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Abstract

The explosive growth of RDF data makes it difficult to be efficiently queried,
understood and used. RDF graph (RDFG) summarization aims to extract
the most relevant and crucial data as summaries according to different
criteria. Current summarization approaches mainly apply single strategies
such as graph structure, pattern mining or relevance metrics to calculate
RDFG summaries. Different to the existing approaches, this paper proposes a
summarization approach to automatically generating RDFG summary, which
can capture both structure and centrality information. Specifically, we present
three algorithms, SumW (merging nodes based on node characteristics or
similar types), SumS (merging nodes based on typed node characteristics)
and SummaryFL (retrieving central nodes by combining node frequency
and bridging coefficient). The three algorithms can be used by two sum-
marization strategies: SumS or SumW only, and SumS+SummaryFL or
SumW+SummaryFL. We conducted experiments over large and real-world
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RDF datasets to verify the effectiveness of our method with respect to time
complexity, compression capability and coverage of the summary. The exper-
iment results demonstrate that our approach outperformed the comparative
algorithms.

Keywords: Knowledge graph summarization, node centrality, knowledge
graph compression, node characteristic set, graph summarization.

1 Introduction

RDF Graph (RDFG) has been widely used in knowledge modeling and data
reuse in various areas. Nowadays, the volumes of RDFGs continue growing
explosively, which causes great difficulties in RDFG exploration, query-
ing and error-detecting. For example, RDF datasets in geography, biology,
vocabulary statistics, linguistics and sociology contain more than 20 billion
triples and 3 billion nodes in the LinkedGeoData1 dataset alone. Therefore,
efficiently summarizing large-scale RDFGs becomes one of the challenging
problems in the field of RDFG [1].

The problem of RDFG summarization has received a great deal of atten-
tion in recent years. The goal of RDFG summarization is to fast compress
RDFGs in a meaningful way as much as possible. Since an RDFG is a
directed labeled graph formed by RDF data, a number of approaches studied
summarizing RDFGs from the aspect of graph structure by merging “similar”
nodes and edges as supernodes and superedges [2–4]. For example, equiv-
alence relations between nodes can be discovered and the quotient graphs
formed by equivalence relations are used as RDFG summaries. How to
quickly discover “similar” nodes in a large RDFG as candidates for merging
is a challenging task. Because not only the structure formed by nodes and
edges needs to be considered but also the semantics described by the types of
nodes and edges is also crucial for a meaningful summary.

Some researchers studied using relevance and centrality metrics to rank
entities or paths in RDFGs in order to select the most relevant or important
nodes and paths as summaries [5–8]. Centrality or relevance metrics for
RDFGs are defined and top nodes and related edges can be used as RDFG
summaries. These methods are generally efficient because they are based
on the statistics of centrality or relevance metrics. However, the drawback
of these methods is that they only extract “important” nodes and edges as

1http://linkedgeodata.org/

http://linkedgeodata.org/
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summaries but neglect the structure and semantic information of the original
RDFGs.

In this paper, we aim to efficiently generate RDFG summaries which can
not only preserve the semantics and the structural information of the original
datasets, but also include “important” nodes in terms of centralities into the
summary. Different to the current methods which used single strategies, e.g.,
structure-based or statistic-based methods, to compute summaries and can
only retain certain types of feature of the original RDFGs, our approach uses
a hybrid summarization strategy. Specifically, our contributions include:

First, we present an RDFG summarization method based on the node
Characteristic Set (CS) and the centrality metric. Our summarization method
can compress the nodes and edges by their linking patterns and types.
In addition, central nodes can be further extracted into the summary. Specif-
ically, we present three algorithms, SumW (merging nodes based on node
CS or similar type relations), SumS (merging nodes based on typed CS
relation) and SummaryFL (retrieving central nodes by combining node
frequency and bridging coefficient). The three algorithms can be used by two
summarization strategies: SumS or SumW only, and SumS+SummaryFL or
SumW+SummaryFL.

