
A Semantics-preserving Approach
for Extracting RDF Knowledge

from Object-oriented Databases

Jing Shan1, Jiawen Lu1,†, Xu Chen2, Li Yan1 and Zongmin Ma1,3,∗

1Nanjing University of Aeronautics and Astronautics, China
2North Minzu University, China
3Collaborative Innovation Center of Novel Software Technology and
Industrialization, China
E-mail: zongminma@nuaa.edu.cn
∗Corresponding Author
†Co-first Author

Received 14 February 2022; Accepted 24 February 2023;
Publication 16 June 2023

Abstract

The Resource Description Framework and RDF Schema recommended by
the World Wide Web Consortium provide a flexible model for semantically
representing information about resources on the Web, which are playing
an increasingly important role in intelligent processing of large-scale data.
With the widespread acceptance and applications of RDF(S), construction
of RDF(S) is of increasing importance. Automatic construction of RDF(S)
with diverse data has attracted more attention. In this paper, we propose a
novel approach for constructing an RDF(S) with object-oriented databases
that are suitable for non-traditional applications. We propose the formal rules
of mapping an object-oriented database model into a RDF(S) model based
on the formal definitions of these two models. We develop a tool named
OODB2RDF to verify our approach.

Keywords: RDF(S), knowledge extraction, object-oriented databases, db4o,
mapping.

Journal of Web Engineering, Vol. 22 2, 197–220.
doi: 10.13052/jwe1540-9589.2221
© 2023 River Publishers

198 J. Shan et al.

1 Introduction

The Semantic Web [1] is a framework that provides data with semantic
meaning (through metadata) and enables machines to consume, understand,
and reason about the structure and purpose of data. The core of the Semantic
Web is built on an RDF (Resource Description Framework)1 and OWL
(Web Ontology Language).2 RDF and RDF Schema (RDF(S)) provide a
flexible and concise model for representing metadata of resources on the
Web. An RDF with several encoding formats (e.g., Turtle, N-Triples, JSON,
N-Quod RDF) can represent structured and unstructured data, and has been
the de-facto standard for representation and exchange of information. Nowa-
days, the RDF model is finding increasing use in a wide range beyond data
management [2]. Typically, knowledge graphs, which are widely investigated
and applied in various domains, adopt an RDF model as their infrastructure
for the semantic and intelligent processing of large-scale data [3]. In this
context, one of the most crucial issues is to automatically construct RDF(S)
from various data resources [6].

There have been many efforts in constructing RDF(S) from diverse data
resources (e.g., text [13], semi-structured documents [5], UML class diagram
model [7], XML model [4], spreadsheet [8], and relational databases [9, 10]).
Most of the existing Web sites derive their data from relational databases
(RDBs) [11] and the legacy data in the RDBs are still in a preponderant
position. Note that the RDBs are not enabled for data modeling in many
non-traditional applications (e.g., CAD/CAM and knowledge-based systems)
due to their flat two-dimensional table structure. As a result, object-oriented
databases (OODBs) and object relational databases (ORDBs) have been
proposed [12].

The OODB model (OODM) integrates the powerful modeling capabilities
of the object-oriented paradigm into a database model. Compared with the
RDB model, the OODM provides a powerful object-oriented modeling capa-
bility and OODBs have been applied in many complex application domains
(e.g., industrial application [23]). In the context of knowledge engineering,
OODBs have been applied to automatically construct ontologies [21] and
store ontologies [24], respectively. With the utilization of OODBs and the
availability of data in the OODBs, constructing the RDF(S) with the OODBs
becomes important. Currently, many efforts have been devoted to the con-
struction of RDF(S) with diverse data models. Unfortunately, the work on

1https://www.w3.org/RDF/
2http://www.w3.org/2004/OWL/

https://www.w3.org/RDF/
http://www.w3.org/2004/OWL/

A Semantics-preserving Approach for Extracting RDF Knowledge 199

the construction of RDF(S) with OODBs is still scarce. In [25], a formal
approach for mapping an OODB into an RDF(S) is presented and several
simple mapping rules are developed. However, the presented approach is not
implemented and verified. More importantly, the approach presented in [25]
cannot cover a complete mapping of OODBs to RDF(S).

In this paper, we introduce the formal definitions for the OODB model
and RDF(S) model. On this basis, we propose complete mapping rules
to convert the OODM to RDF(S). Furthermore, we develop a tool named
OODB2RDF to implement our approach based on db4o [20], an open-source
object-oriented database engine. We verify our approach with experiments.
The experimental results show that our approach can convert object-oriented
data into RDF(S) and preserve maximum semantics in the OODBs.

The rest of this paper is organized as follows. Section 2 presents the
related work. Section 3 introduces the formal definitions of the OODB model
and the RDF(S) model. Section 4 proposes the mapping rules that convert the
OODBs into the RDF(S). We implement and verify our approach in Section 5.
Section 6 concludes this paper.

2 Related Work

Automatic construction of RDF(S) has been extensively investigated in
the context of RDBs. The W3C RDB2RDF Working Group proposes two
standards, which are direct mapping3 and R2RML,4 to standardize the imple-
mentation of RDB2RDF. The direct mapping is an approach for directly
mapping RDBs to an RDF, where relational tables are mapped to classes in an
RDF vocabulary and the attributes of the tables are mapped to properties in
the vocabulary. A specification inspired by the direct mapping is proposed
in [10]. The specification uses the OWL2 vocabulary to map the RDBs
directly to RDF graph and mainly focuses on four aspects: monotonicity,
information preservation, query preservation and semantics preservation.
R2RML is a standard language to describe RDB2RDF mapping files. Unlike
direct mapping, R2RML is highly customizable and flexible, which allows
calculation, processing, filtering, clarity, and integration of data in the RDB
before the RDF is generated. Also, in [10], existing mapping languages
are compared and divided into four categories, and recommendations for
selecting a mapping language provided.

