge computing environment
(lines 2–10). The objective functions of the k-means clustering are as follows.

J = argmin
k∑

j=1

n∑
i=1

Dis(xi, cj) (1)

Dis(xi, cj) = 2r arcsin

×

√
sin2

(
clai − xlai

2

)
+ cos(xlai )cos(c

la
i )sin

2

(
cloi − xloi

2

)
(2)

where k is the number of clusters, n is the number of services, and Dis(xi, cj)
is a function that calculates the distance between the i-th sample xi and j-th
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Table 2 Number of users and services by distance
Distance (km)

0.3 0.5 1 2 5 10 20 50 100
User 11 11 14 18 27 33 35 41 49
Service 647

centroid point cj of the cluster (lines 4–6). The distance function Dis(xi, cj)
calculates the haversine distance, i.e., the distance between two points on
the surface of a sphere. In the formula, la represents latitude, and lo repre-
sents longitude. Then, we update the centroid with the average of services
belonging to each cluster (lines 7–9).

The number of clusters, k, was set to 30 (the reason for this is explained
in the Discussion). When services are grouped into 30 clusters, one cluster
includes at least 9 services, and 29 clusters include 10 or more services.

In the second step, we reconstruct the user service invocation matrix. To
do this, we get the services belonging to each cluster (line 14). Then, we
calculate the distance between the services in each cluster and the user and
obtain the QoS value of the user within a certain distance, that is, 0.3 km,
0.5 km, 1 km, 2 km, 5 km, 10 km, 20 km, 50 km and 100 km (lines 15–16).
The formula for calculating the distance between the service and user is as
shown in (2). The WSDream dataset contains the user latitude and longitude
information. Subsequently, it creates a user service invocation matrix for each
cluster (line 19). For example, the 0th cluster has 614 services. It can filter
614 services and users within 0.5 km and to obtain IDs of filtered users.
Accordingly, we can obtain the QoS value of the user who uses the service
and creates a user service invocation metric. This matrix reflects the edge
computing environment. Table 2 presents the number of services and users
included in the third cluster; the number of users increases with distance.
However, in some clusters, the number of users is the same, regardless of
distance.

3.2 GAIN-QoS

GAIN-QoS is the step for solving the cold-start problem and uses the GAIN
model to fill in the missing QoS values. GAIN [14] is proposed to solve the
missing values of tabular data while generating categorical and numerical
data and adopting the vanilla-GAN architecture [25].

Algorithm 2 is the pseudo-code of GAIN. Assuming that data X contains
missing values, the Generator(G) of GAIN receives as inputs the data x̃, Mask
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Algorithm 2 Pseudo-code of GAIN
Input:

Input data X
Missing data X̃
Mask matrix M
Random noise Z
Hint matrix H
α: hyper-parameter of loss function
κ: mini-batch size

Output: Estimated mask matrix X̂

1: while training loss has not converged do
2: Draw κ samples from the data {(x̃(i), m(i))}κi=1, of (X̃ , M)
3: Draw κ i.i.d. samples, {(z(i))}κi=1, of Z
4: Draw κ i.i.d. samples, {(h(i))}κi=1, of H
5: (1) Discriminator optimization
6: for i = 1, . . . , κ do
7: x(i)← G(x̃(i),m(i), z(i))
8: x̂(i)← m(i)

⊙
x̃(i) + (1−m(i))

⊙
x(i)

9: end for
10: update D using Stochastic Gradient Descent (SGD)
11: ∇D −

∑κ
i=1 LD(m(i), D(x̂(i), h(i)))

12: (2) Generator optimization
13: Update G using SGD (for fixed D)
14: ∇G

∑κ
i=1 LG(m(i), D(x̂(i), h(i))) + αLM (x(i), x̃(i))

