
Model-based Generation of Web Application
Programming Interfaces to Access

Open Data

César González-Mora∗, Irene Garrigós, Jose Zubcoff and
Jose-Norberto Mazón

Department of Languages and Informatics Systems, University of Alicante, Spain
E-mail: cgmora@ua.es; igarrigos@ua.es; jose.zubcoff@ua.es; jnmazon@ua.es
∗Corresponding Author

Received 28 February 2020; Accepted 04 October 2020;
Publication 22 December 2020

Abstract

In order to facilitate the reusing of open data from open data platforms’
catalogs, Web Application Programming Interfaces (APIs) are an important
mechanism for reusers. However, there is a lack of suitable Web APIs to
access data from open data platforms. Moreover, in most cases, the currently
available APIs only allow to access catalog’s metadata or to download entire
data resources (i.e. coarse-grain access to data), hampering the reuse of data.
Therefore, we propose a model-based approach to automatically generate
Web APIs from open data. Our generated Web APIs facilitate the access and
reuse of specific data (i.e., providing fine-grain or query-level access to data),
which will result in many societal and economic benefits such as transparency
and innovation. With this approach we address open data publishers which
will be able to include a Web API within their data, but also open data reusers
in case of missing APIs. This APIfication process, which means the creation
of APIs for every available dataset, is based on automatic, generic and stan-
dardised generation mechanisms. The performance and functioning of this

Journal of Web Engineering, Vol. 19 7–8, 1147–1172.
doi: 10.13052/jwe1540-9589.197810
© 2020 River Publishers

1148 C. González-Mora et al.

approach is validated with different datasets, which successfully generates
Web APIs that facilitate the reuse of data.

Keywords: Web APIs, open data, data access, data reuse.

1 Introduction

As the World Wide Web has become an important information platform,
many organisations are interested in providing information via Internet
[2]. Therefore, worldwide governments and organisations are increasingly
generating data and making it available online [14], which contributes to
the globalisation of information. Promoting the use of public information
produces transparency, innovation and other social, political and economic
benefits [14]. The potential beneficiaries of these open data initiatives are
data reusers (individuals and companies), which can use data to create useful
applications or services to grow in economic terms [20] and benefit the wider
society [29].

Several studies [20, 27, 28] indicate that the economic potential of open
data is significant: it is estimated [27] that public information could generate
more than $3 trillion a year of value as a result of open data in different
areas of the global economy, such as Education and Transportation. It is
also stated [27] that direct and indirect economic benefits for the whole EU
economy were about the order of 200 billion euros in 2008. For example,
in the United Kingdom the open data program estimated [27] the direct
economic benefits of public sector information at around 1.8 billion pounds
a year, with an overall impact including direct and indirect benefits of around
6.8 billion pounds. Also, in Spain it is estimated from the Aporta project [20]
that there are over 150 companies that work solely on the infomediary sector,
generating around 500 million euros annually that can be directly attributed
to open data reuse [28]. Besides these economic benefits, the increase of open
data initiatives is motivated by the growing pressure imposed by governments
[14, 25] with new legislation [1], which force public administrations to offer
data to citizens. This open data is commonly offered in catalogs within Web
platforms. For instance, data.gov.uk provides a catalog of data resources from
the UK Government or the European Data Portal provides data catalogs from
the European Commission, which are among the most popular open data
repositories.

In order to handle open data, Web APIs are a recommended feature of
open data platforms [5], allowing developers to build their own applications
and bring open data to citizens. Therefore, Web APIs not only enable retrieval

Model-based Generation of Web APIs to Access Open Data 1149

Table 1 Current amount of data and APIs in open data platforms
Datasets Datasets with % of datasets with Generic

Open Data Portal query-level API query-level API Web API
europeandataportal.eu
(Europe)

860,000 60,000 7% No

data.gov (US) 301,000 20,000 6.6% CKAN API

data.gov.uk (UK) 46,000 200 0.4% CKAN API

datos.gob.es (Spain) 20,000 2,000 10% API to
download
resources

open.canada.ca
(Canada)

80,000 40 0.05% CKAN API

data.gov.au (Australia) 30,700 6,300 20.5% CKAN API

data.gov.sg
(Singapore)

1,500 13 0.9% CKAN API

govdata.de (Germany) 21,000 200 1% No

datos.gob.cl (Chile) 3,500 3 0.1% CKAN API
Average results 150,522 9,862 6.6% CKAN API

of information, but also facilitate building of versatile applications based on
online data [17].

Although organisations and other organisms under the umbrella of smart
cities are starting to create public data catalogues [22], the absence of suitable
Web APIs to access online data is a common problem in open data platforms
around the world, as shown in Table 1. The amount of data offered on the most
important data platforms varies between more than a thousand and almost
a million datasets. However, only about the 6.6% of datasets, on average,
include a query-level API to ease the access to the data, which means a Web
API to access directly that data. In most cases, the platforms include an API
following the DCAT1 standard, such as a CKAN API2, which is oriented
to access only data catalog metadata. At most, a download link for entire
datasets is also provided (i.e., coarse-grain access to data). A query-level API
with fine-grain access to data allows to filter and project data sources in order
to get specific data. This type of access makes it easier for developers to
provide specific data according to user needs [5] and improve the process of

1https://www.w3.org/TR/vocab-dcat/
2https://docs.ckan.org/en/2.6/api/

https://www.w3.org/TR/vocab-dcat/
https://docs.ckan.org/en/2.6/api/

1150 C. González-Mora et al.

data reuse, but there is still a lack of these kind of query-level APIs in current
open data platforms.

Other problem arisen from open data platforms is that their APIs do not
typically include any proper documentation or any precise specification of the
functionality and data they offer. Therefore, understanding how to use these
APIs and consequently reusing data is a difficult task. Moreover, aiming at
standardising the way in which Web APIs are specified and documented, the
OpenAPI Initiative has been announced by several vendors, such as Google
and SmartBear [9]. However, most documentation does not follow a standard
that allow to easily understand and reuse open data [9].

