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Abstract

The Android operating system is often inflicted with mobile malware attacks,
which occur due to some system loopholes or vulnerabilities. One malware
can exploit numerous vulnerabilities and multiple malware can exploit a
single vulnerability, thus, causing many-to-many (X :Y ) mapping between
malware and vulnerability. Therefore, it is crucial to understand malware
behaviour to reduce the vulnerabilities. This paper presents the concept of
a “MalVulDroid” framework that maps malware to vulnerabilities using
a two-dimensional matrix. The many-to-many (X :Y ) mapping matrix is
obtained by using natural language processing techniques such as Bag-of-
Words (BoW) leveraging n-gram probability generation and term frequency-
inverse document frequency (TF-IDF), in addition to supervised machine
learning classifiers such as multilayer perceptron (MLP), a support vector
machine (SVM), a ripple down rule learner (RIDOR), and a pruning rule-
based classification tree (PART). This study is the first of its kind where
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malware-to-vulnerability mapping can be leveraged to measure the rigor-
ousness of unknown vulnerabilities and malware during the early phases
of application development. The study considers extensive datasets such as
Androzoo, AMD, and CICInvesAndMal2019 with 150 malware families and
48,907 malware samples, and nine major vulnerabilities affecting Android.
MalVulDroid exhibits highly promising results with an accuracy of 98.04%
for unigrams, and precision and F1-scores of over 90% using ensemble
classifiers.

Keywords: Android, machine learning, malware, mapping, natural lan-
guage processing, vulnerability.

1 Introduction

The COVID-19 pandemic speeded up the transition of the global workforce
to their homes. As a result, organizations were forced to change their infras-
tructure so that employees could work from homes comfortably and in a
productive manner. This new paradigm led to the increased usage of mobile
devices to perform critical tasks. Due to this, mobile attack expanded, making
them more susceptible to cyber threats. Phishing attacks increased by 52%
during COVID-19. People are lured to share sensitive information due to the
wide interest in COVID-19 tracking and vaccination apps. Cybercriminals
also targeted the oxygen shortage in India during COVID-19 in April 2021.
The fake oximeter app, distributed through SMS and WhatsApp, executed
banking trojans and captured the financial information of the user [1].

According to [2], new ransomware samples have increased by 106% and
trojans by 128%. Figure 1 shows the detection of total mobile malware and
new mobile malware [3].

Android is more susceptible to attacks since it is more popular among
users with the global market share being ∼87% at the end of 2018 [4].

The rapid evolution of Android malware makes it difficult to be detected,
which causes serious concern among the security investigators. To the aim
of handling the tremendous increase in volume and diversity of Android
malware, this paper presents the crucial relationship between malware and
vulnerabilities. According to [5], applications from third party unofficial
repositories are other major sources of Android malware. Past research
has focused on detection and classification of Android malware. In [6], a
one-dimensional convolutional neural network (1D CNN) is automated to
detect Android malware, where the model automatically extracts the features
from n-grams of opcode sequences to determine the malicious binary file;
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(a) Total mobile malware detections (b) New mobile malware detections
Figure 1 Mobile malware detections by quarter during 2019–20. (a) Total mobile malware
detections. (b) New mobile malware detections.

however, they did not attempt to explore malware-to-vulnerability mapping.
This mapping can help identify correlated threats in an Android system.

1.1 Contributions

The following are the primary contributions of this work:

1. We propose a framework “MalVulDroid”, which automatically maps
malware to the vulnerabilities exploited.

2. MalVulDroid is a novel amalgamation of text processing techniques
(BoW, n-gram, and TF-IDF) and machine learning (ML) methods such
as multilayer perceptron (MLP), support vector machine (SVM), ripple
down rule learner (RIDOR), and pruning rule-based classification tree
(PART) in the domain of Android malware analysis.

3. We assess MalVulDriod on 150 malware family samples from Andro-
zoo, CICInvesAndMal2019, and AMD with 48,907 malware samples.
The accuracy rate for unigrams is 98.04%, and precision and F1-scores
of over 90% with ensemble classifiers.