Second, we conducted experiments over four real-world large RDFG
datasets: AGROVOC, DBpedia, LinkedGeoData, and Wikidata to verify the
effectiveness of our method with respect to time complexity, compression
capability and coverage of the summary. The results proved that our approach
outperformed the current summarization methods.

We organize the paper as follows. Section 2 discusses the related work.
Section 3 presents our summarization approach including the algorithms
SumS, SumW and SummaryFL. Section 4 is the experiments and Section 5
concludes our work.

2 Related Work

As stated in Section 1, the goal of RDFG summarization is to fast compress
RDFGs in a meaningful way as much as possible. We identify two main-
stream methods for RDFG summarization: merging-based summarization
and extraction-based summarization.

Merging-based summarization RDFGs are directed graphs in nature.
The typical summarization methods for graphs by merging nodes/edges
as supernodes/superedges [9–12] provide valuable experience for RDFG
summarization. For example, the summarization method for undirected and
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unlabeled graphs proposed by Ko et al. [11] merged neighbor nodes as
supernodes by selecting candidate nodes with the probability related to their
degrees. However, graph summarization methods cannot be directly applied
to compress RDFGs because they are designed for compressing unlabeled
graphs, where nodes and edges contain no meaning but only the connection
relations. Differently, the nodes and edges in an RDFG have types, i.e., nodes
and edges in an RDFG have different meanings. Moreover, RDFGs contain
both the schema information (ontology) and the fact data. The same linking
pattern in a common graph may represent different meaning and pattern in an
RDFG [13, 16, 17].

Thus, merging-based RDFG summarization needs to consider the types
of nodes and edges during the summarization. Stefanoni et al. [4] proposed
a typed summary, called SumRDF for RDFG. A resource d was described
by 4-tuple: (C(d), O(d), I(d), P(d)), where C(d) was the type of d, O(d)
and I(d) were the vectors representing the types of outgoing and incoming
entities, and P(d) was the partition for the resource d. The basic idea was to
put same-typed resources into a partition. Some methods defined equivalence
relations called, bisimulation, between graph nodes [3, 14, 15]. For example,
Čebirić et al. [15] identified equivalence relations of nodes in RDFGs, and the
quotient graphs consisting of sets of equivalent nodes (merged as supernodes)
were defined as the summaries.

Merging-based summarization has the advantage of capturing the struc-
ture of graphs and thus helps users better understand the original RDFGs.
However, due to the massive volume of current RDFGs which usually con-
tain hundreds of millions of triples, the overhead for calculating summaries
is expensive. A major problem with current merging-based summarization
methods is that the scalability of algorithms needs to be improved for very
large RDFGs.

Extraction-based summarization Extraction-based summarization
methods usually extract important and relevant nodes/edges as summaries
by defining metrics to rank nodes/edges in RDFGs [18, 20]. Some of the
methods focused on extracting both important nodes and edges as sum-
maries [5–7, 9, 19], while others focused on extracting the most important
nodes (also called entity summarization) [21–24].

Pires et al. [5] studied the summarization in the context of a Peer Data
Management System (PDMS), where each peer was an autonomous source
defined by an ontology. The authors proposed using the concepts of centrality
and frequency to select the most relevant resources as the summaries for
ontologies. Similarly, Troullinou et al. [6] also proposed a summary method,
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called RDF Digest, to extract the most relevant paths in ontologies. In [7],
user preference was considered when creating ontology summaries. Safavi
et al. [8] also studied personalized summaries of RDFGs. The personalized
summarization was defined as a set of triples that maximized a user’s “utility”
over a given RDFG. Presutti et al. [19] extracted the key knowledge pattern
paths based on the metrics of type betweenness and property betweenness to
represent the knowledge of datasets.