In order to tackle these problems, we propose an approach to grant access
to open data at the query-level (i.e., fine-grain access). The main objective is
to help open data publishers to include an API within the data to be opened. It
is also very useful for helping developers to create value from open data, that
is, facilitate the reuse of open data and thus promote citizens to access it. With
our approach, open data reusers will be able to manage how they provide data
to the citizenship, such as creating mobile applications that access open data
through the automatically generated APIs. Therefore, the aim is to facilitate
access to the data, helping data publishers to provide the API for already
published data or for new data, and otherwise for developers who would use
the APIs to reuse data from apps or give access to third parties. This gives
developers an easy way to reuse data as long as they have not been provided
with an API, which usually happens. Even if they have to publish the API
on a server, but they have control over both the data and its access, which
also has its benefits. For example, these APIs can be easily customised by
developers, if needed, to improve the experience of obtaining data.

This approach consists of an APIfication process [30], which means
the automatic creation of APIs for every dataset, based on model-driven
approach mechanisms [4] which allow us to face up with the heterogeneity
of the existing open data sources. Also, model-driven mechanisms allow
us to more easily include APIs corresponding definition and documentation
following the most popular open source standard: OpenAPI 3.0. Following
this standard helps understanding the functioning of the API and supposes
an added value since it can be used for other purposes, such as the gener-
ation of models that represent the API [10]. The main advantage of using
models and metamodels is the integration of the API and its documenta-
tion in Model Driven Development processes, which consist of important
development artifacts [15] that help in standardising the way of defining
APIs, improving the visualisation of such structures using easy to read

Model-based Generation of Web APIs to Access Open Data 1151

interfaces. Using models in software development is highly recommended
because models help us understand a complex problem and its potential
solutions through abstraction [24]. Therefore, we can take advantage of
using models and modeling techniques because they are one of the most
fundamental techniques to address challenges in software development such
as problem understanding, balancing time and effort, dynamic changes in the
development and the management of large projects [3]. It consists of a way
to increase the quality, efficiency and predictability of large-scale software
development [3].

This article is structured as follows. In Section 2 it is presented the
running example used to illustrate the approach explained in Section 3, in
which the overview of the APIfication approach is detailed. Then, in Section
4, the approach is validated to test its correct functioning and analyse its
performance. Finally, related work is described in Section 5 and the paper
concludes in Section 6.

2 Running Example

This section introduces a running example about accessibility in cities, which
is used along the paper to illustrate the proposal. One of the most important
things that smart cities want to achieve is to optimise the urban accessibility
for people with disabilities, which would improve the quality of people’s life
[18]. For that reason, it is used as a case of study of the automatic Web API
generation process.

This running example exposes a situation where a developer wants to
create value from open data. In this case, providing this open data through a
mobile application, containing information about local businesses that can be
accessed by people with disabilities. However, when searching on the Internet
for open data about accessible businesses to reuse them in the application,
the developer discovers different problems. Firstly, datasets that contain the
required data do not include the suitable Web APIs to reuse that data directly
(i.e. fine-grain access). And secondly, in case there is an API, it is difficult to
know how to use the API because proper documentation following a standard
such as OpenAPI is not included.

The example would be equivalent to approaching it from the point of
view of the data publisher, which aims to improve access to its information
by offering a Web API with query-level capabilities and documentation. For
creating such infrastructure, the data publisher can use our proposal that
facilitate this task, especially if data publisher lacks programming skills.

1152 C. González-Mora et al.

Table 2 Extract of businesses accessibility data in CSV format
Decal Recipient Closed/

Moved
Location Year Category Sub-Category

AMC
Showplace 11

1351 S
College Mall
Rd

1996 Entertainment
Venue

Cinema

American Eagle
Outfitters

College Mall 1996 Retail Clothing

Andrew Davis
Mens Wear

101 W
Kirkwood
Ave

2011 Retail

Applebees
Neighborhood
Grill and Bar

College Mall 1996 Restaurant/Bar American

Thus, developers who want to create value from open data will take advantage
of the direct access and reuse of data through the auto-generated API.

In this example, the suitable data is offered in the data.gov Portal,
where only a CKAN API is available to access metadata or to download
entire datasets (i.e. coarse-grain access). The Accessibility Decal Recipients
dataset3 contains information about the AccessAbility Decal program in order
to recognise businesses in the city of Bloomington (United States) that are
accessible to people with disabilities. This dataset is available in CSV, which
is a simple and well table-structured data format commonly used in open
data platforms, with 3 stars in the 5-star open data model4. In Table 2 there
is an extract of this accessibility data, which includes information such as the
name, place and category of the different businesses that are accessible by
people with disabilities. The column “Decal Recipient” is the name of the
accessible business, the “Closed/Moved” column is filled when a business is
closed or moved to another location, the next column “Location” specifies
the current place of the business, the opening year is detailed in column
“Year”, and finally, the “Category” and “Sub-Category” columns consist of a
classification of the business area of the establishment, which can be empty.

The application created by the developer should offer a list of accessible
businesses, being able to filter by the name of the business, the current
situation (if closed or moved), the location within the city of Bloomington,
the year when the business opened, the category of the business and the

3https://catalog.data.gov/dataset/accessibility-decal-recipients
4https://5stardata.info/en/

https://catalog.data.gov/dataset/accessibility-decal-recipients
https://5stardata.info/en/

Model-based Generation of Web APIs to Access Open Data 1153

subcategory. All these filters should be able to be applied both individually
and together (combined according to user needs).

This example attempts to demonstrate that developers need query-level
Web APIs to easily access and reuse the desired data. We provide an approach
to generate these APIs, which could also be used by the publisher of the data
to provide also the missing Web APIs. This approach is explained in the next
Section.

3 A Model-based APIfication Approach to Access Open
Data

In this section a model-driven APIfication approach is presented in order to
achieve the automatic generation of query-level Web APIs with fine-grain
access to data.