4. MalVulDroid allows the discovery of loopholes in Android OS stack
during early design phases while mapping malware to known/ unknown
vulnerabilities.

1.2 Research Objectives (ROs)

We aim to achieve the following research objectives (ROs) in this study:

1. To systematically map malware to the exploited vulnerabilities in
Android. A malware can occur due to loopholes in the system.
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For example DroidKungFu malware exploits the root privileges vulner-
ability (gain privileges) in the Android kernel.

2. To identify unknown malware and vulnerabilities. The new malware and
vulnerabilities are continuously updated from different cybersecurity
reports and bulletins periodically. We tend to create a rich knowledge
base of malware and vulnerabilities for future use, which can be helpful
to make useful predictions with high accuracy.

3. To take appropriate actions after successfully mapping malware to
vulnerabilities at early stages of Android stack development.

We aim to achieve the ROs while addressing the following research
questions (RQs):

RQ1. What are the various kinds of vulnerabilities in Android OS, and
additionally which malware do these vulnerabilities relate to?

RQ2. How can machine learning models be used to fit words in the
malware corpus?

RQ3. How effectively can the MalVulDroid framework detect malware
families using a word-based model on behavioural reports?

The rest of the paper is arranged as follows: Section 2 presents the
various studies related to this domain. Section 3 talks about the different
vulnerabilities and malware prevalent in Android. Section 4 focuses on the
proposed method. Evaluation of MalVulDroid is presented in Section 5.
Section 6 draws the generalized insights. Finally, Section 7 concludes the
research along with the future directions.

2 Related Works

This section primarily focusses on the recent studies based on Android
malware and vulnerabilities. These works help to address the major concerns
and to present the notion of malware-to-vulnerability mapping in Android.

2.1 Literature Review

The authors of [7] introduced a hybrid model using NLP and image recog-
nition to detect the conventional obfuscation techniques in the Android
environment. They targeted four obfuscation classes, namely string encryp-
tion, identifier renaming, reflection, and class encryption, and achieved an
average F-measure of 0.985.

In another work [8], the authors proposed TC-Droid for detecting
Android malware based on text classification. TextCNN was used to further
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differentiate malicious and benign applications. TC-Droid achieved an accu-
racy of 96.72% and precision of 97.60%.

The authors of [9] proposed a MalDy framework for malware detection
using advanced NLP and supervised ML. MalDy behavioural reports were
transformed into word sequences to automatically engineer the relevant secu-
rity features using NLP and ML approaches. MalDy could achieve good
results, however, it could not measure the quality of the behavioural reports
and that impacted the performance.

In another work [10], CoDroid was proposed, which is a sequence-
based hybrid method for Android malware detection. It used the sequences
of dynamic system calls and static opcodes. The authors then classified
the hybrid sequences into malicious and benign using the CNN–BiLSTM–
Attention model. CoDroid achieved 97.6% accuracy.

The authors of [11] detected Android malware using the text semantics of
network traffic. They considered each HTTP flow generated by mobile apps
as a text document, which was processed by using NLP to extract text-level
features. Text semantic features of network traffic were used to develop an
effective malware detection model. For assessment purpose, they used 31,706
benign flows and 5258 malicious flows. Although they achieved an accuracy
of 99.15%, it suffered from major limitations. Firstly, some of the malicious
activities were not fully triggered without effective user inputs. Secondly,
the method was able to detect unknown samples that present some common
characteristics using n-gram features with the malware samples in the training
dataset.

In another work [12], the authors proposed a novel feature selection
method along with an Android malware detection approach. The static fea-
tures such as permissions, API calls, and strings were used in this study.
The feature vector was then fed to different ML algorithms to detect Android
malware. The authors used a document frequency-based approach called
Delta IDF for feature selection. They obtained the highest accuracy and
malware detection ratios ranging from 99.4% to 99.8% for a MalGenome
dataset, 99.7% to 100% for an AndroZoo dataset, and 98.8% to 99.6% for a
Drebin dataset.

In [13], the authors used CNN to detect malicious opcode sequence
locations and compared them with the state-of-the-art local interpretable
model-agnostic explanations (LIME) method. CNN achieved the highest
accuracy of 98% on the Drebin dataset.