3https://www.w3.org/TR/2012/REC-rdb-direct-mapping-20120927/
4http://www.w3.org/TR/2012/REC-r2rml-20120927/

https://www.w3.org/TR/2012/REC-rdb-direct-mapping- 20120927/
http://www.w3.org/TR/2012/REC-r2rml-20120927/

200 J. Shan et al.

There are some prototype systems or tools that can convert RDBs to
an RDF, such as Triplify [14], RDB2OWL [15] and D2RQ [16]. D2RQ
is a mapping language and platform for publishing relational databases as
virtual RDF graphs. It uses SPARQL to access non-RDF database content
as relational data over the Web, and then converts the RDB content into
the RDF format. The SPARQL/Update, an extension of SPARQL to support
update over RDF graphs, was introduced in [16]. Extending D2RQ to support
SPARQL/Update statements is an important step towards the creation of a
real-write Semantic Web.

In addition to the RDBs, there are some efforts in handling RDF(S) by
object-oriented techniques. In [17], a mapping approach embeds Semantic
Web data into object-oriented languages. The mismatch between object-
oriented programming languages and the Semantic Web data is discussed and
an object-oriented API for managing RDF data is proposed. Actually, much
work focuses on combining object-oriented technology with OWL. In [18],
a production-rule-based system O-DEVICE is proposed, which can handle
OWL semantics following an object-oriented approach. In [19], the authors
aim to infer and materialize in advance as many properties for OWL instances
as possible under the semantics of OWL constructors. The issues of the
construction and storage of OWL ontologies with object-oriented databases
are investigated in [21] and [24], respectively. Without implementation and
verification, several simple mapping rules for converting the OODBs into
the RDF(S) are developed in [25]. So far, few works carry out automatic
construction of the RDF(S) with OODBs. Being different from [25], in
this paper, we propose a complete approach for constructing the RDF(S)
with OODBs and implements a tool to verify the proposed approach with
experiments.

3 Formal Descriptions of OODBs and RDF(S)

3.1 Formal Definition of the OODB Model

The OODBs defined in [12] are databases that integrate an object orientation
with database capabilities. An OODB model consists of objects, classes,
attributes, methods, inheritance relationships and association relationships.
A real-world entity can be represented by only one modeling concept.
An object defined uniquely by a system-defined identifier (OID) includes
object presentation, attributes, methods, and relationships with other objects.
Property values, methods, and relationships for an object can change, but

A Semantics-preserving Approach for Extracting RDF Knowledge 201

identifiers are unique. A class is a collection of objects with the same
characteristics and methods [21]. The concept of class provides a uniform
abstract description for all objects which belong to this class. Methods are
the operations that are defined on an object, which are part of the definition
of the object. The attributes form the data structure of an object and the range
of values for an attribute can be any class or specific value.

Classes can be organized in class inheritance relationships. A class can
have any number of subclasses. These subclasses inherit all the attributes and
methods of this class (i.e., superclass) without having to rewrite the original
class and defining some new attributes and methods. An object belonging to
a subclass must belong to its superclass. In some systems, a class may have
more than one superclass, while in others it is restricted to be only one super-
class. An aggregation is used to represent a part–whole structural relationship
among different classes. It connects relatively independent classes together.
Unlike the inheritance relationships, the aggregation relationships can be
represented by the properties of classes. When there is a fixed correspondence
relationship between two classes, there is a correlation between them.

According to the formal definition in [21], we present a formal represen-
tation of an OODB model as follows.

Definition 1: An OODB model is a finite set of class declaration, and each
class declaration describes a set of objects sharing a collection of features.
An OODB model is a six-tuple S = (DS , CS , AS , IS , AGS , OS).

(1) DS : a collection of attribute type names (e. g. String and Integer).
(2) CS : a collection of class names.
(3) AS : a collection of attribute names. Symbol A is applied for attributes.

AS = ASS ∪ ASC represents that an attribute can be either a simple
attribute ASS when its domain is a type D ∈ DS or a complex attribute
ASC when its domain is a class C ∈ CS .

(4) IS : a finite set of inheritance relationship between classes. IC1 repre-
sents the inheritance relationship of C1 IC1 = {x|x is the superclass of
C1}, where C1 ∈ CS , x ∈ CSIc1 ∈ IS .

(5) AGS : a finite set of aggregation relationship. AGC1 represents the
aggregation relationship of C1. AGC1 = {(x, y)|x is the class which
has aggregation relationship with C1, y is the name of the aggregation
relationship} C1 ∈ CS , x ∈ CS , AGC1 ∈ AGCS .

(6) OS : the collection of all instances stored in the OODBs. Each instance
has a unique object identifier (OID) and the value of OID is determined
by the OODM.

202 J. Shan et al.

S = (DS, CS, AS, IS, AGS, OS , where AS = ASS ASC
DS ={String, Integer};
CS ={Person, Teacher, Professor, Student, AssProfessor, Course, Postgraduate, Undergraduate};
ASS ={name, age, email, title, grade, major, college, location, department};
ASC ={manage, enroll, teach};
IS={

ITeacher={Person}, IStudent={Person}, IPostgraduate={Student}, IUndergraduate={Student},
IProfessor={Teacher}, IAssProfessor={Teacher}

}
AGS ={

AGProfessor = {(Postgraduate, manage)}, AGCourse = {(Student, enroll)},
AGAssProfessor = {(Course, teacher)}

}

Figure 1 An OODM S1.