An overview of the automatic generation process is shown in Figure 1.
This APIfication process is able to automatically generate a Web API for any
dataset chosen by a developer. This transformation process starts with an open
data source, from which a complete Web API is generated, including interac-
tive OpenAPI documentation of the API. This auto-generated Web API helps
users to access and reuse the initial data, and the generated documentation
can be helpful to know how to use the API and even to try it through a
Web interface. The automatic generator creates a model of the data and
the OpenAPI documentation in order to take advantage of the large number

Figure 1 Automatic API generation process.

1154 C. González-Mora et al.

of existing modeling tools for the integration of these artefacts in model-
driven development processes. The whole transformation process from the
data source to the Web API is launched by the automatic generator program5,
including the following steps: a text to model (T2M) transformation from the
data source to the data model, a model to model (M2M) transformation from
the data model to the OpenAPI model, a model to text (M2T) transformation
from the OpenAPI model to its OpenAPI documentation, and finally a text to
text (T2T) transformation from the OpenAPI documentation to the Web API.
When the process has finished, users are able to query the generated Web
API, then the API access the data from the source and finally the queried data
is returned to the users.

The automatic generator can be used by users without programming
skills, such as an open data publisher or an open data reuser. In order to
launch this generator, the only requirements are having installed java and
nodejs. An example of launching the generator consist of using the following
command in the computer’s terminal: java -jar ag.jar csv2api filename, where
“filename” can be the link to an online dataset or the name of a previously
downloaded dataset. More information is available at the GitHub page6.

The transformation process is explained in detail in the following subsec-
tions, describing the different stages that are part of the process.

3.1 From Data Source to Data Model (T2M)

The first stage of the transformation process starts from a specific data source,
from which a data model is inferred.

The data source is converted into the data model through a text to model
(T2M) transformation in order to represent the data and proceed with the
model-based transformation approach. This data model consists of a MOF7-
based model in XMI format according to its metamodel defined by the
authors (Figure 2), similar to the one specified in the Eclipse model trans-
formations scenarios8, which is implemented in the Ecore format from the
Eclipse Modeling Framework (EMF). In the metamodel, the relation between
the different objects is specified: a CSV file with its filename contains a set
of rows, and a row with its position contains a set of cells with value and
type. Each cell of the model contains the information of each cell from the

5https://github.com/cgmora12/AG/blob/master/ag.jar
6https://github.com/cgmora12/AG
7https://www.omg.org/mof/
8http://www.eclipse.org/atl/atlTransformations/

https://github.com/cgmora12/AG/blob/master/ag.jar
https://github.com/cgmora12/AG
https://www.omg.org/mof/
http://www.eclipse.org/atl/atlTransformations/

Model-based Generation of Web APIs to Access Open Data 1155

Figure 2 CSV datafile metamodel.

first rows of the CSV file: the first row of the data source will be used by the
automatic generator for creating the API methods, properties and parameters;
and the second row will be used as example data and also for type inference.
This type inference is performed by analysing the data types of a set of
values from the dataset second row. We do not analyse the whole data due
to performance issues, but in case the type inference is not correct, the data
types specified in the API can be changed by developers after the generation
process is completed.

In order to work properly, the dataset to apply the automatic generation of
API must be in CSV format, which has been chosen in this example because
it is one of the most popular formats for publishing data. In case the dataset
is in other format the only effort to properly generate the API can be to parse
it to CSV, which can be performed by external tools such as Convertio9. This
CSV must have the information stored in a tabular form separated by commas
or semicolons, avoiding strange characters and metadata embedded in the
file itself. The first row of the CSV must contain the names of the columns,
whereas the other rows contain the different values for each column, always
using the same separator between those columns. This first row will be used
by the automatic generator to create, for each column name, a method of
the API, a parameter for this API method and a property defined in the API
documentation. The values obtained from the second row of the dataset will
be used by the automatic generator for example values of the API methods,
parameters and properties.

Particularly, in the running example the automatic generation program
reads the Accessibility Decal Recipients dataset, which is a CSV file, and
processes it by rows and columns. The data in the first couple of rows is
analysed, creating a data model with table, row, and cell objects, as shown in
Figure 3. This generated model contains an object “Table”, in which we can
find a set of “Rows” containing many “Cells”. The information contained
in the first row cells consists of the column names, while the second row
cells contain data examples about accessible businesses. An example of

9https://convertio.co/en/

https://convertio.co/en/

1156 C. González-Mora et al.

Figure 3 Datafile model in XMI format.

column name is “Decal Recipient”, which is converted into a cell in the
first row (Row 0 in Figure 3). This cell and all cells from the first row will
be then used as the name of an API method, parameter and property in the
following transformation steps. On the other hand, an example of value from
of “Decal Recipient” is “AMC Showplace11”, which is converted into a cell
in the second row (Row 1 in Figure 3), which will be used as example value
in the corresponding API method, parameter and property.

3.2 From Data Model to OpenAPI Model (M2M) and
Documentation (M2T)

The second stage in the automatic API generation process is about creating
the documentation of the API, which follows the OpenAPI standard and it is
based in models.

Once created the data model in the previous stage, a model to model
(M2M) transformation between the data model and the OpenAPI model is
performed. After that, a model to text (M2T) transformation between the
OpenAPI model and the OpenAPI documentation is carried out, obtaining
at the end of this stage a complete documentation of the API and its related
model.

First, the automatic generation program launches the M2M transforma-
tion defined in ATL language. ATL is one of the most widely used model
transformation languages, backed by a mature and efficient execution runtime
[15], which is used currently [8, 26]. For this reason, a set of transformation

Model-based Generation of Web APIs to Access Open Data 1157

Figure 4 ATL transformation rules extract.

rules between the data model and the OpenAPI model have been defined
using the ATL language, as shown in the extract of the code in Figure 4.
The ATL transformation rules start from the Table object defined in its Ecore
metamodel, and its rows and cells are used to generate the OpenAPI model
and all the different objects contained in its OpenAPI metamodel. Basically,
from a data model containing the first rows of a CSV file, the OpenAPI model
is generated by creating the different elements of the OpenAPI documentation
from these set of cells.