In another work [14], the authors proposed a DeepAMD to classify
Android malware using a deep artificial neural network (ANN). The results



2344 S. Garg and N. Baliyan

Table 1 Comparison of previous studies
Citation Objective Dataset ML/DL Model NLP Technique Results

[7] Obfuscation
detection

PRAGuard SVM, DNN,
CNN

Bag of Words
(Words Count,
TF-IDF)

F-measure = 0.985

[8] Malware
detection

Anzhi, MalGenome, TextCNN – Accuracy = 0.966

[9] Malware
detection

MalGenome, Drebin,
Maldozer, AndroZoo,
PlayDrone

CART, Etrees,
KNN, RF, SVM,
XGBoost

Bag of words
(TF-IDF)

F-measure = 0.948

[10] Malware
detection

PlayDrone, Drebin CNN–BiLSTM Word2vec,
GloVe

Accuracy = 0.97

[11] Malware
detection

VirusShare, hiapk DT, Bayesian
Network,
AdaBoost, NN

Bag of words
(TF-IDF)

Accuracy = 0.991

[12] Malware
detection

MalGenome, Drebin,
AndroZoo

RBF, MLP,
k-NN, SLogReg,
SVM,
MODLEM, ID3,
J48, CART, RF

TF-IDF Accuracy = 0.997

[13] Malware
detection

Drebin CNN – Accuracy = 0.98

[14] Malware
detection +
classification

CICInvesAndMal2019,
CICAndMal2017

DT (J48), NB,
SM, MLP, Deep
ANN

– Accuracy = 0.934 on the
static layer to classify
binary
Malware.
Accuracy = 0.931 on the
static layer to classify
malware families.
Accuracy = 0.803 on the
dynamic layer for
malware
category classification.
Accuracy = 0.59 on the
dynamic layer for
malware family
classification.

showed that DeepAMD achieved an accuracy of 93.4% for malware clas-
sification, 90% for malware family classification, and 92.5% for malware
category classification.

Table 1 presents a comparison of previous studies.

2.2 Motivation

Previous studies in the domain of Android malware and vulnerabilities
mainly focus on the detection and classification of malware, vulnerabil-
ity patching, etc. Nevertheless, none of the works report the vulnerabilities
exploited by malware. Given the continuous exploitation of vulnerabilities,
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the necessity to understand Android malware properties is the need
of the hour. The work presented in this study is novel in mapping malware to
the exploited vulnerabilities in Android.

3 Android Malware and Vulnerabilities

This section answers RQ1. Cyber-criminals can launch malware attacks by
exploiting the vulnerabilities in the mobile platforms. According to [15],
malware can exploit 89% of reported vulnerabilities.

Mobile malware is categorized into different types [16] based on their
intended functions, such as, Adware, Ransomware, BackDoor, Trojan,
Trojan-SMS, Trojan-Banker, Trojan-Clicker, Trojan-Spy, Trojan-Dropper,
and HackerTool [17]. Figure 2 reveals the percentage distribution of the
various kinds of mobile malware collected from CICInvesAndMal2019,
Androzoo, and AMD. There are various approaches to detect Android
malware such as static, dynamic, and hybrid analysis [18].

Android is often exploited by several vulnerabilities types such as mem-
ory corruption, SQL injection, denial of service (DoS), gain privileges,
overflow, gain information, code execution, bypass something, and directory
traversal. A detailed snapshot of Android vulnerabilities and their impact on
the Android platform during 2015–2019 is presented in [19].

Figure 2 Mobile malware types.
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Intrinsic properties of malware need to be explored for understanding
malware characteristics. Android malware can exhibit different characteris-
tics such as how the malware is installed and activated, its composition, its
anti-analysis techniques, etc. [20].