As the objective of entity summarization is to retrieve the most relevant
nodes in RDFGs, metrics related to nodes were proposed to rank nodes.
Gunaratna et al [21] presented an approach called faceted entity summaries
for selecting a small subset of the original triples associated with an entity
as a summary for quick access of entity-related information. Thalhammer
et al. [22] proposed a relevance-oriented summarization of entities. It was
a combination of PageRank algorithm with the Backlink method. In [23],
the authors selected the set of most representative entities in an RDFG. The
metric for ranking entities was based on structural and textual features and
the summarization process was modeled as an optimization problem. Yang
et al. [24] focused on discovering outstanding facts from knowledge graphs
for target entities under the context specified by context entities.

Extraction-based summarization methods are usually efficient because
they only rely on the statistics of centrality or relevance metrics. However, the
drawback of these methods is that they only extract “important” nodes/edges
as summaries but neglect the structural and semantic information of the
original RDFGs.

To improve the performance and quality of summaries for large-scale
RDFGs, we propose a hybrid and efficient summarization method that
consists of two-phase summarization: merging nodes by the node CS and
extracting nodes by the centrality. The resulting summaries can capture both
the structural and central information of the original RDFGs.

3 Proposed RDFG Summarization Approach

3.1 Overall Approach

Figure 1 gives an overview of our approach for RDFG summarization. Firstly,
an RDFG is summarized based on the node Characteristic Set (CS) by the
SumW or SumS algorithms. This step generates the summary containing
the structural information of the original RDFG. Then, the resulting sum-
mary generated by SumW or SumS is further processed by the SummaryFL
algorithm, which extracts central nodes from the RDFG and adds them to the
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Figure 1 Overall approach.

Figure 2 DBLP RDFG.

final summary. Thus, the final summary retains both the structural and also
the central information of graph nodes.

The following example provides more details of our approach.

Example Figure 2 shows part of the datasets of DBLP.2 It can be found that
although the nodes A and B link to different numbers of edges, they have
the same set of properties (called CS). Moreover, they both belong to the
same type. Our intuition is that nodes with the same CS and similar types
are candidates for merging during the creation of summary. We say similar
types because it is common that two instance nodes have multiple types and
these types may be not completely same but they are similar to some extent.

Figure 3(a) demonstrates the summarization process for the proposed
algorithms SumS+SummaryFL, which merges nodes with the same CS and
similar types first and then extracts central nodes as the summary. Firstly,
nodes A and B are merged as a supernode N1 and N2 is created to represent

2https://dblp.org/xml/

https://dblp.org/xml/
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Figure 3(a) Summarization process based on typed CS and centrality
(SumS+SummaryFL).

its type. The edges between nodes are also created between supernodes, as
shown in step 1. Then, SumS traverses its neighbors from nodes A and
B, and finds that J and F belong to the same type and also have the same
CS. Thus N3 is created as well as N7 (the type of J and F) as shown in
step 2. Similarly, supernodes N4, N5 and N6 are created at step 3. The last
step applies SummaryFL to find central nodes in the original RDFG by the
combination of the bridging coefficient and frequency. The central nodes N8
and N9 are then added to the summary at step 4.

Figure 3(b) demonstrates the summarization process of the proposed
algorithm SumW+ SummaryFL, which merges nodes with same CS or
similar types and then extracts central nodes as the summary.

3.2 RDFG Summary Based on Node Characteristics

In this section, we present the RDFG summary method based the CS of nodes
and the SumS and the SumW algorithms for creating RDFG summaries.

3.2.1 The summary methods based on CS
An RDFG can be defined as G = (V,E,P,L), where V is the set of nodes
including classes, instances, blank nodes and literals, E is the set of relations
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Figure 3(b) Summarization process based on CS and centrality (SumW+ SummaryFL).
Notation: Step 1: SumW creates supernodes N1 and N2 for (A, B) and (K, E, D, C) which
both have the same CSs. Step 2: N3, N4, N5 for (I, O), (M, N, G, H) and (J, F, L) are created.
Step 3: N6 and N7 are created according to the property edges linked by the class nodes (2
and 3) and (4 and 5). Step 4: N8 is created.

between nodes, P is the set of properties, and L: E→P is a labeling function
that maps each relation to its type.