15: end while

M, where the location of the missing value in X is indicated, and random noise
(lines 2–4). X̃ is data whereby the missing value in X is replaced with 0 and
is inserted with noise. Generated matrix X is created through G (line 7). In
the imputed matrix X̂ , the value ofX is filled in the missing value (M = 0) in
the data, and the corresponding value is filled in the same area as the original
value (line 8). The Discriminator (D) receives some information with X̂ and
M as inputs. Some information on M is expressed as a hint matrix, which
serves as a guideline when D learns. The output of D is estimated mask
matrix M̂ with cross-entropy loss applied. D aims to better distinguish the
values of the original and imputed values (lines 10–11). In addition, G aims
to generate the same imputed value as the original value, i.e., M̂ (the output
of D) becomes 1 (lines 12–14). The loss of each network is expressed as
follows.

LD(mi, m̂l) =
∑

[mi log m̂l + (1−mi) log(1− m̂l)] (3)
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LG(Mi, M̂l) = −
∑

(1−mi) log(m̂l) (4)

LM (x(i), x̃(i)) =
d∑

i=1

mi(−x(i) log(x̃(i))) (5)

Compared to other techniques, such as the Auto-Encoder [26], this model
shows superior performance in terms of RMSE. In particular, the value
generated by the GAIN model (imputed value) showed an experimental result
that was consistent with the original value. In addition, it shows superior
performance even when the missing value rate is high and the amount of data
is relatively small [15, 27]. This means that the quality of the data generated
through the GAIN model is excellent. Considering that QoS data are sparse
in reality, the GAIN model is suitable for QoS prediction research.

Subsequently, we measured the performance by comparing the generated
QoS value with the original QoS value. Finally, the Mean Absolute Error
(MAE) and Root Mean Square Error (RMSE) indicators were used to check
the prediction performance.

4 Experimental Setup

In this section, we focus on the research question, dataset, evaluation metrics,
experimental setting, and performance comparison.

4.1 Research Question

To effectively evaluate our proposed method, we design the following three
research questions:

• RQ1. How well does GAIN-QoS predict QoS in the edge computing
environment?

• RQ2. Is there a difference in QoS prediction performance by distance?
• RQ3. What factors affect the performance of the GAIN-QoS model in

an edge computing environment?

4.2 Dataset

We used the WSDream [13] dataset to verify the QoS prediction perfor-
mance of the proposed technique. The public WSDream dataset contains
339 users and 5,825 service information, with a total of 1,974,675 invocation
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records. These data have two QoS attributes, response time and throughput.
Because response time data were used in previous studies, we conducted an
experiment based on these data. In addition, this dataset includes latitude, lon-
gitude, ID, and country information of services and users; we used latitude,
longitude, and ID information.

4.3 Evaluation Metrics

MAE and RMSE were used to evaluate performance. These two indicators
are widely used to evaluate QoS performance [5, 6, 12]; a lower value of
both indicators gives, better performance. The MAE and RMSE are defined
as follows:

MAE =

∑
i,j |pi,j − p̂i,j |

N
(6)

RMSE =

√∑
i,j (pi,j − p̂i,j)

2

N
(7)

where p̂i,j represents the predicted QoS value and pi,j is the actual observed
value. N is the number of predicted values.

4.4 Experiment Setting

In reality, the user service invocation matrix is very sparse because a user
will only call some of the many services. Therefore, we randomly selected
some QoS values from the reconstructed matrix and used them as a training
set to reflect this scenario. The remaining QoS values were used as a test
set. When randomly selecting QoS values, we set the experiment such that
at least one QoS value is included in at least one row and column of
the matrix. This ensures that the compared QoS prediction models are not
erroneous.

To establish a cold-start environment, our approach used four different
density levels: 3%, 5%, 10%, and 20%. We calculated the average value 30
times for each density level.

In addition, we used a matrix in which the number of services is more
than 10 and the number of users is more than 10 in the user service invocation
matrix that reflects the edge computing environment in the experiment. This
ensures that the QoS prediction models we compare do not cause errors, even
when the density level is low.
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4.5 Performance Comparison

We use the traditional technique and the latest edge computing QoS predic-
tion technique for performance comparison.