4 Malware-to-vulnerabilities Mapping

Malware are introduced in the early phases of software development due to
loopholes that are leveraged by the attackers. There are various techniques
for detecting Android malware, namely, static, dynamic, and hybrid along
with ML approaches [21]. A 2D many-to-many (X :Y ) mapping is con-
structed when a malware exploits many known or unknown vulnerabilities
and one vulnerability is exploited by many malware, as shown in Figure 3.
In the future, more comprehensive mapping between unknown malware and
vulnerabilities can be established.

Set X denotes malware and represented as X = {x1, x2, . . . , xm} and the
set Y denotes vulnerability, represented as Y = {y1, y2, . . . , yn}. A mapping
function f(x) = y is represented as f : x → y, where x ∈ X and y ∈ Y ,
which draws malware in X to the vulnerabilities in Y . f(x) is a multi-valued
function, i.e., for every value of x it gives multiple values of y.

Figure 3 Malware-to-vulnerability mapping (X :Y ).
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Malware-to-vulnerability mapping properties are defined as follows:

1. Malware-to-vulnerability mapping should be enhanced continuously,
i.e., ∀x ∃ y s.t. f(x) ∈ {y1, y2, . . . , yn}.

2. Malware-to-vulnerability mapping should ensure soundness (produce
only the mappings which actually exist) and completeness (produce all
the mappings which actually exist), i.e., f(x) 6= ∅.

3. Assume there is no mutual exclusion in the vulnerability sets such that
ya ∈ Y ′ and yb ∈ Y ′′, where Y ′ and Y ′′ are two vulnerability datasets
with a and b number of vulnerabilities such that ya ∩ yb 6= ∅, then
Y ′ ∪ Y ′′ = Y ′ + Y ′′ − (Y ′ ∩ Y ′′). This condition is sufficiently
met applicable for updating the vulnerability dataset to discourage any
spurious mapping.

4.1 Proposed Method

The step-by-step method, shown in Figure 4, is as follows:

4.1.1 Report generation
We have collected a dataset with a total of 150 families of Android
malware and 48,907 malware samples. The benchmarked datasets such
as AMD [19] classified 24,553 malicious APK samples in 135 varieties
among 71 malware families. The data description is presented in [21].
AndroZoo categorized 20,000 malware samples in 37 malware families [22]

Figure 4 Proposed method of MalVulDroid.
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and CICInvesAndMal2019 categorized the remaining 4,354 malware samples
into 42 unique malware families [23]. These datasets are preferred over
Malgenome and Drebin because these were gathered between 2010 and 2012
and is currently discontinued. For years it had been considered the de facto
Android malware dataset and is included in newer datasets such as AMD.

The ground truth forms the training corpus consisting of malware and
malware types and is obtained from cybersecurity blogs such as Trend
micro,1 Kaspersky,2 F-secure,3 Malware bytes,4 CNet,5 ZDNet,6 Check-
point,7 and New Jersey Cybersecurity and Communications Integration Cell
(NJCCIC).8 We have listed nine different types of vulnerabilities from the
National Vulnerability Database (NVD)9 and CVEdetails10 (c.f. Section 3)
for mapping malware to exploited vulnerabilities. Algorithm 1 presents the
generation and update of the malware description report.

Algorithm 1 Malware description report generation and update
Input: mal dataset: known/detected malware information from cybersecurity solutions

(CSS) as text file (.txt)
Output: Malware description report in CSV file (.csv)

while true, do
if ∃ new malware, then

Add new malware to mal dataset;
for Mi ∈ mal dataset, do

Report← collectDescription (M);
wordBag← getwordBag (Report);
saveReport (wordBag);

4.1.2 Vectorization
This section helps in answering RQ2. Previous techniques manually
inspected the malware features from multiple reports. This process is not

1https://www.trendmicro.com/vinfo/dk/security/news/cybercrime-and-digital-threats
2https://www.kaspersky.co.in/resource-center/threats/mobile
3https://www.f-secure.com/en/home/products/mobile-security
4https://www.malwarebytes.com/mobile/
5https://www.cnet.com/news/android-malware-that-comes-preinstalled-are-a-massive-th

reat
6https://www.zdnet.com/topic/security/
7https://research.checkpoint.com/category/android-malware/
8https://www.cyber.nj.gov/threat-center/threat-profiles/android-malware-variants
9https://nvd.nist.gov/