Definition 1 (Characteristic set, CS) Given an instance node v of an RDFG
G, the CS of v, denoting as P(v) is defined as the set of all properties linked
with v except rdf:type. Furthermore, P(v) = OP(v) ∪ IP(v), where OP(v) is
the out-CS including all the outgoing properties of v and IP(v) is the in-CS
including all the incoming properties of v.

Definition 2 (Same-CS relation) Given two different nodes u and v: (1) u and
v have the same-out-CS relation denoting as (u, v) ∈ ROP if OP(u) = OP(v);
(2) u and v have the same-in-CS relation denoting as (u, v) ∈ RIP if IP(u) =
IP(v); and (3) u and v have the same-CS relation denoting as (u, v) ∈ RP if
P(u) = P(v).

Definition 2 defines the same-CS relation between nodes. For example, in
Figure 2, since the nodes C and D both have the outgoing properties creator
and maker, they have the same-out-CS relation.

An instance may belong to multiple classes or types. Given two instances,
we need to judge how similar two instances are in terms of types. Zheng
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et al. [25] defined the semantic distance between two types in an ontology.
The intuition is that two types are similar to each other if they have more
common super-types. Similarly, we define the type similarity between two
instance nodes in Definition 3.

Definition 3 (Type similarity) Given two nodes u and v in G, T(u) and T(v)
are the sets of types related to u and v. Let T(u) ∪ T(v) = {c1, c2,. . . , cm},
T(u) and T(v) are the vectors in Pm representing T(u) and T(v) respectively,
where the ith element is 0 (denoting the nonexistence of ci) or 1 (denoting
the existence of ci) (i = 1,. . . , m). The type similarity for u and v SimTp(u, v)
is defined as:

SimTp(u, v) =
T (u) · T (v)

‖T (u)‖2 + ‖T (v)‖2 − T (u) · T (v)
(1)

Definition 3 defines the metric SimTp(u, v) based on the Tanimoto coeffi-
cient [26]. For example, assume T(u) = {c1, c2, c3} and T(v) = {c1, c2, c5},
then T(u) = <1, 1, 1, 0, 0> and T(v) = <1, 1, 0, 0, 1>. By Equation (1), the
type similarity between u and v is: SimTp(u, v) = 2/(3 + 3− 2) = 0.5.

Now we can define the same-type relation between instance nodes.

Definition 4 (Same-Type relation, C̃) Assume u and v are two instance nodes
in an RDFG, then u and v have the same-type relation denoted as: (u, v)∈ C̃
if: (i) T(u) ⊆ T(v) or T(v) ⊆ T(u) and (ii) SimTp(u, v) ≥ γs, where γs is the
similarity threshold.

Suppose γs = 0.5. If T(u) = {c1, c2, c3} and T(v) = {c1, c2, c5}, we know
that SimTp(u, v) = 0.5. However, they do not have the same-type relation
because T(u) and T(v) do not subsume each other. If T(u′) = {c1, c2} and
T(v′) = {c1, c2, c5}, then T(u′) ⊆ T(v′) and SimTp(u′, v′) ≈ 0.67 > γs.
We regard that u′ and v′ have the same-type relation, i.e., (u′, v′) ∈ C̃.

Definition 5 (Typed Same-CS relation, S) Given two nodes u and v in an
RDFG, u and v have the typed same-CS relation denoting as (u, v) ∈ S if (u,
v) ∈ C̃ ∩ RP .