Let us look at an example. Suppose that we have eight classes: Person
{name: String, age: Integer, email: String}; Course {enroll: Student, location:
String}; Teacher is the subclass of Person {title: String}; Student is the
subclass of Person {grade: String}; Postgraduate is the subclass of Student
{major: String}; Undergraduate is the subclass of Student {college: String};
Professor is the subclass of Teacher {manage: Postgraduate}; AssProfessor
is the subclass of Teacher {department: String, teach: Course}. Suppose that
we have an OODB model S1 as shown in Figure 1.

(1) There are eight classes stored in the OODBs and they are expressed in
the OODM as CS = {Person, Teacher, Professor, Student, AssProfessor,
Course, Postgraduate, Undergraduate}. Among them, there are six
inheritance relationships (e.g., “class Teacher is the subclass of Per-
son”). The inheritance relationship is expressed as ITeacher = {Person}.
The class Person has is an attribute “name” with type String.

(2) ASC represents the collection of complex attributes. For example,
attribute “manage” of the Professor class is a complex attribute because
its type is the Postgraduate class. We represent this relationship in
OODM as AGProfessor = {(Postgraduate,manage)}.

(3) ASS represents the set of simple attributes. For example, attributes
“name” and “age” of the Person class are two simple attributes.

The instances of the OODB model S1 are shown in Figure 2.
It is shown in Figure 1 that the Student class is the superclass of the

Undergraduate and Postgraduate class. Then instance O1 of the Undergrad-
uate class and instance O′′

1 of the Postgraduate class are both the instances of
the Student class. The Professor class is the subclass of the Teacher class,

A Semantics-preserving Approach for Extracting RDF Knowledge 203

O’1: Professor

name: Jack
age: 48
email:jack@yahoo.com
title: professor
manage: O’’1

O’’1: Postgraduate

name: Mike
age:23
email:Mike@yahoo.com
grade: first year
major: Computer Science

All the instances stored in the OODB
{O1, O2, O3, …} Undergraduate
{O’1, O’2, O’3, …} Professor
{O’’1, O’’2, O’’3, …} Postgraduate
{O1, O2, O3, O’’1, O’’2, O’’3,…} Student
{O11, O22, O33, …} Undergraduate

Figure 2 Instances of the OODM S1.

which is the subclass of the Person class as well. So, an instance O′
1 of

the Professor class has all attributes of classes Person and Teacher. The
Professor class has a complex attribute “manage” with attribute type of the
Postgraduate class. So, we can refer that the value of the attribute “manage”
is an instance of the Postgraduate class.

3.2 Formal Definition of RDF(S)

Being the basic composition unit of RDF model, an RDF statement is rep-
resented by a triple, which is composed of subject, predicate and object.
A subject is a declaration of a resource, a predicate is used to describe
various properties of subjects, and an object is the value of a property.
Note that a property value can be a literal or another resource. When the
value of property is a resource, the property can be viewed as a relationship
between two resources. Everything that is identified as a uniform resource
identifier (URI) on the Web can be regarded as a resource, even if it cannot
be retrieved directly from the Web. Literal is the value of a string or data type.
The description of resource is to declare its property and value, which enables
the data machine-understandable.

Note that the RDF only provides simple descriptions about resources
and their values. To depict the classes of resources or specific properties of
these resources, we need to apply RDF Schema (RDF(S) for short). RDF(S)
is a semantic extension of the RDF. Based on the RDF, the RDF(S) is
used to describe simple models of classes and relationships between classes.

204 J. Shan et al.

The important components of an RDF(S) are rdf:type, rdfs:subclassof and
rdfs:subpropertyof. Here rdf:type can describe the relationships between
properties and classes. rdfs:subclassof can depict the inheritance relation-
ships. In addition, rdfs:range can represent the property value, which is an
instance of a given class. rdfs:domain indicates that a property is the attribute
of a given class. We present a formal definition of the RDF(s) model as
follows:

Definition 2: RDF(S) model is a five-tuple R = {RC, RD, RA, RI, RAxiom}.

(1) RC is a finite set of class identifiers. Each element in the set is a reference
to the URI that identifies the class.

(2) RD is a finite set of identifiers of attributes datatype. Each element in the
set is a reference to the URI that identifies the datatype.

(3) RA is a finite set of attribute identifiers. Each element in the set is a
reference to the URI that identifies the attribute.

(4) RI is a set of instances.
(5) RAxiom is a finite set of axioms and RAxiom = CAxiom ∪ PAxiom,

CAxiom is the set of class axioms. CAxiomC1 = {x|x is the superclass
of C1, x ∈ RC, C1 ∈ RC}. CAxiomC1 represents a finite set of all
superclass of class C1. PAxiom is the set of property axioms and PAxiom
= Dxiom ∪ Rxiom.

We define DxiomA = {x|x is the domain of the property A}, where
x ∈ RC , A ∈ RA. The domain of the property A is a class resource.
We define RxiomA = {x|x is the range of the property A}, where A ∈ RA
and x ∈ R ∪ RD. RxiomA represents a finite set of the range resource of
property A. The range of a property can be a class resource or an attribute
datatype.

Let us look at an example of the RDF file in Figure 3. Following
Definition 2, we have an RDF(S) model RS in Figure 4.

(1) There are five classes in the RDF file: Person, Course, Teacher, Assistant
and Student class, which are expressed in RDF(S) as RCS = {Person,
Course, Teacher, Assistant, Student}. Some classes have inheritance
relationship. For example, CAxiomTeacher = {Person} means the Person
class is the superclass of the Teacher class.

(2) RAxiom = CAxiom ∪ PAxiom means RAxiom is a finite set of class
axioms and attribute axioms.