10https://www.cvedetails.com/product/19997/Google-Android.html?vendor id=1224

https://www.trendmicro.com/vinfo/dk/security/news/cybercrime-and-digital-threats
https://www.kaspersky.co.in/resource-center/threats/mobile
https://www.f-secure.com/en/home/products/mobile-security
https://www.malwarebytes.com/mobile/
https://www.cnet.com/news/android-malware-that-comes-preinstalled-are-a-massive-threat
https://www.cnet.com/news/android-malware-that-comes-preinstalled-are-a-massive-threat
https://www.zdnet.com/topic/security/
https://research.checkpoint.com/category/android-malware/
https://www.cyber.nj.gov/threat-center/threat-profiles/android-malware-variants
https://nvd.nist.gov/
https://www.cvedetails.com/product/19997/Google-Android.html?vendor_id=1224
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scalable when there are a large number of reports and is very time-consuming.
Therefore, features (words) should be represented automatically for mapping
vulnerabilities. MalVulDroid employs the BoW [24], NLP model leveraged
with n-gram generation, probability [25], and TF-IDF [26]. BoW is the sim-
plest approach to convert text into structured features and maintains the count
statistics of an individual word appearing in the document. This technique
generates fixed-length vectors from the corpus using words’ frequencies.
The reports are formulated into features vectors, which are then used to build
classification models.

1. n-Gram: n-gram is a technique where ordering of words is taken into
consideration. It represents a contiguous sequence of n words of a text
corpus (malware description) and predicts the next possible word(s) in a
sequence that appear(s) in the malware description corpus.

a. n-Gram generator: The value for n is dependent on the dataset
type and problem domain and can be any positive integer. The dif-
ferent values of n ranging from 1 to 4 are chosen to analyze
malware-vulnerability mapping. Possible n-gram sequences can be
generated based on the given value of n. We consider only the
unique set of n-gram sequences.

b. n-Gram probability scoring: n-gram sequences generated in
step 1 are fed to the probability scoring component. The Markov
assumption is applied, which considers the word length of imme-
diate n− 1 words only.

n-Gram sequences considered for this study are vulnerability classes
such as steal information, gain privileges, DoS, bypass information, etc.
The probability scores for each n-gram sequence are then stored in a
feature database.

2. TF-IDF: TF-IDF is defined as the product of term frequency (TF) and
inverse document frequency (IDF). Term frequency is the number of
particular n-gram sequences occurring in a malware description.

Algorithm 2 presents the mapping of malware to vulnerabilities.

4.1.3 Building ML models
The MalVulDroid framework uses supervised ML [27] to build malware
to vulnerability mapping models as explained in Algorithm 3. Supervised
classification algorithms cannot be used directly on the multi-labelled dataset.
Therefore, target variable is transformed using the binary relevance (BR)
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Algorithm 2 Mapping algorithm
Input: Report: malware report
Output: M : Mapping Decision

Mmalware ←M1
malware

Vvulnerability ← {V 2
vulnerabilityI , . . . , V

Y
vulnerabilityK}

x← vectorize (Report);
malware result←Mmalware(x)
if malwareresult < 0, then

malware result;
for Vi ∈ Vvulnerability , do

map result← VvulnerabilityK (x)

malware result, map result;

approach (a multi-label binarizer in this case). Furthermore, each ML
algorithm classification performance is tuned up under an array of hyper-
parameters (different for each ML algorithm such as the learning rate and
momentum of the neural network, training set size, choice of kernel in SVM,
etc.), which is done automatically.

Different ML classifiers used in MalVulDroid are MLP, SVM, RIDOR,
and PART. These ML classifiers are preferred over other classifiers because
they have presented promising results in the past researches [28].

Notations

Y = {Ybuild , Ytest}: Global dataset ‘Y ’ is used to build and report the
performance of MalVulDroid in the various tasks. Ybuild is used to train and
tune the hyper-parameters of MalVulDroid models. Ytest is a test set, which is
used to measure the final performance of MalVulDroid classifiers. Stratified
random split on Y is used to divide Ybuild (70%) and Ytest (30%).