1. UMEAN [27]: this method predicts the missing value using the average
of the available QoS values based on the target user.

2. IMEAN [27]: this method predicts the missing value using the average
of the available QoS values based on the target service.

3. UPCC (User Pearson Correlation Coefficient) [28]: this neighborhood-
based CF method uses PCC coefficients to find users similar to the target
user.

4. IPCC (Item Pearson Correlation Coefficient) [29]: this method is
neighborhood-based CF and uses PCC coefficients to find services
similar to the target service.

5. UIPCC [30]: this method is a hybrid method combining UPCC and
IPCC and simultaneously considers similar users and services.

6. NMF (Non-negative Matrix Factorization) [31]: this method is a model-
based CF method that predicts the QoS of a service through a non-
negative factorized factor.

7. AE(Auto-Encoder) [32]: Smahi et al. [32] applied an autoencoder for
web service QoS prediction. They showed that Auto-Encoder could
reduce the overfitting problem that occurs when very sparse datasets are
used.

8. DAFR [5]: Yin et al. [5] predicted QoS values by generating an embed-
ding vector of location information and ID information, which are
context information of users and services, using a denoising autoencoder
and recombination embedding network. They showed that generating
embedding vectors using context information at various data densities
can effectively mitigate overfitting.

5 Experimental Result

In this section, we describe the experimental results for each RQ.

5.1 Answers to RQ 1

For this research question, we confirmed whether the proposed technique
performs better than the other methods. To do this, we perform a performance
comparison with the eight methods mentioned in Section 4.5.
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Table 3 Accuracy comparison
Density d%

d = 3 d = 5 d = 10 d = 20

Method MAE RMSE MAE RMSE MAE RMSE MAE RMSE
UMEAN 0.8118 1.6406 0.6990 1.5410 0.5548 1.3121 0.5120 1.2299
IMEAN 0.8318 2.0984 0.8004 1.9770 0.5301 1.4617 0.4579 1.2469
UPCC 0.6905 1.8052 0.7127 1.8376 0.5865 1.6549 0.4870 1.5284
IPCC 0.7090 1.8319 0.7377 1.8633 0.6231 1.6521 0.6962 1.7614
UIPCC 0.7072 1.8263 0.7276 1.8469 0.5832 1.5768 0.6215 1.6569
NMF 0.6152 1.5586 0.5804 1.5186 0.4279 1.2986 0.3638 1.1760
AE 0.5935 1.5433 0.5952 1.5336 0.6069 1.5318 0.6330 1.5375
DAFR 0.5736 1.5515 0.5314 1.5080 0.4857 1.4340 0.4309 1.3533
GAIN-QoS 0.5241 1.5096 0.5091 1.4877 0.4843 1.4474 0.4511 1.4262

Table 3 lists the results of comparing the performance of our approach
with those of other QoS prediction methods. The performance presented in
Table 3 is the average of all distances for each method; the best value of each
indicator is marked in bold. In the table, d denotes the training data density.
For example, d = 3 means that only 3% of QoS values are filled in the
user service invocation matrix, and the remaining 97% of the QoS values are
predicted. The lower the training data density, the more practical it reflects
the cold-start problem experienced by real QoS data. Therefore, we present
the performance in cases where the densities are 3%, 5%, 10%, and 20% to
show that our approach is practical.

Conversely, when the training data density was 10% and 20%, NMF
shows the best performance in terms of MAE and RMSE. Our approach
is the second-best performance in terms of MAE when the training data
density is 10% and the third-best performance in MAE when the training data
density is 20%. On the other hand, the RMSE performance of GAIN-QoS
shows the fourth-best performance when the training data density is 10% and
20%. These experimental results indicate that when the density increases, the
GAIN-QoS generates a different value from the original data.