The generated OpenAPI model is in XMI format, as shown in Figure 5.
It is based on an OpenAPI metamodel (Figure 6) defined by the authors,
in Ecore format. It has been created by updating an existing OpenAPI
metamodel10 from Swagger 2.0 to OpenAPI 3.0 specification. This OpenAPI
metamodel contains all the related objects required by OpenAPI. The main
parts of this metamodel are: the “API” object containing OpenAPI informa-
tion about the version and the related “Server” object which specifies the URL

10https://github.com/SOM-Research/APIDiscoverer/tree/master/metamodel

https://github.com/SOM-Research/APIDiscoverer/tree/master/metamodel

1158 C. González-Mora et al.

Figure 5 Extract of OpenAPI model (XMI).

Figure 6 OpenAPI metamodel.

to the Web API; the “Path” object which includes a set of API operations
with their parameters and specific response with its code, content and type;
and finally, the “Component” object to define the properties of the API within
the “Schemas” and “MainComponent” elements. In this case, the automatic

Model-based Generation of Web APIs to Access Open Data 1159

generator defines in ATL a transformation from each cell of the first row
(which is the column names of the CSV file) to an operation of the API,
and also each cell of this first row is transformed into a property and a
parameter of the API, using each cell of the second row as example value
for the corresponding property/parameter. The OpenAPI model contains all
of these objects with specific information about the running example, that
is, the different paths and components of the API to retrieve the accessible
businesses data.

Considering the “Decal Recipient” column name from the running
example, it is converted into a “Path” object with the pattern “/De-
cal Recipient/Decal Recipient” that includes a get operation, and also to
a Parameter object with name “Decal Recipient” that can be used in this
operation and a “Property” also with name “Decal Recipient”.

The definition and documentation of the Web API is represented by a
JSON file (Figure 7) according to the standards of Swagger,11 because it helps
us to design, build, document and test the API. Therefore, by a model to text

Figure 7 Extract of OpenAPI JSON file.

11https://swagger.io

https://swagger.io

1160 C. González-Mora et al.

(M2T) transformation, the API documentation JSON file is directly inferred
from the OpenAPI model in XMI format. It consists of a simple element to
element transformation since the OpenAPI model contains the same elements
than the API documentation but in different format (JSON rather than XMI).

3.3 From OpenAPI Documentation to Web API

Finally, in this stage the complete Web API is generated from its OpenAPI
documentation.

The automatic generator creates the API represented by a server in
NodeJS,12 a simple and efficient runtime environment for network applica-
tions. This process is accomplished with the help of the Swagger Codegen
tool, which creates the structure of the server and manages the calls to the API
redirecting them to the corresponding method in the NodeJS code. It also cre-
ates an interactive documentation of the API from the existing documentation
generated in the previous step. After that, the automatic generator completes
the server with the needed features to return the asked data retrieved from the
data source, such as filtering by the required parameters. This code added
automatically contains functions to read the source file, searching for the
desired data and returning it to the user, which is independent from the data
source and equal in each API generated.

Between the OpenAPI and the API to generate there is a direct relation-
ship: each “Path” specified in the OpenAPI documentation will result in a
different method of the API, and each parameter of the API will be used by
the API for filtering and returning the results. The structure of the API also
contains: an “api” folder, which includes a swagger file defining structure
of the API; the folder “controllers”, which includes the main controller to
manage the queries and redirect them to the default controller to execute the
query, get the information and return it to the user; a “node modules” folder
with the required libraries to implement the NodeJS server; the file “data.csv”
containing the CSV input data; and finally a set of additional files in which
there is API information.

This generated Web API with query-level capabilities can be published in
an online server so that open data reusers can query the data with the desired
parameters to filter the information. As the generated API is managed by
the user, it can be easily customised, allowing developers with programming
skills to add new queries, change the existing ones, modify the filters and

12https://nodejs.org

https://nodejs.org

Model-based Generation of Web APIs to Access Open Data 1161

personalise the data they provide. The available queries and filters of the Web
API are specified in the interactive OpenAPI documentation, and because of
its simplicity they can be executed by non-experts in query languages. All
these queries will be of type HTTP GET, specifying the value of the different
columns for filtering the results. The queries that this auto-generated API
offers came from the dataset itself, so that each column of the dataset is used
to create one API method, which can be used to filter the information with
values from this specific column. Moreover, to improve the performance of
the APIs pagination of the results is available through using limit and offset
as parameters of the query. When a user queries the generated API, this query
is analysed in order to provide the suitable information. The information to be
returned to the user is extracted directly from the dataset, which is analysed
row by row by the API to check whether the row fulfils the query filters. Once
all the rows that fulfil the query are gathered together by the API, they are sent
together parsed as JSON13 format because it is easy for humans to read and
write and it is easy for machines to parse and generate.

For the running example, the Web API generated is available online14

and it contains a set of methods to query the accessible businesses. All the
operations available in the generated API as example are available in the Ope-
nAPI documentation online,15 which is shown in Figure 8. Considering the

Figure 8 Interactive OpenAPI documentation of the API.

13https://www.json.org
14https://wake.dlsi.ua.es/AG/RunningExample/
15https://wake.dlsi.ua.es/AG/docs/

https://www.json.org
https://wake.dlsi.ua.es/AG/RunningExample/
https://wake.dlsi.ua.es/AG/docs/

1162 C. González-Mora et al.

“Decal Recipient” column name from the original dataset, it is now a method
of the API which can be queried using the GET operation: https://wake.dlsi.
ua.es/AG/RunningExample/Decal Recipient/AMCShowplace11, which uses
“AMC Showplace 11” as value of the “Decal Recipient” parameter defined
also as property in the API documentation.