Definition 5 defines a strong relation between instance nodes, i.e., having
same types and same CSs. For example, it can be found that A and B in
Figure 2 have both the same-CS and same-type relations, and thus they have
the typed same-CS relation, i.e., S relation. Similarly, we use W to denote u
and v having the same-type or same-CS relation, which is a weaker relation
compared to S. For example, F and L link with the same properties, but belong
to different types, and thus they have W relation. Obviously if two nodes have
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the S relation, they must have the W relation, but the vice versa does not hold.
Definition 6 defines the summaries of RDFGs based on S and W relations.

Definition 6 (RDFG Summary based on S (W) relation) Given G = (V, E, P,
L), the summary of the RDFG based on the S (W) relation is GS∼ = (NS , ES)
(GW∼ = (NW , EW )), where NS (NW ) is the set of supernodes and ES (EW )
is the set of superedges. ∀ Ni ∈ NS (NW ), all the nodes in Ni have the S(W)
relation. ∀ Ek = (N1, N2) ∈ ES (EW ), Ek includes all the property edges
between the nodes in N1 and N2 of the original graph G.

3.2.2 The summary algorithms based on CS
The SumS Algorithm. The Algorithm 1 SumS calculates the summary of
an RDFG based on the S relation, i.e., typed same-CS relation. The algorithm
accepts G and γs (the type similarity threshold) as the input. In steps 2-3,
the algorithm randomly selects an instance node u and creates the supernode
Nu containing u. Then the procedure FindST retrieves nodes Vu with similar
types as u satistfying γs. The procedure ScreateSN further determines if the
nodes in Vu having the S relation with u and adds the confirmed nodes into
Nu. Step 6 creates the superedges according to the property edges linked by
the neighbors of nodes in Nu. Step 7 update NS with Nu and step 8 removes
the nodes in Nu from the candidate nodes. The total time complexity for
SumS is O(∆ · |V| + |E|), where FindST and ScreateSN takes O(∆ · |V|)
and ScreateSE takes O(E) (∆ is the max degree of G).

Algorithm 1 SumS
Input: G = (V, E, P, L), γs
Output: GS∼ = (NS , ES)
1: V Candidate← V, NS ← ∅, ES ← ∅
2: for u in V Candidate do
3: Nu ← {u} // Nu contains all the nodes having S relation with u
4: Vu ← FindST(u, T(u), γs) //find instance nodes with similar types as u
5: Nu ← ScreateSN(u, Vu) // create supernode for nodes by S relation with u
6: Es← ScreateSE (NS , Nu) //create superedges for Nu

7: NS ← NS ∪Nu

8: V Candidate← V Candidate\Nu //remove nodes in Nu from V Candidate
9: end for

return NS , ES

The SumW Algorithm. The Algorithm 2 SumW calculates the summary
of an RDFG based on the W relation, i.e., same-CS or same-type relation.
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SumW accepts G and γs as the input and generate the summary GW∼ as
output. Steps 2–4 find the CSs for each node by the hash function. This task
takes O(E) time complexity. In steps 5–6, the algorithm randomly selects an
instance node u and creates the supernode Nu containing u. Steps 8–12 merge
nodes having same CS with u; otherwise, merge nodes having same types
with u. Finally supernode Nu is added to NW and superedges are created.
The total time complexity for SumW is also O(∆ · |V |+ |E|).

Algorithm 2 SumW
Input: G = (V, E, P, L), γs
Output: GW∼ = (NW , EW )
1: V Candidate← V, NW ← ∅, EW ← ∅, mapP← ∅
2: for v in V do
3: hF ← h(P(v)) // P(v) is the set of node features for v and h is a hash function
4: mapP[hF ]← mapP[hF ] ∪ {v} // mapP stores the characteristics of nodes
5: end for
6: for u in V Candidate do
7: Nu← {u} // Nu contains all the nodes having W relation with u
8: Vp = mapP(h(P(u))
9: if Vp 6= ∅ then
10: Nu← ScreateSN(u, Vp) //create supernode having same-CS with u
11: else
12: VT ← FindST(u, T(u), γs) // find instance nodes with similar types as u
13: Nu← ScreateSN(u, VT ) // create supernode having similar types with u
14: end if
15: EW ← ScreateSE (NW , Nu) // create superedges for Nu

16: NW ← NW ∪ Nu

17: V Candidate← V Candidate\Nu //remove nodes in Nu from V Candidate
18: end for

return NW , EW

3.3 RDFG Summary Based on Node Centrality

In this section, we extend our summary approach by the notion of node
centrality in order to process the nodes which are “important” in the RDFG
but are not merged into supernodes by the S and W relations.