The traditional methods UMEAN, IMEAN, UPCC, IPCC, and UIPCC
have the best MAE and RMSE performance when the training data density is
20%. In particular, as the density increased from 3% to 5% in the PCC series,
the performance decreased rather than improving. This indicates that the
similarity calculation using PCC is not performed well because the amount
of data is significantly small in our reconstructed user service invocation
matrix. In addition, in the case of AE, the accuracy performance significantly
decreased as the density increased.
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Table 4 Number of invocation records of the 21st cluster according to density
Density d%

d = 3 d = 5 d = 10 d = 20

Invocation record 193 322 645 1,291

In the user service invocation matrix we created to reflect the environment
of edge computing, the number of services and users is already significantly
less than the existing QoS data. Therefore, we tried to experiment when the
training data density was lower than 3%, however, there was a problem in that
the number of users was significantly reduced. Therefore, the sparsest case
that can be performed in an edge environment we set is when the training data
density is 3%. Table 4 presents the number of invocation records according
to each density in the 21st cluster. GAIN-QoS showed the best performance
when the density was 3%(193) and 5%(322) with a small number of invo-
cation records compared to the case where the density was 10%(645) and
20%(1,291). These results indicate that GAIN-QoS is effective in the cold-
start problem. The main characteristic of GAIN is that the quality of the
imputed value is good when the density is low, and the amount of data is
small. It can be confirmed through the experimental results of this research
question that these characteristics can be well applied to edge computing QoS
prediction research.

5.2 Answers to RQ 2

This question focuses on the difference in performance depending on the
distance between the service and the user.

We divided the geographic distance between the service and the user
according to a specific criterion, i.e., 0.3 km, 0.5 km, 1 km, 2 km, 5 km,
20 km, 50 km and 100 km; however, in the case of 0.3 km and 0.5 km, the
number of users and QoS values are the same in all user service invocation
matrices. Therefore, we report experimental results from 0.5 to 100 km in the
experimental results. We compared the performance of the top-3 methods,
which showed the best performance in RQ1 by distance; Figure 3 shows the
results.

As the distance increases, the number of users increases, and thus the
QoS data increase as well. When the density was 3%, the GAIN-QoS per-
formed well at all distances. In particular, in the case of MAE, our method
produces the best performance. When the density was 5%, the performance
difference between GAIN-QoS and DAFR according to the distance in MAE
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Figure 3 Effect of the distance between edge servers and users in edge computing.
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Table 5 Comparison of performance between properties of the GAIN
Density d%

d = 3% d = 5% d = 10% d = 20%

Method MAE RMSE MAE RMSE MAE RMSE MAE RMSE

GAIN-QoS 0.5241 1.5096 0.5091 1.4878 0.4844 1.4475 0.4511 1.4263

GAIN-QoS w/o LM 0.5361 1.5359 0.5320 1.5374 0.5710 1.7525 0.6705 2.3539

GAIN-QoS w/o Hint 0.5314 1.5166 0.5175 1.4875 0.5539 1.5749 1.1187 2.8152

GAIN-QoS w/o Hint & LM 0.5625 1.5925 0.5652 1.6012 0.6158 2.1539 1.3761 3.4495

is not significant. However, in NMF, the performance difference according
to the distance is considerable. When the density was 10% and 20%, NMF
had excellent performance at all distances. There was a slight difference in
performance according to the distance in all three methods, and GAIN-QoS
shows superior accuracy as the density is lower. It shows the best performance
at 0.5 km, followed by 100 km. However, the performance difference between
the two distances shows 0.01 to 0.02 in MAE and 0.01 to 0.06 in RMSE.

Figure 3(a) shows the performance when the training data density is
3% and the MAE and RMSE performance are not shown from 0.5 km
to 2 km. When the training data density is 3%, a user service invocation
matrix containing at least 20 services and 20 users is required for GAIN-QoS
to operate in the edge computing environment we built. Therefore, this
minimum condition is not satisfied for 0.5∼2km.