When a user queries this API, a list of accessible businesses that fulfil the
specified parameters (column values) is retrieved. For instance, a query that
requests the banks that are accessible for people with disabilities is: https:
//wake.dlsi.ua.es/AG/RunningExample/Category/Bank. From that request,
the Web API will response with the result obtained from the CSV dataset. In
this case, the result for the query example is the data about accessible banks.
An extract of API output in JSON format which contains information about
an accessible bank is:

{
‘ D e c a l R e c i p i e n t ’ : ‘ BloomBank ’ ,
‘ ClosedMoved ’ : ‘ ’ ,
‘ Loca t i on ’ : ‘1301 N Walnut S t r e e t ’ ,
‘ Year ’ : ‘2009 ’ ,
‘ Ca tegory ’ : ‘ Bank ’ ,
‘ Sub−Category ’ : ‘ ’

}
The application created by the developer specified in the running example

(Section 2) will access this Web API to reuse data according to the application
requirements. Therefore, with the help of this API it will be able to provide a
list of accessible businesses, which can be filtered by the name of the business
(“Decal Recipient”), the current situation (“ClosedMoved”), the location
within the city of Bloomington (“Location”), the opening year (“Year”), and
the category (“Category”) and subcategory of the business (“Sub-Category”).

The demonstration example, including the dataset used and all the auto-
generated files, is publicly available online.16

4 Validation of the Approach

In order to evaluate the correctness and performance of the automatic gener-
ation process, an experiment was carried out with 20 datasets in a Windows

16https://github.com/cgmora12/AG/tree/master/RunningExample/AG accessibilityBusine
sses

https://wake.dlsi.ua.es/AG/RunningExample/Decal_Recipient/AMC Showplace 11
https://wake.dlsi.ua.es/AG/RunningExample/Decal_Recipient/AMC Showplace 11
https://wake.dlsi.ua.es/AG/RunningExample/Category/Bank
https://wake.dlsi.ua.es/AG/RunningExample/Category/Bank
https://github.com/cgmora12/AG/tree/master/RunningExample/AG_accessibilityBusinesses
https://github.com/cgmora12/AG/tree/master/RunningExample/AG_accessibilityBusinesses

Model-based Generation of Web APIs to Access Open Data 1163

Table 3 Validation results of the automatic generation process
Open Data # of # of Generation

CSV Title Topic Platform Rows columns Time
Traffic state Transport datos.gob.es 3,565,683 4 13.4 s
Bikes usage Transport datos.gob.es 5,185 5 10.2 s
School
grants

Education Data.gov 2,494 7 10.2 s

Demographic
statistics

Government Data.gov 237 46 10 s

Voter data Government Data.gov 7,517,745 46 29.2 s
Biodiversity Environment Data.gov 20,017 12 10.3 s
Road safety Transport datos.alcobendas.org 113 4 9.7 s
Metro stops Transport datos.alcobendas.org 44 12 9.8 s
Train stops Transport datos.alcobendas.org 19 12 9.7 s
Population Government datos.alcobendas.org 441 5 9.7 s
Salmonella
tests

Government data.gov.uk 13 3 9.7 s

Radioactivity Environment data.gov.uk 794 57 10.1 s
Schools list Education data.gov.uk 102 16 9.7 s
Street lights Government data.gov.uk 27,409 15 10.5 s
Travel data Government data.gov.uk 1,853 20 10.3 s
British
behaviour

Government data.gov.uk 168 10 9.7 s

Innovation Government open.canada.ca 2,413 17 10.2 s
Wholesale
trade sales

Economy open.canada.ca 8,752,568 17 35.1 s

International
payments

Economy open.canada.ca 245,107 17 10.9 s

Employee
earnings

Economy open.canada.ca 21,072,480 18 80 s

10 computer with an Intel i5 processor and 8GB of RAM memory. The list
of CSV data sources analysed in this experiment is shown in Table 3. These
online datasets are from different open data platforms: datos.gob.es from the
Spanish goverment, data.gov from U.S. Government, datos.alcobendas.org
from a city in Madrid, data.gov.uk from UK and open.canada.ca from Gov-
ernment of Canada. They contain information about education, environment,
transport, government and economy. The performance of the approach has
been evaluated by analysing the API generation time for each data source
with a variable number of rows and columns, as shown in Table 3. The range
of file sizes covers from just 10 rows to over 20 million and from 3 columns
to 57, resulting in a maximum of 379,304,640 cells and a minimum of 39
cells.

https://datos.gob.es/es/catalogo/l01080193-informacion-del-estado-del-transito-en-los-tramos-de-la-ciudad-de-barcelona1
https://datos.gob.es/es/catalogo/l01080193-uso-del-servicio-bicing-de-la-ciudad-de-barcelona1
https://catalog.data.gov/dataset/school-improvement-2010-grants
https://catalog.data.gov/dataset/school-improvement-2010-grants
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/demographic-statistics-by-zip-code-acfc9
https://catalog.data.gov/dataset/voter-history-data
https://catalog.data.gov/dataset/biodiversity-by-county-distribution-of-animals-plants-and-natural-communities
https://datos.alcobendas.org/dataset/seguridad-vial-tipos-de-accidentes-de-trafico-desde-el-ano-2012-historico
https://datos.alcobendas.org/dataset/paradas-de-metro
https://datos.alcobendas.org/dataset/paradas-de-cercanias
https://datos.\alcobendas.org/dataset/poblacion-empadronados-totales-y-grupos-de-edad-y-sexo-historico
https://data.gov.uk/dataset/7b7f30d7-6226-4a49-a1ca-b2ab405db2ce/salmonella-testing-programme
https://data.gov.uk/dataset/7b7f30d7-6226-4a49-a1ca-b2ab405db2ce/salmonella-testing-programme
https://data.gov.uk/dataset/241e8f08-2b52-4835-bb6a-870f83e4c567/radiological-monitoring-data
https://data.gov.uk/dataset/a688d54d-e0b0-441b-95b7-ac0d6cf003e0/schools-list
https://data.gov.uk/dataset/3b1b594f-e1a3-495b-a6c0-221fff9d1ffd/street-lights
https://data.gov.uk/dataset/b6b63ea3-c7be-4f60-81f5-3c8f5236f5f7/travel-data-transparency-agenda-and-foi-request
https://data.gov.uk/dataset/35f0785d-e85b-49ef-869c-2eca49755aa5/british-behaviour-abroad
https://data.gov.uk/dataset/35f0785d-e85b-49ef-869c-2eca49755aa5/british-behaviour-abroad
https://open.canada.ca/data/en/dataset/662aba3e-988b-4871-8f80-eb62d5818391
https://open.canada.ca/data/en/dataset/45d747d8-8abf-49d9-a76c-84c01156c04b
https://open.canada.ca/data/en/dataset/45d747d8-8abf-49d9-a76c-84c01156c04b
https://open.canada.ca/data/en/dataset/823899ab-3cca-4484-a420-13bf0d0d0226
https://open.canada.ca/data/en/dataset/823899ab-3cca-4484-a420-13bf0d0d0226
https://open.canada.ca/data/en/dataset/d4c86aaf-6d6b-4da8-a41e-6f96dbec982e
https://open.canada.ca/data/en/dataset/d4c86aaf-6d6b-4da8-a41e-6f96dbec982e