3.3.1 Node centrality in RDFG
We calculate the centrality of a node v, for both instance nodes and also class
nodes, by combining the frequency of properties related to v and its bridging
characteristics.
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Definition 7 (Node frequency) Given an RDFG G, the frequency of a node v
is defined as:

Freq(v) =
deg(v)

|{e|e ∈ E ∧ L(e) ∈ PT (v)}|
(2)

where PT(v) is all the associated properties for the node v.
For an instance node, PT(v) = P(v) ∪ {rdf:type}, and for class node,

PT(v) includes properties such as rdfs:subClassOf or rdf:type. The frequency
Freq(v) indicates the importance of v either instance node, or class node in
terms of its properties. For example, in the Figure 2, the class node 1 (Agent)
incidents to two edges with properties rdfs:subclassOf and rdf:type. Thus, the
frequency of Agent is Freq(Agent) ≈ 0.29.

The central node of RDF graph is not only related to its frequency of
properties, but also related to its bridging characteristics.

Definition 8 (Bridging coefficient) Given an RDFG G, the bridging coeffi-
cient of node v, denoted as Ln(v), is defined as:

Ln(v) =
deg(v)−1∑

u∈Neighbor(v) deg(u)−1
(3)

The bridging coefficient defined by (3) reflects how well the node is
located between high degree nodes. A high value of the metric Ln(v) indicates
that the node v connects to densely connected nodes. We define the central
node using a linear combination of the frequency and bridging coefficient.

Definition 9 (Node centrality) The node centrality FL is a defined as a
linear combination of the frequency and the bridging coefficient as shown
in formula (4), where α is the weight between 0 and 1.

FL(v) = αFreq(v) + (1− α)Ln(v) (4)

A high value of FL(v) indicates both high property importance and
connection centrality.

3.3.2 The SummaryFL algorithm
With concept of node centrality, we extend our summary approach by
processing central nodes that are not summarized by the SumS or SumW
algorithms. The SummaryFL accepts the summary based on S or W relation,
i.e., GS∼ or GW∼ as input, and the output is the improved summary GSF∼
or GWF∼ by adding central nodes of G to the summary. For instance node
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that is not summarized by SumS (SumW), we calculate its FL value and add
it to the summary if it meet the centrality threshold (i.e., 0.5). In addition, its
type nodes are also added to the summary and corresponding edges are also
created. Since the algorithm SummaryFL needs to access the nodes in the
RDFG, the time complexity is O(|V |).

Algorithm 3 SummaryFL

Input: G = (V, E, P, L), α, δ, GS∼ (GW∼) // δ is the centrality threshold
Output: GSF∼(GWF∼)
1: NSF ← NS , ESF ← ES

2: for u in V do
3: if u not in NS then
4: FL(u)← ComputeFL(u, α) // ComputeFL obtains the centrality value of u
5: if FL(u) > δ then
6: Nu← ScreateSN(u, Vu) // create supernode for u
7: Eu← ScreateSE (Nu, PT(u)) //create superedges for Nu

NSF ← NSF ∪ Nu, ESF ← ESF ∪ Eu

8: end if
9: end if
10: end for

return NSF , ESF

4 Experiments

In this section, we set up the experiments to evaluate our approach from the
three aspects: efficiency (Section 4.1), compression capability (Section 4.2)
and coverage (Section 4.3) of the summarization algorithms. The efficiency
is measured by the execution time spent for summarizing RDFGs. The com-
pression capability is measured by the size of the RDFG summary described
by the set of supernodes and edges. The coverage refers to the ratio of nodes
and edges summarized by the algorithms over the nodes and edges in the
original RDFG. This metric denotes the ability of a summary to represent
the original RDFG.