(3) PAxiom = Dxiom ∪ Rxiom. DxiomA is a finite set of the domain resource
of the property A. For example, Dxiomphone = {Assistant} represents the

A Semantics-preserving Approach for Extracting RDF Knowledge 205

<rdfs: Class rdf: ID=”Person”/>
<rdfs: Class rdf: ID=”Course”/>
<rdfs: Class rdf: ID=”Teacher”>
 <rdfs: subClassOf rdf:
resource="#Person"/>
</rdfs: Class>
<rdfs: Class rdf: ID="Assistant">

<rdfs: subClassOf rdf:
resource="#Teacher"/>
</rdfs: Class>
<rdfs: Class rdf: ID="Student">
 <rdfs: subClassOf rdf:
resource="#Person"/>
</rdfs: Class>
<rdf: Property rdf: ID="age">
 <rdfs: domain rdf: resource="#Person"/>
 <rdfs: range rdf: resource="&xsd:
integer"/>
</rdf: Property>

<rdf: Property rdf: ID="phone">
 <rdfs: domain rdf:
resource="#Assistant"/>
 <rdfs: range rdf: resource="&xsd:
string"/>
</rdf: Property>
<rdf: Property rdf: ID="title">
 <rdfs: domain rdf:
resource="#Assistant"/>
 <rdfs: domain rdf: resource="#Teacher"/>
 <rdfs: range rdf: resource="&xsd:
string"/>
</rdf: Property>
<rdf: Property rdf: ID ="courseName">
 <rdfs: domain rdf: resource="#Course"/>
 <rdfs: range rdf: resource="&xsd:
string"/>
</rdf: Property>
<rdf: Property rdf: ID="enroll">
 <rdfs: domain rdf: resource="#Student"/>
 <rdfs: range rdf: resource="#Course"/>
</rdf: Property>

Figure 3 An example of the RDF(S) file.

R = {RC, RD, RA, RI, RAxiom}, where RAxiom = CAxiom PAxiom
RCS = {Person, Course, Teacher, Assistant, Student}
RDS = {String, Integer}
RAS = {age, phone, title, courseName, enroll}
CAxiomS = {
 CAxiomTeacher = {Person}, CAxiomtitle = {Teacher, Person},
}
PAxiom=Dxiom Rxiom
DxiomS = {
 Dxiomphone = {Assistant}, Dxiomtitle = {Teacher, Assistant}, DxiomcourseName = {Course},
 Dxiomenroll = {Student}, Dxiomage = {Person}
}
RxiomS = {
 Rxiomphone = {String}, Rxiomtitle = {String}, RxiomcourseName = {String},
 Rxiomenroll = {Course}, Rxiomage = {Integer}
}

Figure 4 An RDF(S) model RS .

domain of the property “phone” is the Assistant class. Correspondingly,
RxiomA is a finite set of the range resource of the property A. The range
resource of a property can be a class or an attribute datatype. For
example: Rxiomenroll = {Course} represents the range resource of the

206 J. Shan et al.

<rdf: Description rdf: about="161">
<rdf: type rdf: resource=”#Person”/>
<uni: age rdf: datatype=”&xsd: integer”>27</uni: age>

</rdf: Description>
<rdf: Description rdf: about="162">

<rdf: type rdf: resource=”#Course”/>
<uni: courseName rdf: datatype=”&xsd: string”>Math</uni: courseName>

</rdf: Description>
<rdf: Description rdf: about="163">

<rdf: type rdf: resource=”#Teacher”/>
<uni: age rdf: datatype=”&xsd: integer”>35</uni: age>
<uni: title rdf: datatype=”&xsd: string”>professor</uni:title>

</rdf: Description>
<rdf: Description rdf: about="164">

<rdf: type rdf: resource=”#Assistant”/>
<uni: age rdf: datatype=”&xsd: integer”>30</uni: age>
<uni: title rdf: datatype=”&xsd: string”>assistant</uni: title>
<uni: phone rdf: datatype=”&xsd: string”>13578</uni: phone>

</rdf: Description>
<rdf: Description rdf: about="165">

<rdf: type rdf: resource=”#Student”/>
<uni: enroll rdf: resource=”162”>

</rdf: Description>

Figure 5 Instances of the RDF(S) model RS .

property “enroll” is the Course class. And Rxiomtitle = {String} means
the range resource of the property “title” is the “String” datatype.

The RDF(S) instances are shown in Figure 5. Each property in
the instance should conform to the definition of the RDF(S). For example,
the description of “164”, an instance of the Assistant class, has three attribute
“age”, “title” and “phone”. Because the Assistant class is the subclass of the
Teacher class and Person class, it inherits attributes of the superclass. Another
example is the description of “165”. The value of the attribute “enroll” is an
instance, which signifies the relationship between two instances.

4 Mapping the OODB Model into the RDF(S) Model

With the formal definitions of the RDF(S) and the OODM, we propose some
rules of mapping the OODBs to the RDF(S). From Definitions 1 and 2, it can
be seen that there are some inevitable corresponding relationships between
the OODBs and the RDF(S). On the premise of keeping the semantics of
RDF(S) as far as possible, we summarize the corresponding relationships
between elements in the two models in Figure 6.

A Semantics-preserving Approach for Extracting RDF Knowledge 207

Elements in OODM Elements in RDF(S)
class class

subclass subclass
aggregation relationship attribute value is resource

attribute attribute value is RDF Literal
instances instances

OID none
none namespace

Figure 6 Corresponding relationships between elements in the RDF(S) model and the
OODM.

Generally speaking, converting the OODB to the RDF(S) can be carried
out at two levels. The first level is to map the class hierarchy in the OODBs
and the second level is to map the instances in the OODBs.