1164 C. González-Mora et al.

For each dataset, the automatic generation process creates the correspond-
ing Web API with OpenAPI documentation. The time calculated considers
the process of copying the whole file without non-alphanumeric characters
in the first row (which is dangerous for the API routes), but not the time
to download the resource because it depends on network issues, so that
the process starts with an already downloaded file. Moreover, in order to
get proper results the processing time of the automatic generator has been
calculated 5 times for each dataset, thus the generation time is an average of
all these 5 different executions.

4.1 Results

The results obtained (Table 3) show that the automatic generation process
barely takes between 9 and 80 seconds (Figure 9), with source files of up to
more than 20 million of rows, to generate from any dataset a complete Web
API, including related models and interactive OpenAPI documentation.

Figure 9 shows a linear behaviour depending on the size of the dataset
with a significant positive trend. Thus, as the number of records increases, the
time increases in a fraction of seconds (3.1e-06 seconds/record or 3 seconds
per million records). The determination coefficient indicates that 98.18% of
the variability of the measured time is explained by the number of records. No
significant relationship has been found with the number of columns observed.

Figure 9 Generation time of the approach depending on the evaluated source file size.

Model-based Generation of Web APIs to Access Open Data 1165

On the other hand, the performance of the Web APIs is also taken into
account. When the number of rows is really high, such as 21 million rows,
it can take an amount of time similar to the generation time shown in Table
3. This situation can be overcome with the help of pagination of the results
(using “limit” and “offset” parameters), optimising the performance of the
API and thus significantly reducing the time to get the desired results. There-
fore, although the APIs still access data from original CSV file, with this
performance improvement it can take less than 4 seconds to return requested
data from datasets of up to 21 million rows. For example, a query without
filters that specifies the limit of 10.000 results to the Web API that manages
21 million rows takes barely 3 seconds to bring the results to the browser. This
validation has been performed using an API generated using our approach
from the dataset ”Employee earnings” (last row in Table 3).

Consequently, from this validation we can state that the proposal is func-
tional and useful, since it successfully achieves the objective of efficiently
performing the APIfication process in an average time of 16 seconds. From
the situation where open data platforms do not provide suitable mechanisms
to reuse data, such as Web APIs at the query level (i.e. fine-grain access to
data), our approach contributes towards the generation of these APIs, which
not only eases the task of accessing and reusing open data by developers, but
also allows open data publishers to facilitate the reuse of their open data by
these developers. Furthermore, the automatic generator successfully provides
a modeling environment around open data, helping reusers and citizens to
understand better the information offered on the Internet.

5 Related Work

There is a variety of related research that deal with the topic of open data
and accessing it using Web APIs, which makes it easier for the developers.
In [6], it is supported the idea that the society is opening its data, but there
is still the need of building the technology required to enable the citizens to
access it. The main goal of this project, which is in an early stage, is giving
the citizenship unrestricted access to the open data available online. In [29]
it is detailed how open data is mostly not readily usable from the citizen,
so it is important to facilitate the access to encourage software developers
to use the open data, which is essential in smart cities. Also [22] proposes
the development of an open data API which supplies tools that will help
the general public to access the data about their own cities. This creation
of APIs has also been addressed by other research [13], which describes a

1166 C. González-Mora et al.

simple query-level API which is used to provide access to a semantic Web
to developers unfamiliar with the RDF and SPARQL complex technologies.
Additionally, the approach described in [19] is addressing the query of RDF
data and convert it to structures and formats which can be processed by
data mining tools, because accessing the RDF over numerous SPARQL
endpoints supposes a challenging task. In particular, it targets the retrieval and
integration of RDF data into the processes designed using RapidMiner, a data
mining environment widely used in the industry and research. However, these
proposals require the manual creation of the APIs, which is time-consuming.

The automatic generation of APIs has also been proposed [12, 21]: the
EMF-REST framework for generating Web APIs [12] needs a model of the
API to perform the creation of APIs, thus requiring users to create this model
by themselves because they are not generally available; and [21] is focused
in helping developers to create automatically Web APIs. However, these
approaches are not targeting the access and reuse of data from open data
platforms. In addition, csv-to-api17 dynamically generates RESTful APIs
from static CSVs, allowing users to interact with that CSV as if it was a native
API. However, this process does not use a model-based approach for the
transformations and API documentation is not provided, so that the generated
APIs are difficult to use and integrate in model-based scenarios.

Other works propose the use of transformations between metamodels of
APIs and other related elements. The paper [15] describes ATL, a domain-
specific language for specifying model-to-model transformations, because
models are the main development artefacts and model transformations are
among the most important operations applied to models, in the context of
Model Driven Engineering. In [10, 11] models are used to represent the
Web API definition, offering a better visualisation of the API operations.
Also, in [9] the metamodel of the API definition is used to simplify the
transformation between the API and its definition, to include the API in
the OpenAPI initiative. In [23] they use a metamodel for standardising the
information extracted from Web APIs documentation; and a method for the
extraction of models, discovering useful data, and automatically generating
the corresponding models that conform to the defined metamodel. These
metamodels help designers to better understanding of each Web API they
are using. The tool Direwolf Interaction Flow Designer [16] generates Web
frontends from API definitions, using as an intermediary step an API defini-
tion model in IFML. The API2MoL engine [7] creates bridges between APIs

17https://github.com/project-open-data/csv-to-api

https://github.com/project-open-data/csv-to-api

Model-based Generation of Web APIs to Access Open Data 1167

and model-driven engineering, with the objective of creating models from
the APIs for facilitating the management of a plethora of APIs. As we have
seen, model-based approaches can be used to represent and generate Web
API documentation, but they are not used to generate the whole Web API as
proposed by the authors in this paper.