Ybuild = {Ybuild , Ytest}: Ybuild consists of training set and validation set
and is used to build models of MalVulDroid.

Ytrain = {(y0, z0), (y1, z1), . . . , (yt, zt)}: Ytrain is the training dataset of
MalVulDroid ML models.

Yvalid = {(y0, z0), (y1, z1), . . . , (yv, zv)}: Yvalid is the validation set used
to tune the trained models. Hyper-parameters are tuned to achieve the best
scores on validation set.

(yi, zi): A single record in Y is composed of yi and its label zi ∈ {V1,
V2, . . . , Vn}, where zi is multi-label with the set of vulnerabilities.

Ytest = {(y0, z0), (y1, z1), . . . , (yx, zx)}: Ytest is used to calculate the
final performance.
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Subsequently, optimum decision thresholds for each model are deter-
mined using its performance on Yvalid . Finally, tuples of optimum ML models
are obtained as Op = {< ml0, u0, p0 >,< ml1, u1, p1 >, . . . , < mla,
ua, pa >, where a is the number of classification algorithms explored. A tuple
< mli, ui, pi > specifies the optimum hyper-parameters pi and decision
threshold ui for ML classification algorithm mli.

Algorithm 3 Building machine learning models
Input: Ybuild : Building set
Output: Op: Optimal models

Ytrain , Yvalid ← Ybuild

Vvulnerability ← {V 2
vulnerabilityI , . . . , V

Y
vulnerabilityK}

for ml ∈ MLalgorithms, do
score← 0
for p in ml.p array, do

model← train (algo, Ytrain , p);
t, u← validate (model, Yvalid );
if t > score, then

mla← < ml, u, p >;

Op.add (mla);

Op

5 Evaluation and Results

We now answer RQ3 and exhibit the evaluation results of MalVulDroid.
The malware types are mapped to numerous vulnerabilities in Table 2.
Here, bit 1 denotes the corresponding vulnerability, whereas bit 0 otherwise.
Table 3 depicts the mapping of malware families to vulnerabilities. Table 3
is only presented partially owing to space limitations. The full table can be
accessed through the link.11

5.1 Accuracy Evaluation for n-gram Probabilities

A 10-fold cross-validation technique is used to evaluate ML classifiers in
MalVulDroid. Accuracies of different ML classifiers are evaluated based on
different n values ranging from 1 to 4. Table 4 presents the average accuracies
of ML classifiers based on n-gram TF-IDF for mapping malware type to
vulnerabilities and malware families to vulnerabilities.

11https://docs.google.com/spreadsheets/d/1gocjQfJ8Ukryif3rCZHUuiWa1ONkLtuOIxXV
idtzKvo/edit?usp=sharing

https://docs.google.com/spreadsheets/d/1gocjQfJ8Ukryif3rCZHUuiWa1ONkLtuOIxXVidtzKvo/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1gocjQfJ8Ukryif3rCZHUuiWa1ONkLtuOIxXVidtzKvo/edit?usp=sharing
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Table 4 Accuracies of ML algorithms for n-gram probabilities
n-Gram Class Intervals

ML Algorithms 1 2 3 4
SVM 93.45 89.21 88.14 85.71
MLP 98.04 93.56 91.17 88.70
PART 95.72 91.14 89.26 86.81
RIDOR 96.81 92.28 91.52 87.13

Figure 5 Accuracies of ML algorithms for n-gram probabilities.

MLP achieves the highest accuracy of 98.04% at n = 1. The second-best
performance is shown by RIDOR with 96.81% accuracy at n = 1. It is seen
that the accuracy of ML classifiers decreases with an increase in the value of
n, as shown in Figure 5.

5.2 Comparison of ML Algorithms Based on Different Metrics

ML models used in MalVulDroid are compared on the basis of various met-
rics such as true positive rate (TPR), true negative rate (TNR), false positive
rate (FPR), false negative rate (FNR), accuracy (Acc) and error (Err) [29] as
shown in Figure 6.