4.1 Mapping Class Hierarchy of Object-oriented Databases

We first define several symbols to better illustrate the mapping relationships.
Let S = (DS , CS , AS , IS , AGS , OS) be an OODB model derived from
Definition 1 and R = {RC, RD, RA, RI, RAxiom} be an RDF(S) model derived
from Definition 2. Let φ be an operator and φ(S) represents the mapping
result from an OODM to RDF(S). Symbol “⇒” is used to represent the
process of mapping. Then we propose some mapping rules as follows.

Rule 1: (∀c ∈ CS) ⇒ (φ(c) ∈ RC).

For a class in the OODM, it can be converted directly to a class in the RDF(S).
Suppose that we have a class named “Student” in the OODM. With Rule 1,
we can create a class in RDF(S) with the same name as follows.

<rdfs: Class rdf: ID=”Student”/>

Rule 2: (∀c1 ∈ CS) ∩ (∀c2 ∈ CS) ∩ (IC2 = {c1}) ⇒ (φ(c1) ∈ RC) ∩
(φ(c2) ∈ RC) ∩ (CAxiomφ(c2) = {φ(c1)}).

Let class c1 be a superclass of class c2 in an OODM. Then we create two
classes φ(c1) and φ(c2) in RDF(S) model with the same name, in which
φ(c1) is the superclass of φ(c2).

Rule 3: (∀c1 ∈ CS) ∩ (∀a1 ∈ ASS) ∩ (∀d1 ∈ DS) ⇒ (φ(c1) ∈
RC) ∩ (φ(a1) ∈ RA) ∩ (φ(d1) ∈ RD) ∩ (DAxiomφ(a1) = {φ(c1)}) ∩
(RAxiomφ(a1) = {φ(d1)}).

208 J. Shan et al.

DataType OODM RDF(S)

Date and time type
Date xsd:date
Time xsd:time

Datetime xsd:datetime
Boolean type Boolean xsd:boolean

Character type
Byte xsd:byte

Character xsd:character
String xsd:string

Basic numerical type

Decimal xsd:decimal
Integer xsd:integer
Short xsd:short
Long xsd:long
Float xsd:float

Double xsd:double
Enum type Enum xsd:enum

Figure 7 Datatype mapping between OODM and RDF(S).

Let attribute a1 with simple datatype d1 be the attribute of class c1 in
the OODM. Then, φ(c1) is a class of the RDF(S) model and φ(a1) is a
property of φ(c1). So, the domain resource of φ(a1) is φ(c1) and range
resource of φ(a1) is φ(d1). Note that RDF(S) does not have built-in datatype.
So, RDF(S) uses XSD (XML Schema Datatype). The relationships between
OODM datatype to RDF(S) datatype are shown in Figure 7.

Rule 4: (∀c1 ∈ CS) ∩ (∀a1 ∈ ASC) ∩ (AGC1 = {(c2, a1)}) ∩ (∀c2 ∈
CS) ⇒ (φ(c1) ∈ RC)∩ (φ(c2) ∈ RC)∩ (φ(a1) ∈ RA)∩ (DAxiomφ(a1) =
{φ(c1)}) ∩ (RAxiomφ(a1) = {φ(c2)}).

Let attribute a1 with resource datatype c2 be an attribute of class c1 in the
OODM. Then, φ(c1) is a class of the RDF(S) model and φ(a1) is a property
of φ(c1). The created property φ(a1) has domain φ(c1) and range φ(c2).

4.2 Mapping Instances of Object-oriented Databases

A class contains some attributes and its instances are described by the
corresponding attribute values. The mapping of OODB instances is to map
the instances of classes in the OODBs to the instances of the RDF(S).
This mapping is carried out after the mapping of schema in the OODBs.

Rule 5: (∀OID ∈ OS) ⇒ (φ(OID) ∈ RI).

Each instance in the OODBs has a unique object identifier (OID). The value
of the OID does not have a practical meaning and is just applied to dis-
tinguish different instances. The RDF(S) doesn’t have an OID property.

A Semantics-preserving Approach for Extracting RDF Knowledge 209

In the RDF(S), namespace mechanism is used for disambiguation purpose
and expected to be RDF(S) documents defining resources. In the process of
mapping, we discard the value of the OID and generate a random value for
the namespace. For the next instance, we set the namespace as this random
number plus one. This ensures that each RDF(S) instance has a unique
namespace.

Rule 6: (∀o1 ∈ OSC1) ∩ (c1 ∈ CS) ∩ (∀ac1 ∈ ASC1) ⇒ (φ(o1) ∈ RI) ∩
(φ(ac1) ∈ RA)).

The value of an instance in the OODBs can be directly converted into an
RDF(S) structure. If the value of an attribute is null in the OODBs, it cannot
be displayed in the generated RDF(S). The instances in the OODBs are
transformed based on the class relationship.

Rule 7: (∀o1 ∈ OSC1) ∩ (c1 ∈ CS) ∩ (IC1 = {c2}) ∩ (c2 ∈ CS) ∩ (∀ac1 ∈
ASC1) ∩ (∀ac2 ∈ ASC2) ⇒ (φ(o1) ∈ RI) ∩ (φ(ac1) ∈ RAc1) ∩
(φ(ac2) ∈ RAc2).

The instances in the OODBs are transformed based on class relationship. Let
us look at an instance of the class Student: “56379” = [name: Mike, age: 45,
email: Mike@yahoo.com degree: master]. The class has attribute “degree”
and has a parent class Person”. Then we need to determine if attributes
“name”, “age” and “email” belong to the Person class. If yes, we construct
RDF(S) as follows.