As seen in the existing research, the creation of APIs is proposed to solve
problems regarding the access and reuse of data. However, they generally
propose the manual creation of APIs to access specific open and linked data
platforms which is time-consuming. The automatic generation of APIs is
also addressed, but fine-grain access to open data platforms is not addressed
and they require specific artefacts which are not generally available. Instead,
our approach starts directly from the data source, which would avoid the
need for users to create these artefacts manually. Therefore, as far as the
authors are aware, although related works help data reusers to create APIs
and documentation, they do not offer a flexible solution for generating Web
APIs from existing open data sources that provide query-level access (i.e.,
fine-grain access). To do so, our research proposes a model-based approach to
automatically generate this kind of Web APIs. Furthermore, we also address
open data publishers to easily provide Web APIs, unlike the studied related
work which only focus on end users.

6 Conclusions and Future Work

In this paper we have presented an approach that addresses the problem
related to accessing and reusing open data available online due to the shortage
of query-level Web APIs. In order to solve this problem, we have proposed
a model-driven APIfication approach which aims to make open data easily
reusable for open data reusers. This process, based on automatic, generic
and standardised generation mechanisms, is made up of model-based trans-
formation rules to generate Web APIs with documentation following the
OpenAPI 3.0 standard. With this approach we address at first to help open
data publishers, so that they can include a Web API that facilitates the reuse
of data. In case that an API is missing to reuse open data, we address to help
open data reusers such as developers that aim to create value from open data.

The evaluation of the approach with different datasets demonstrates that
the generator performs efficiently: it is able to auto-generate successfully
a complete Web API for any dataset that did not came up with an API
before. Accordingly, the main contribution of this research is the creation
of an automatic API generation process to facilitate the access and reuse of

1168 C. González-Mora et al.

open data. Therefore, the approach aims to directly simplify the open data
reuse process, which will result in economic benefits to developers and the
infomediary sector.

As future work, the transformation process needs to be extended to work
with different formats of open data, considering performance of Web APIs,
data integration and semantics. Regarding performance, we plan to keep on
working on improving it by considering to include a data stage layer. This
layer would include required functionality borrowed from a NoSQL DBMS
such as MongoDB to store processed open data coming from CSV. Also, we
plan to explore how to use in-memory databases in our approach. Regarding
data integration, we plan to consider open data that is split in several datasets
and provide unique access to them through a Web API.

Acknowledgements

This work has been funded by the National Foundation for Research,
Technology and Development and the project TIN2016-78103-C2-2-R of
the Spanish Ministry of Economy, Industry and Competitiveness. César
González-Mora has a contract for predoctoral training with the Generalitat
Valenciana and the European Social Fund by the grant ACIF/2019/044.

References

[1] State official newsletter of Spain (BOE). Law 19/2013 of December 9,
transparency, access to public information and good governance. BOE
number 295 of 10-12, 2013.

[2] P. Atzeni, P. Merialdo, and G. Mecca. Data-Intensive Web Sites: Design
and Maintenance. World Wide Web, 4(1):21–47, 2001.

[3] Sami Beydeda, Matthias Book, Volker Gruhn, et al. Model-driven
software development, volume 15. Springer, 2005.

[4] M. Brambilla, J. Cabot, and M. Wimmer. Model-driven software
engineering in practice. Synthesis Lectures on Software Engineering,
1(1):1–182, 2012.

[5] K. Braunschweig, J. Eberius, M. Thiele, and W. Lehner. The State of
Open Data Limits of Current Open Data Platforms. Proceedings of the
21st WWW Conference, 2012.

[6] J. Cabot. Open data for all: an API-based approach, 2016. https://mode
ling-languages.com/open-data-for-all-api/. Accessed July 31, 2019.

https://modeling-languages.com/open-data-for-all-api/
https://modeling-languages.com/open-data-for-all-api/

Model-based Generation of Web APIs to Access Open Data 1169

[7] J. L. Cánovas, F. Jouault, J. Cabot, and J. Garcı́a. API2MoL: Automating
the building of bridges between APIs and Model-Driven Engineering.
Information and Software Technology, 54(3):257 – 273, 2012.

[8] J. S. Cuadrado, E. Guerra, and J. de Lara. AnATLyzer: An Advanced
IDE for ATL Model Transformations. pages 85–88. Proceedings of
the 40th International Conference on Software Engineering: Companion
Proceeedings, 2018.

[9] H. Ed-douibi, J. L. Cánovas, and J. Cabot. Example-Driven Web API
Specification Discovery. pages 267–284. Modelling Foundations and
Applications - Springer International Publishing, 2017.

[10] H. Ed-douibi, J. L. Cánovas, and J. Cabot. OpenAPItoUML: A Tool
to Generate UML Models from OpenAPI Definitions. pages 487–491,
Cham, 2018. Web Engineering - Springer International Publishing.

[11] H. Ed-douibi, J. L. Cánovas Izquierdo, F. Bordeleau, and J. Cabot.
Wapiml: Towards a modeling infrastructure for web apis. In ACM/IEEE
22nd International Conference on Model Driven Engineering Lan-
guages and Systems Companion (MODELS-C), pages 748–752, 2019.

[12] Hamza Ed-douibi, Javier Luis Cánovas Izquierdo, Abel Gómez, Mas-
simo Tisi, and Jordi Cabot. EMF-REST: Generation of RESTful APIs
from Models. In Proceedings of the 31st Annual ACM Symposium on
Applied Computing, pages 1446—-1453. Association for Computing
Machinery, 2016.

[13] I. Hopkinson, S. Maude, and M. Rospocher. A Simple API to the
Knowledgestore. In Proceedings of the International Conference on
Developers, volume 1268, pages 7–12. CEUR-WS.org, 2014.