We selected two state-of-the-art RDFG summarization methods
SumRDF [4] and PDMS [5] for the comparisons. SumRDF is a typical
merging-based summarization method which generates summaries by the
type information related to entities. PDMS is a typical extraction-based sum-
marization which extracts central nodes from RDFGs. Since our approach
uses the hybrid summarization strategies consisting of summarizing by node
CS and centrality, comparing our approach to the typical single-strategy
methods can demonstrate the effectiveness of our approach.
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Table 1 RDFGs
RDF Datasets Entities Relations Triples
AGROVOC 2002171 2830 5012375
DBpedia 1 20555 9120 31050
DBpedia 2 1790653 18730 3822106
Linkgeodata 1 2591324 30516 4914217
Linkgeodata 2 639274 16504 1225338
Wikidata 65349 10470 93867

Table 1 lists the datasets for the experiments: AGROVOC,3 DBpedia,4

LinkedGeoData, and Wikidata.5 We used the AGROVOC Core containing
711M data for experiments, which includes 39,000 concepts and more than
800,000 terminologies. We used two subsets of DBpedia: DBpedia ontology
(referred to as DBpedia 1) and the Linkeddata (referred to as DBpedia 2)
containing 565 M geographic data. We used two subsets of LinkedGeoData:
sport datasets (referred to as Linkgeodata 1) containing 706 M data and
historic datasets (referred to as Linkgeodata 2) containing 164 M data. We
used a subset of Wikidata including person and geodata.

Our approach was implemented using Java. The experiments were con-
ducted on the machine equipped with Intel Core (TM) i7-7700 CPU @ 3.6
GHz 512SSD and 16GB Memory.

4.1 Performance of Summarization Algorithms

We compared the execution time of our proposed summarization algorithms,
i.e., SumW, SumS, SumW+SummaryFL(GWF∼), and SumS+SummaryFL
(GSF∼), with PDMS and SumRDF. Figure 4 shows the time performance
of the six algorithms. Overall, SumW, SumS, and PDMS performed better
than other algorithms and SumRDF took the longest time to generate sum-
maries. However, PDMS ignored the instance nodes of RDFGs and only
summarized the schema nodes and therefore it provided limited information
for the entire RDFGs. Different to PDMS, our algorithms summarized both
instance and schema nodes, i.e., the entire RDFGs. Among our algorithms,
SumW and SumS performed better than SumW+SummaryFL(GWF∼),
and SumS+SummaryFL(GSF∼), because the former two algorithms only

3http://www.fao.org/agrovoc/
4https://wiki.dbpedia.org/
5https://www.wikidata.org/wiki/

http://www.fao.org/agrovoc/
https://wiki.dbpedia.org/
https://www.wikidata.org/wiki/
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Table 2 The size of summary generated by SummaryFL and SumRDF
SummaryFL(GWF∼) SummaryFL(GSF∼) SumRDF

Summary Summary Summary Summary Summary Summary
Ddatasets Nodes Edges Nodes Edges Nodes Edges Nodes Edges

AGROVOC 2002171 3010204 183 1420 191 1922 7346 123999

DBpedia 1 20555 10495 3767 18056 892 19230 182 1414

DBpedia 2 1790653 2031453 946 10620 938 10610 18253 267884

Linkgeodata 1 2591324 2322893 3364 38741 3340 42081 26033 376508

Linkgeodata 2 639274 586064 1412 14660 1433 16072 11389 161575

Wikidata person 38872 54995 233 545 477 1566 1313 3704

compute the summaries based on the node CS, while the latter have an extra
step of extracting central nodes.