<rdf:Descriptin rdf:ID=”12367”>
<degree rdf:datatype=”&xsd:string”>master</degree>
<name rdf:datatype=”&xsd:string”>Mike</name>
<age rdf:datatype=”&xsd:integer”>45</age>
<Email rdf:datatype=”&xsd:string”>Mike@yahoo.com </Email>

</rdf:Description>

Rule 8: (∀o1 ∈ OSC1) ∩ (c1 ∈ CS) ∩ (∀ac1 ∈ ASC1) ⇒ (φ(o1) ∈ RI) ∩
(φ(ac1) ∈ RI)).

An instance aggregation relationship in the OODBs is mapped to a parent-
child nested attribute in the created RDF(S), in which the corresponding
attribute value should be added to the generated RDFS attribute.

Discussion. For the mapping from relational databases (RDBs) to OWL/RDF,
information preservation and query preservation of mapping rules are intro-
duced in [10] to formally verify the mapping rules. Here information preser-
vation means that the information about the transformed object instance is

210 J. Shan et al.

not lost in the mapping process; query preservation refers to using RDF data
obtained by mapping rules to query all instances of each class. Following the
step of [10], it can be formally verified that our proposed rules of mapping
OODBs to RDF(S) are both information and query preservations, and thereby
semantics preservation.

5 Prototype Implementation and Validation

We designed an automatic construction tool for OODM to RDF(S) transfor-
mation named OODM2RDF. In this section, we introduce the system struc-
ture of the tool and verify the correctness and validity of the transformation
results.

5.1 System Architecture

The architecture of the OODM2RDF is shown in Figure 8, which consists of
six main modules as follows.

(1) Database processing module. It reads database files, extracts the seman-
tics which are useful for transforming. Here we define two data structures:
InfoClass and RelationClass. The data extracted from the database are stored
in the data structures in Figure 9. The InfoClass stores the information about a
class, including its class name, superclass names, attributes and attribute val-
ues. The RelationClass stores class names and the relationship name between
two classes. The input and output of this module are a database file and the
instances of InfoClass and RelationClass respectively.

Object-oriented
database

Database parsing
module

Data instance
mapping module

Database information
generating module

Data model
mapping module

RDF(S) generating
module Display module

Figure 8 Architecture of the OODM2RDF.

A Semantics-preserving Approach for Extracting RDF Knowledge 211

InfoClass data structure RelationClass data structure

public class InfoClass{
private String className;
private ArrayList<String> superclass;
private Map<String, String>attribute;
private Map<String, String>value;
…}

public class RelationClass{
private String name;
private String domainclassname;
private String rangeclassname;
……

}

Figure 9 InfoClass and RelationClass structures.

Algorithm:generating RDFS
Input:info:an obejct of InfoClass, relation:an object of RelationClass
Output:RDFS file
Begin

for i←0 to info
e=CreateResource(info[i].getclassname,RDFS.Class)
if (info[i].getparentclass!=null)then

pa=CreateResource(parentclassname,RDFS.Class)
Create(e,RDFS.subClassOf,pa)

for each property in info[i]
p=CreateResource(propertyname,RDF.Property)
if(propertyname is in relation)then

co=CreateResource(propertyname,RDFS.Class)
Create(co,RDFS.range,p)

else
d=CreateResourse(propertyname,RDFS.Datatype)
Create(d,RDFS.range,p)

Create(e,RDFS.domain,p)
END

Figure 10 The algorithm for generating RDF Schema.

(2) Data model mapping module. Its function is to transform the semantic
information in the OODM according to the transformation rules presented in
Section 4.1. Its input is the semantic information obtained from the database
processing module. Figure 10 presents the algorithm of generating RDFS,
which includes two main functions Create() and CreateResource(). Create()
creates the relationship between class and property and CreateResource()
creates a resource node in RDFS. The generated RDFS is stored in a data
structure called model.

(3) Data instance mapping module. Its function is to convert instances in the
OODM according to the transformation rules in Section 4.2. Its input is the
data structures obtained from the database processing module. To process
the instance mapping, the module needs to check if the corresponding data
schema of the instance has completely converted in the data model map-
ping module. If the data model does not exist, the instance is not mapped.

212 J. Shan et al.

Figure 11 The algorithm for generating RDF instances.

Figure 11 presents the algorithm of generating RDF instances, which also
includes two main functions Create() and CreateResource(). CreateProp-
erty() can create a property for a resource node and CreateValue() can
determine the value of the property. The result of the instances mapping is
stored in the model structure also.

(4) RDF(S) generating module. Its input is the model structures obtained in
the data model mapping module and data instance mapping module. Then we
use the API of Jena to generate the RDF(S) document. The document will be
transmitted to the display module.

(5) Database generating module. Its input is the data structure obtained from
the database processing module. It writes information stored in the data
model into a document and then outputs the generated document to the
display module.

(6) Display module. Its input is the documents generated by the RDF(S) gen-
erating module and the database generating module. It presents the content
of the document in an appropriate form on the user interface.

5.2 System Implementation

We implemented a tool named OODB2RDF to construct the RDF(S) with
the OODBs. We apply db4o [20] as the OODBs for RDF(S) construction.

A Semantics-preserving Approach for Extracting RDF Knowledge 213

Figure 12 A screen snapshot of the OODB2RDF.

db4o is an open-source OODB engine, which can be operated by using Java
and Java.net. In db4o, data are stored in .db4o files. We also used Jena, an
ontology toolkit for Java language development to generate the RDF(S) from
the OODBs.

The OODB2RDF was developed on the eclipse platform with Java and
Java 2 JDK 1.9,5 and run on a PC with an Intel Core i5 2.50 GHz CPU and
8 GB of RAM. The screen snapshot of OODB2RDF running one of the case
studies is shown in Figure 12.