[14] M. Janssen, Y. Charalabidis, and A. Zuiderwijk. Benefits, Adoption
Barriers and Myths of Open Data and Open Government. Information
Systems Management, 29(4):258–268, 2012.

[15] F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev. ATL: A model transfor-
mation tool. Science of Computer Programming, 72(1):31–39, 2008.
Special Issue on Second issue of experimental software and toolkits
(EST).

[16] I. Koren and R. Klamma. Generation of Web Frontends from API Doc-
umentation with Direwolf Interaction Flow Designer. pages 492–495,
Cham, 2018. Web Engineering - Springer International Publishing.

[17] Maria Maleshkova, Lukas Zilka, Petr Knoth, and Carlos Pedrinaci.
Cross-lingual web API classification and annotation. In Proceedings of
the 2nd International Conference on Multilingual Semantic Web-Volume
775, pages 1–12. CEUR-WS. org, 2011.

1170 C. González-Mora et al.

[18] P. Neirotti, A. De Marco, A. C. Cagliano, G. Mangano, and F. Scorrano.
Current trends in Smart City initiatives: Some stylised facts. Cities,
38:25–36, 2014.

[19] A. Nolle, G. Nemirovski, A. Sicilia, and J. Pleguezuelos. An Approach
for Accessing Linked Open Data for Data Mining Purposes. Proceed-
ings of RapidMiner Community Meeting and Conference, 2013.

[20] Aporta Project. Characterization study of the infomediary sector in
Spain, 2012. https://www.ontsi.red.es/ontsi/sites/ontsi/files/12100
1 red 007 final report 2012 edition vf en 1.pdf.

[21] Ricardo Queirós. Kaang: A RESTful API Generator for the Modern
Web. In 7th Symposium on Languages, Applications and Technologies,
volume 62 of OpenAccess Series in Informatics (OASIcs), pages 1:1–
1:15, 2018.

[22] M. Rittenbruch, M. Foth, R. Robinson, and D. Filonik. Program your
city: designing an urban integrated open data API. pages 24–28. Pro-
ceedings of Cumulus Conference: Open Helsinki–Embedding Design in
Life, 2012.

[23] R. Rodrı́guez-Echeverrı́a, J. M. Conejero, P. J. Clemente, M. D. Villalo-
bos, and F. Sánchez-Figueroa. Extracting Navigational Models from
Struts-Based Web Applications. pages 419–426, 2012.

[24] B. Selic. The pragmatics of model-driven development. IEEE Software,
20(5):19–25, 2003.

[25] U. Sivarajah, V. Weerakkody, P. Waller, H. Lee, Z. Irani, Y. Choi,
R. Morgan, and Y. Glikman. The role of e-participation and open data in
evidence-based policy decision making in local government. Journal of
Organizational Computing and Electronic Commerce, 26(1-2):64–79,
2016.

[26] A. Srai, F. Guerouate, N. Berbiche, and H. Drissi. An MDA approach
for the development of data warehouses from relational databases
using ATL transformation language. International Journal of Applied
Engineering Research, 12:3532–3538, 2017.

[27] A. Stott. Open data for economic growth. Washington DC: World Bank,
2014.

[28] B. Ubaldi. Open government data: Towards empirical analysis of
open government data initiatives. OECD Working Papers on Public
Governance, (22), 2013.

[29] V. Weerakkody, Z. Irani, K. Kapoor, U. Sivarajah, and Y. K. Dwivedi.
Open data and its usability: an empirical view from the Citizen’s
perspective. Information Systems Frontiers, 19(2):285–300, 2017.

https://www.ontsi.red.es/ontsi/sites/ontsi/files/121001_red_007_final_report_2012_edition__vf_en_1.pdf
https://www.ontsi.red.es/ontsi/sites/ontsi/files/121001_red_007_final_report_2012_edition__vf_en_1.pdf

Model-based Generation of Web APIs to Access Open Data 1171

[30] J. Wettinger, U. Breitenbücher, and F. Leymann. ANY2API – Auto-
mated APIfication – Generating APIs for Executables to Ease their
Integration and Orchestration for Cloud Application Deployment
Automation. pages 475–486. Proceedings of the 5th International Con-
ference on Cloud Computing and Services Science, 2015.

Biographies

César González-Mora is a PhD student in the Web and Knowledge research
group from the Department of Software at University of Alicante, Spain.
His research interests include open data, web augmentation, the semantic web
and application programming interfaces. His work is funded by a contract
with the Generalitat Valenciana of Spain and the European Social Fund for
predoctoral training (ACIF/2019/044).

Irene Garrigós (PhD.) is Associate Professor in the Department of Software
and Computing Systems at the University of Alicante, Spain. Her research
interests include open data, web augmentation, web modeling languages,
personalization and application programming interfaces. She is the head of
the Web and Knowledge research group of the University of Alicante.

1172 C. González-Mora et al.

José Jacobo Zubcoff (PhD.) presents a wide teaching and research experi-
ence in the field of Statistics, Data Mining and its application to Biology.
He has more than 100 publications in which he has dealt with obtaining
knowledge from a data source. He has done research in various fields of
science, both in computing, biology, medicine, education and social sciences.
In addition, he has directed and participated in more than 20 competitive
public projects financed by the Ministry of Economy and Competitiveness,
the Generalitat Valenciana, the University of Alicante and European and
private projects, all of them contributing his knowledge about data analysis,
data mining and aiming at the democratization of knowledge.

Jose-Norberto Mazón (PhD.) is Associate Professor in the Department
of Software and Computing Systems at the University of Alicante, Spain.
His research interests include open data, business intelligence in big data
scenario, design of data-intensive web applications, smart cities and smart
tourism destinations. He is the author of more than hundred scientific publi-
cations in international conferences and journals. He is currently Chair of the
Torrevieja’s Venue of the University of Alicante.

	Introduction
	Running Example
	A Model-based APIfication Approach to Access Open Data
	From Data Source to Data Model (T2M)
	From Data Model to OpenAPI Model (M2M) and Documentation (M2T)
	From OpenAPI Documentation to Web API

	Validation of the Approach
	Results

	Related Work
	Conclusions and Future Work