4.2 Compression Capability of Summary

To evaluate the compression capability of summaries, we analyzed the sizes
of the summaries generated by our algorithms and SumRDF. The sizes of
the summaries, i.e., nodes and edges generated in the summaries, are shown
in Table 2. SummaryFL generated more compact summaries for the datasets
except DBpedia 1. For the AGROVOC Core dataset, the number of summary
nodes generated by SumRDF was 40 times larger than that of the summary
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Table 3 Details of the summary by generated by SumW, SumS, and SummaryFL
Summary Nodes

SummaryFL SummaryFL
Datasets Nodes SumW (GWF∼) SumS (GSF∼)
AGROVOC 2002171 165 183 150 191
DBpedia 1 20555 280 3767 285 892
DBpedia 2 1790653 520 946 723 938
Linkgeodata 1 2591324 1575 3364 1552 3340
Linkgeodata 2 639274 795 1412 774 1433
Wikidata person 38872 227 233 169 477

nodes generated by SummaryFL(GWF∼). In addition, the number of sum-
mary edges by SumRDF was 87 times larger than that of the summary edges
by SummaryFL(GWF∼). The results were similar for other datasets except
DBpedia 1. The reason for a larger summary size for DBpedia 1, the DBpedia
ontology dataset, is that it covers a wide range of areas and contains richer
properties than other datasets.

Table 3 provides more details about the summary results for our algo-
rithms. The first-phase summarization process: SumW or SumS gener-
ated the majority of the supernodes which demonstrate that the CS-based
summarization indeed capture the linking patterns of the RDFGs. In addition,
the second-phase summarization: SummaryFL extracted central nodes as
complementary to the summaries. For example, SumW generated 165 nodes,
and SummaryFL (GWF∼) contained 183 nodes, which means that 18 central
nodes were extracted and added into the summary by SumW.

4.3 Coverage of Summarization Algorithms

In this section, we analyzed the coverage of the RDFG summaries by the
five algorithms: SumRDF, PDMS, SummaryFL(GWF∼), SumS, and SumW.
The criterion is to judge how many nodes and edges were covered by the
RDFG summaries. The coverage of a summary is defined as the ratio of nodes
and property edges summarized by the summary over the nodes and property
edges in the original RDFG.

The evaluation results of coverage for the summaries over the six datasets
are shown in Figure 5. It can be observed that the coverage rates of SumS
and SumW were higher than that of PDMS and SumRDF algorithms.
The coverage of PDMS was lower than that of SumS and SumW, especially
for LinkedGeoData. This is because that PDMS only summarized schema
graph. The coverage of SumRDF is lower than that of SumW, SumS, and
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Figure 5 Coverage of the RDFG summaries.

SummaryFL, especially for the AGROVOC Core dataset. In general, the
coverage of SumS is lower than that of SumW, which was consistent to
the expectation. Furthermore, SummaryFL improved the coverage of the
summaries, which had an average coverage as 0.87. The results showed
that the proposed summarization method based on CS and centrality could
summarize the major and key information of the original RDFGs.

5 Conclusions

In this paper, we present the summarization approach which considers both
the node characteristic and centrality. The proposed RDFG summary can
capture not only the graph structure but also the central nodes. Our approach
consists of three algorithms: SumS, SumW and SummaryFL. The three algo-
rithms can be used by two summarization strategies: SumS (GS∼) or SumW
(GW∼) only, and SumS+SummaryFL (GSF∼) or SumW+SummaryFL
(GWF∼). The summaries GS∼ and GW∼ capture certain types of the graph
structure, whereas the summaries GSF∼ and GWF∼ keep not only the graph
structure but central nodes of the original graph. We carried out experi-
ments to compare our algorithms with competitive methods in terms of time
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complexity, compression capability, and coverage rate. The results showed
that our approach outperformed the compared methods for the three aspects.
Our future work shall focus on personalized summarization that considers
specific requirements of users and stream graph summarization.

References
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