5.3 Answers to RQ 3

In this research question, the factors affecting the performance of the
GAIN-QoS model in edge computing QoS prediction were identified. The
characteristics of the GAIN framework are the reconstruction loss (LM ))
and the use of the hint vector (H). We perform a sensitivity analysis to
validate how each of these affects the performance of GAIN-QoS in an edge
computing environment.

Table 5 shows that the performance of GAIN-QoS improves when both
reconstruction loss and hint are included. In the table, values in bold face
indicate the best performance. The hint is a hyperparameter that affects
the performance of the GAIN model itself [14]. Specifically, we observed
that the performance of GAIN-QoS w/o Hint & LM without both recon-
struction loss and the hint was the lowest in all training data densities and
did not properly learn the distribution of data at high training data density.
In addition, the performance improved when the reconstruction loss was
used (GAIN-QoS w/o Hint). Furthermore, using a hint vector (GAIN-QoS)
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improves performance, especially at high densities, and the performance
difference is very high.

So, we use GAIN-QoS, including both reconstruction loss and hint.

6 Discussion

In this section, we describe in detail the built-in edge computing environment.
We used the k-means clustering algorithm for adjacent group services. The
value of k, the number of clusters, is a hyper-parameter, and it indicates a
number of edge computing service groups in our technique. Thus, the larger
the number of service groups, the more the edge computing environment is
reflected because adjacent services are grouped.

minimun number of users and services required =
1

density
(8)

Figure 4 shows the number of clusters and the minimum number of
services included in one cluster. The y-axis in Figure 4 shows the log scale
result of the minimum number of services included in one cluster. As the
number of clusters decreases, the number of services included in the cluster
increases, but this is difficult to see as an environment for edge computing.
On the other hand, as the number of clusters increases, the edge computing
environment is reflected, but the number of services included in one cluster
decreases. Because the QoS data we use has a cold-start problem, a certain
number of data must be included in the user service invocation matrix to

Figure 4 Minimum number of included services based on number of clusters.
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apply the QoS prediction technique. In this study, the densities is 3%, 5%,
10%, 15% and 20%. Equation (8) shows the minimum number of services
and users required for each density. For example, if the density is 5%, at
least 20 services and 20 users must be included to apply the QoS prediction
technique without errors.

Therefore, we divided the services into 30 groups. In this case, a cluster
contains at least 9 services.

7 Threat to Validity

In this study, we identify some potential threats to the validity of our work.

7.1 External Validity

We propose a GAIN-QoS technique for QoS prediction of edge computing
and use WSDream, i.e., a web service QoS dataset, to verify it. Currently,
there are no publicly available QoS data for the QoS prediction of edge com-
puting. Therefore, in related work on predicting the QoS of edge computing,
the WSDream dataset was also used. We plan to conduct additional experi-
ments based on the data in the future, when QoS data of edge computing is
available.

7.2 Internal Validity

We compared GAIN-QoS with eight techniques. We analysed and imple-
mented these studies by ourselves, and there may be errors in implementation.
To mitigate this threat, we carefully validated the implementation.

We randomly filled the missing values in the user service invocation
matrix to build a cold-start environment. These random factors may cause
a bias in the performance we reported. To mitigate this, we took the average
value of 30 iterations for each density.

8 Conclusion

In this paper, we propose a novel approach (i.e., GAIN-QoS) that reflects the
edge computing environment and effectively solves the cold-start problem.
We propose a promising solution in terms of which services the user will
connect to among adjacent services. To this end, we group adjacent services
through clustering. Subsequently, the distance between the service and the
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users in each cluster is measured. QoS values of users within a certain
distance were obtained. Through this process, a user service invocation
matrix reflecting the edge computing environment was established. Based on
this matrix, QoS prediction is performed by applying GAIN, i.e., a missing
value imputation model. Our proposed method shows superior performance
compared to other methods when the density is low. In addition, depending
on the distance between the service and the user, a slight difference in
performance exists for each QoS prediction method.

In the future, we plan to improve the QoS prediction performance by
using various context information of the edge computing environment and
the web service QoS dataset.
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