It is shown in Figure 12 that the graphical user interface mainly con-
tains three displaying areas. Users can select the db4o file they want to
convert. The information stored in the db4o file is displayed in the left area.
The middle area presents the constructed RDFS and RDF with XML format.
The constructed RDF(S) and RDF(S) with N-triple format are displayed in
the right area.

5.3 Verification of Experimental Results

To verify if there is any semantic loss in the mapping process and if the map-
ping result is correct, we apply query experiments to compare the information
stored in the database and the RDF(S) file generated by the OODB2RDF tool,
respectively. We use the SPARQL language recommended by the W3C [22]

5https://jena.apache.org/documentation/rdf/index.html

https://jena.apache.org/documentation/rdf/index.html

214 J. Shan et al.

Figure 13 Instances of the Teacher class stored in db4o.

Figure 14 Instances of the Teacher class stored in the RDF document.

to query the RDF(S) file, and use the Object Manager Enterprise [20] tool
provided by db4o. With the example in Section 5.3, we designed several
experiments to verify the information preservation and query preservation.

(1) Validation of the inheritance relationship. The classes Professor and
Assistant are subclasses of the Teacher class. The instances of the Teacher
class stored in db4o are shown in Figure 13. There are four instances of the
Teacher class, which have attributes address, ID, phone, name and age.

We use the SPARQL to query all instances of the Teacher class in the
generated RDF document. The query result is shown in Figure 14. The “URI”
column represents the uniform resource identifier of instances. The “type”
column represents the class which the instance belongs to. The results in
Figure 14 show that the OODB2RDF can map the corresponding attribute
and its values accurately and complete the transformation of inheritance
relationship.

(2) Validation of the aggregation relationship. The Course class has an aggre-
gation relationship “taughtBy” with the Professor class. An instance of the
Course class stored in db4o is shown in Figure 15. In Figure 15, the “Field”
column represents the attributes, the “Value” column represents the attribute
values, and the “Type” column represents the attribute types. The instance
shown in Figure 15 has an attribute “CourseName” and its value is “Math”.
Similarly, the value of the “taughtBy” attribute is an instance of the Professor
class.

A Semantics-preserving Approach for Extracting RDF Knowledge 215

Figure 15 An instance of the Course class stored in db4o.

Figure 16 Instances of the Course class stored in the RDF document.

Figure 17 The instance represented by “http://oodb#160”.

We use SPARQL to query instances of the Course class in the generated
RDF document. The query result is shown in Figure 16. In Figure 16, the
“URI” column means the uniform resource identifier of instances, and the
“type” column means the class which the instance belongs to. The “Course-
Name” and “taughtBy” columns are attributes of instances.

The value of the “taughtBy” attribute is an instance’s URI. We query the
generated RDF document for the instance represented by http://oodb#160
and obtain the result shown in Figure 17. Figure 17 shows the instance
represented by “http://oodb#160”, which is an instance of the Professor
class. This result is consistent with the data stored in db4o. It is shown that
OODM2RDF can preserve the semantic of aggregation relationship in the
mapping process.

6 Conclusions

The RDF is one of the cornerstones of the Semantic Web. It is of great
significance to build an RDF based on databases. This paper is devoted to

http://oodb#160
http://oodb#160
http://oodb#160

216 J. Shan et al.

constructing RDF(S) from OODBs. We propose some mapping rules based
on the formal definitions of OODBs and RDF(S). With the proposed mapping
rules, the elements in the OODBs can be transformed into the corresponding
elements in the RDF(S), while preserving the inheritance and aggregation
semantic of database information. We develop a tool named OODB2RDF
that can convert an object-oriented database db4o to RDF(S). We verify with
experiments that our proposed method is both information preservation and
query preservation.

Note that db4o cannot support some complex relationships in OODBs
(e.g., multiple inheritance relation and methods of classes). In our future
work, we will further improve the mapping rules so that more complex
semantics in databases can be rightly converted into RDF(S).

Acknowledgments

The work was supported in part by the National Natural Science Founda-
tion of China (62176121), the Basic Research Program of Jiangsu Province
(BK20191274), and the Natural Science Foundation of Ningxia Province
(2020AAC03212).

References

[1] M. Crasso, C. Mateos, A. Zunino, M. Campo, “A programming model
for the Semantic Web.” Proceedings of the Second International Con-
ference on Advances in New Technologies, Interactive Interfaces and
Communicability, 2012, pp. 208–218.

[2] M. Hert, G. Reif, H. C. Gall, “A comparison of RDB-to-RDF map-
ping languages.” Proceedings of the 7th International Conference on
Semantic Systems, 2011, pp. 25–32.

[3] Dezhao Song et al., “Building and querying an enterprise knowledge
graph.” IEEE Transactions on Services Computing, vol. 12, no. 3,
pp. 356–369, 2019.

[4] S. Bischof et al., “Mapping between RDF and XML with XSPARQL.”
Journal on Data Semantics, vol. 1, no. 3, pp. 147–185, 2012.

[5] Amato F. et al., “Building RDF ontologies from semi-structured
legal documents.” Proceedings of the Second International Confer-
ence on Complex, Intelligent and Software Intensive Systems, 2008,
pp. 997–1002.

A Semantics-preserving Approach for Extracting RDF Knowledge 217

[6] M. Kejriwal, “Domain-specific knowledge graph construction, Springer
Briefs in Computer Science, 2019, pp. 1–87.

[7] Q. Tong, F. Zhang, J. Cheng, “Construction of RDF (S) from UML class
diagrams.” Journal of Computing and Information Technology, vol. 22,
no. 4, pp. 237–250, 2014.

[8] L. Han et al., “RDF123: From spreadsheets to RDF.” Proceedings of the
7th International Conference on The Semantic Web, 2008, pp. 451–466.