Evidently, Figure 6(a) shows that MLP has a reasonable TPR, TNR, and
accuracy in comparison to the other ML algorithms. However, SVM shows
the highest error rate followed by PART and RIDOR, as shown in Figure 6(b).
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(a) TPR, TNR, Accuracy (b) FNR, FPR, Error

Figure 6 Comparison of ML algorithms based on different metrics.

5.3 Performance of MalVulDroid

The effectiveness of MalVulDroid is evaluated for different ML algorithms
with hyper-parameters for setting neural network such as the learning rate for
training MLP (0.3 in this case), momentum (0.2), number of hidden layers (2)
and number of epochs (450). These hyper-parameters are verified for multiple
iterations where the reasonable results are achieved.

5.3.1 F1-score
In most cases, MalVulDroid achieves an F1-score of 90%, as shown in
Table 5. A baseline is a basic model that does not require much expertise
and provides reasonable results. A baseline model is based on the heuristics
embedded in the model and, therefore, misses out a lot of structural informa-
tion. A baseline model can be tuned with the hyper-parameters to improve
the results. Ensemble models are built by combining multiple base learners
using different strategies (averaging or voting) to reasonably improve the
performance considerably.

It can be seen from Table 4 that all the ensemble models show reasonable
F1-scores, and MLP shows the highest F1-scores.

5.3.2 Recall and precision
It is evident from Figure 7 that MLP has higher precision and recall than other
ML models.

5.3.3 Accuracy
Accuracy of different ML models across the training-set size (number of
behavioural reports) and test-size for MalVulDroid is also investigated.
Figure 8 illustrates the results of our analysis for different ML models.
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Table 5 F1-score (%) of ML algorithms after hyperparameter tuning
Baseline Tuned Ensemble

SVM Mean 86.666 90.697 94.428
SD 7.354 7.555 6.867
Min 69.629 73.854 77.685
25% 83.807 89.075 91.375
50% 85.723 89.801 96.726
75% 92.164 96.835 92.164
Max 93.209 98.225 93.209

MLP Mean 89.761 94.091 97.664
SD 5.978 5.719 5.200
Min 78.006 82.341 85.354
25% 85.930 89.960 98.135
50% 91.971 97.209 99.932
75% 92.823 97.036 92.823
Max 93.512 97.983 93.512

PART Mean 89.025 93.558 97.607
SD 5.654 5.096 5.517
Min 78.688 83.908 85.906
25% 85.427 89.693 96.737
50% 91.679 96.507 91.679
75% 92.797 97.475 92.797
Max 93.306 98.042 93.306

RIDOR Mean 81.116 85.390 88.890
SD 7.091 6.621 6.362
Min 70.004 74.459 77.691
25% 76.019 81.052 85.456
50% 84.458 89.549 91.943
75% 86.884 89.125 93.482
Max 86.263 90.416 94.128

It is evident that MalVulDroid achieved high scores even with relatively
small training samples; however, SVM achieved 55% accuracy (lowest) MLP
achieved 72% (highest) accuracy with 100 training samples. Here, the prob-
lem of over-fitting is solved using principal component analysis (PCA) [30],
a dimensionality reduction technique.

5.4 Efficiency of MalVulDroid

The efficiency of MalVulDroid can be assessed with respect to mean run-
ning time for examining behavioural reports. The runtime of MalVulDroid
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Figure 7 Recall and precision of MalVulDroid.

(a) Training sample (b) Testing sample

Figure 8 Accuracy of ML models for training and testing samples.

comprises pre-processing time and mapping time (training time + prediction
time). Pre-processing time remains same across all ML models; however,
mapping time varies. Figure 9 clearly shows that MLP is more expensive
in terms of prediction time and training time. The efficiency of MalVulDroid
is assessed on an Intel (R) Core(TM) i5-5300U CPU @ 2.30GHz (16.0 GB
RAM) machine with quad-core processor.