[9] P.T.T. Thuy et al., “RDB2RDF: Completed transformation from rela-
tional database into RDF ontology.” Proceedings of the 8th International
Conference on Ubiquitous Information Management & Communication,
2014, pp. 88:1–88:7.

[10] J. F. Sequeda, M. Arenas, D. P. Miranker, “On directly mapping
relational databases to RDF and OWL.” Proceedings of the 21st Inter-
national Conference on World Wide Web, 2012, pp. 649–658.

[11] B. He, M. Patel, Z. Zhang, K. C. Chang, “Accessing the deep Web.”
Communications of the ACM, vol. 50, no. 5, 94–101, 2007.

[12] S. Bagui, “Achievements and weaknesses of object-oriented databases.”
Journal of Object Technology, vol. 2, no. 4, 29–41, 2003.

[13] J.-L. Martı́nez-Rodrı́guez, I. López-Arévalo, A. B. Rios-Alvarado,
“OpenIE-based approach for knowledge graph construction from text.”
Expert Systems with Applications, vol. 113, pp. 339–355, 2018.

[14] S. Auer et al., “Triplify: Light-weight linked data publication from
relational databases.” Proceeding of the 18th International Conference
on World Wide Web, 2009, pp. 621–630.

[15] G. Bûmans, K. Cerans, “RDB2OWL: A practical approach for trans-
forming RDB data into RDF/OWL.” Proceedings of the 6th Interna-
tional Conference on Semantic Systems, 2010, pp. 1–3.

[16] V. Eisenberg, Y. Kanza, “D2RQ/update: Updating relational data via vir-
tual RDF.” Proceedings of the 21st International Conference on World
Wide Web, 2012, pp. 497–498.

[17] E. Oren, B. Heitmann, S. Decker, “ActiveRDF: Embedding semantic
web data into object-oriented languages.” Journal of Web Semantics,
vol. 6, no. 3, pp. 191–202, 2008.

[18] G. Meditskos, N. Bassiliades, “A rule-based object-oriented OWL
reasoner.” IEEE Transactions on Knowledge and Data Engineering,
vol. 20, no. 3, pp. 397–410, 2008.

[19] G. Meditskos, N. Bassiliades, “O-DEVICE: An object-oriented knowl-
edge base system for OWL ontologies.” Proceedings of the 4th Helenic
Conference on AI, 2006, pp. 256–166.

218 J. Shan et al.

[20] J. Paterson, S. Edlich, H. Horning, R. Hornig, The Definitive Guide to
db4o, Apress Publisher, 2006.

[21] Fu Zhang, Z. M. Ma and Li Yan, “Construction of ontologies from
object-oriented database models, Integrated Computer-Aided Engineer-
ing, vol. 18, no. 4, pp. 327–347, 2011.

[22] J. Pérez, M. Arenas, C. Gutierrez, “Semantics and complexity of
SPARQL.” ACM Transactions on Database Systems, vol. 34, no. 3,
pp. 16:1–16:45, 2009.

[23] Songfei Wu et al., “Natural-language-based intelligent retrieval engine
for BIM object database.” Computers in Industry, vol. 108, pp. 73–88,
2019.

[24] Fu Zhang, Z. M. Ma and Weijun Li, “Storing OWL ontologies in object-
oriented databases.” Knowledge-Based Systems, vol. 76, pp. 240–255,
2015.

[25] Qiang Tong, “Mapping object-oriented database models into RDF(S).”
IEEE Access, vol. 6, pp. 47125–47130, 2018.

Biographies

Jing Shan received her bachelor degree in information security in 2010 and
her Master’s degree in computer science in 2013 from Nanjing University of
Aeronautics and Astronautics, China. She is a research associate at Nanjing
University of Aeronautics and Astronautics, China, engaging in intelligent
systems for task allocation, optimization algorithms and application of intel-
ligent transportation systems.

A Semantics-preserving Approach for Extracting RDF Knowledge 219

Jiawen Lu received her bachelor degree in electronic information engineer-
ing in 2018 from the University of Electronic Science and Technology, China.
She is currently pursuing her Master’s degree at the College of Computer
Science & Technology, Nanjing University of Aeronautics and Astronautics,
China. Her research interests include RDF data management and knowledge
graphs.

Xu Chen received his Ph.D. in computer application technology in 2018 from
Northeastern University, China. He is currently a senior engineer at North
Minzu University, China. His research interests include graph deep learning
and cyber security.

Li Yan is currently a full professor at Nanjing University of Aeronautics
and Astronautics, China. Her research interests mainly include big data

220 J. Shan et al.

processing, knowledge graph, spatiotemporal data management, and fuzzy
data modeling. She has published more than 50 papers on these topics. She is
the author of three monographs published by Springer.

Zongmin Ma is currently a full professor at Nanjing University of Aero-
nautics and Astronautics, China. His research interests include big data
and knowledge engineering, the Semantic Web, temporal/spatial information
modeling and processing, deep learning, and knowledge representation and
reasoning with a special focus on information uncertainty. He has published
more than 200 papers in international journals and conferences on these
topics. He has (co-)authored six monographs with Springer. He is a Fellow of
the IFSA and a senior member of the IEEE.

	Introduction
	Related Work
	Formal Descriptions of OODBs and RDF(S)
	Formal Definition of the OODB Model
	Formal Definition of RDF(S)

	Mapping the OODB Model into the RDF(S) Model
	Mapping Class Hierarchy of Object-oriented Databases
	Mapping Instances of Object-oriented Databases

	Prototype Implementation and Validation
	System Architecture
	System Implementation
	Verification of Experimental Results

	Conclusions