6 Generalized Insights

It can be comprehended from the results (obtained in Section 5) that MalVul-
Droid shows encouraging results for mapping malware-to-vulnerabilities and
single malware can be exploited by multiple vulnerabilities. However, there
can be many variants in a single malware family. For example, AdDown
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Figure 9 Average runtime of MalVulDroid.

adware can have multiple variants such as Joymobile, Nativemob, and Xavier.
These malware variants are mapped to the majorly exploited vulnerabilities.
In a broader view, malware types such as ransomware, adware, spyware,
trojan, etc. are mapped to the exploited vulnerabilities.

There is a dearth of literature in this domain and, hence, this study is
the first of its kind, and it cannot be compared with the existing literature.
The closest work to our study is of [31], where the authors mapped uninten-
tional Android bugs to security vulnerabilities. Our methodology is different
from [31] in terms of text processing techniques using ML classifiers and
malware dataset.

MalVulDroid is conceptualized on the set theory, and to a large extent
it maps malware to vulnerabilities. This study presents novelty in the area
of Android security where NLP along with ML techniques are leveraged for
mapping malware and vulnerabilities. The MalVulDroid framework can be
put to use by Android developers and researchers, where the security issues
can be resolved during early phases of application development.

7 Conclusion

The spur in Android malware has caused serious concern among security
investigators. The root cause of malware attack can be known by investigat-
ing the malware behaviour. This study provides a malware to vulnerability
mapping using a novel “MalVulDroid” framework. MalVulDroid models
the malware description reports using BoW and leverages NLP and ML
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techniques to build ensemble ML models. MalVulDroid achieves an accuracy
of 98.04% using MLP. The results seem encouraging and, thus, it is crucial
to further explore this wide yet nascent domain.

The quality of malware description reports determines the performance of
MalVulDroid. Currently, MalVulDroid is incompetent to assess the quality of
the description report and hence investigators can choose non-standard (from
unknown sources) malware reports. This issue can be taken for future work.
Deep learning and transfer learning can be used in future to achieve more
promising results.

References

[1] Check Point Software Technologies Ltd., Report on Insights on Emerg-
ing Mobile Threats, 2021.

[2] Skybox Security, Report on Vulnerability and Threat Trends, 2021.
[3] McAfee, Report on Mobile Threat, 2021.
[4] U. Ahmed, J.C.W. Lin, and G. Srivastava, G., ‘Mitigating adversarial

evasion attacks of ransomware using ensemble learning’, Computers
and Electrical Engineering, vol. 100, p. 107903, 2022.

[5] D. Ö. Şahın, S. Akleylek, and E. Kiliç, ‘LinRegDroid: Detection of
Android malware using multiple linear regression models-based clas-
sifiers’, IEEE Access, vol. 10, pp. 14246–14259, 2022.

[6] P.N. Yeboah and H.B. Baz Musah, ‘NLP technique for malware
detection using 1D CNN fusion model’, Security and Communication
Networks, 2022.

[7] M. Conti, P. Vinod, and A. Vitella, ‘Obfuscation detection in Android
applications using deep learning’, Journal of Information Security and
Applications, vol. 70, p. 103311, 2022.

[8] N. Zhang, Y.A. Tan, C. Yang, and Y. Li, ‘Deep learning feature explo-
ration for android malware detection’, Applied Soft Computing, vol. 102,
p. 107069, 2021.

[9] E.B. Karbab and M. Debbabi, ‘Maldy: Portable, data-driven malware
detection using natural language processing and machine learning tech-
niques on behavioral analysis reports’, Digital Investigation, vol. 28,
pp. S77–S87, 2019.

[10] N. Zhang, J. Xue, Y. Ma, R. Zhang, T. Liang, and Y.A. Tan, ‘Hybrid
sequence-based Android malware detection using natural language pro-
cessing’, International Journal of Intelligent Systems, vol. 36, no. 10,
pp. 5770–5784, 2021.



MalVulDroid: Tracing Vulnerabilities from Malware in Android 2359

[11] S. Wang, Q. Yan, Z. Chen, B. Yang, C. Zhao, M. Conti, and Shan-
dong, ‘Detecting Android malware leveraging text semantics of net-
work flows’, IEEE Transactions on Information Forensics and Security,
vol. 13, no. 5, pp. 1096–1109, 2017.
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