
An Automation Script Generation Technique
for the Smart Home

Jiayi Kuang, Gang Xue∗, Zeming Yan and Jing Liu

School of Software, Yunnan University, Kunming, Yunnan, China
E-mail: kuang041120@163.com; hill@ynu.edu.cn; guyingmoke@gmail.com;
liujing@ynu.edu.cn
∗Corresponding Author

Received 15 April 2022; Accepted 09 March 2023;
Publication 16 June 2023

Abstract

A home automation system means monitoring and controlling various kinds
of devices in the home remotely using the Internet of things (IoT). Tech-
nologies such as natural language processing techniques, user-friendly visual
programming, and machine intelligence programming are already available
for home automation. For such systems, the increase in the number of devices
often makes users focused on the system’s ability to perform complex or
composing tasks. However, some existing natural language processing sys-
tems can only perform simple tasks and cannot meet users’ needs. Thus, it is
difficult for users to develop the home automation systems they need using
visual programming systems because of the large amount of programming
knowledge required. Meanwhile, automatic programming without user action
can only write a few lines of code and implement little functionality. There
are relatively few tools available for generating home automation scripting
languages. To address this problem, we propose a practical method for
generating executable home automation scripts using Chinese texts. Our
method includes the following steps: it extracts critical information from

Journal of Web Engineering, Vol. 22_2, 221–254.
doi: 10.13052/jwe1540-9589.2222
© 2023 River Publishers

222 J. Kuang et al.

the command sentences in Chinese; it uses first-order logic to check the
validity of the extracted information; based on the validation, the correct
sentences are mapped into the intermediate language scripts, which can
interface with different home platforms. We conducted experiments on Home
Assistant, converted intermediate scripts to Home Assistant, and collected
600 scenario descriptions. The experimental results show that the method can
automatically generate executable scripts for the Home Assistant platform,
and the correct rate was 93.66%.

Keywords: Home automation, automation script generation, first-order
logic, natural language processing.

1 Introduction

Smart home systems are penetrating people’s lives, and can monitor or
control home attributes such as lighting, climate, entertainment systems, and
home appliances, providing residents with a safe, comfortable, and energy-
saving home environment. More and more people are choosing to use these
systems to obtain a better residential experience [1]. When home automation
systems are connected to the Internet, home devices become an important
constituent of the IoT [2]. The IoT-enabled smart home applications have
gained substantial attention nowadays [3, 4]. Employing wireless connec-
tions, such as Bluetooth, Zigbee, and WIFI, provides facilities to implement a
wide range of smart home applications [5]. Therefore, these allow homeown-
ers to securely control a large number of appliances regardless of whether
they are inside or outside their homes.

Automation is a key technology for smart homes. All intelligent controls
and services are built on a complete and mature smart home automation
system, according to the end-user requirements, through automatic detec-
tion, information processing, analysis, judgment, and manipulation control
to realize the process of corresponding control of the smart home [6–8].

Many smart home solutions aim to automate the basic operations of these
home devices using various technologies [9]. The technologies currently
available to achieve home automation include natural language processing
technology [10] which refers to simple command processing, user-friendly
visual programming [11], and machine intelligence programming [12]. How-
ever, along with the increase in end-user requirements, the tasks of home
automation systems are becoming more and more complex. Relying solely on
the existing technologies to fulfill the needs of all users is a time-consuming

An Automation Script Generation Technique for the Smart Home 223

and unrealistic approach. What is more, previous works using natural lan-
guage processing (NLP) only focus on the concept of “understanding” a
simple sentence that can be handled by an instruction, for instance, such
as turning on the light, turning off the television, playing media, etc. [13].
However, many tasks cannot be described by a single instruction, such as
“When the humidity in the living room is high, the alarm will be turned on,
and the dehumidification function of the air conditioner will be activated until
it stabilizes.” The conditional relations in such descriptions and entity logic
relations in sentences are difficult to understand and handle.

Another way is users programming what they need by themselves [14].
Unfortunately, although some visual programming systems are user-friendly,
they still require users to consciously think about the programming in a way
similar to typical programmers, introducing variables and deciding when/how
to use the conditionals, loops, or events [15, 16].

The technology of automatic script generation refers to the use of some
techniques to automatically generate the source code for automatic pro-
gramming. It can therefore improve the efficiency and quality of software
development, enhance automation and reduce manual workloads. Script
generation technology has matured in various fields, so it has promising
applications for home automation [17, 18].

Motivated by this, in this paper, our proposed method solves the problem
of generating the automation scripts based on implementing the Chinese text
for home automation. In particular, the main contributions can be summarized
as follows.

(1) This paper introduces an intermediate language specification that sup-
ports the generation of system-independent scripts.

(2) Based on the specification, we propose a method of script generation
which achieves home automation. It differs from a simple implementa-
tion of commands and uses script generation techniques to implement
complex scenarios containing multiple devices and actions.

(3) The proposed method was experimented with and validated on Home
Assistant. The experiments results show that the method is able to
express 93.66% of the examples in our experiment.

The rest of the paper is structured as follows. Section 2 summarizes the
related work. The basic technologies are introduced in Section 3. Section 4
provides the details of how to generate the script. The experiments and the
analysis of results are summarized in Section 5, while Section 6 concludes
the presented work.

224 J. Kuang et al.

2 Related Work

Currently, some approaches focus on using natural language processing,
visual programming, and machine programming for home automation. At the
same time, the application of script generation techniques in other areas has
encouraged our proposed method.

Introducing natural language processing technology into home automa-
tion is a significant choice for many studies. A work in the literature [19]
implements three basic home appliances by using the ZigBee technology and
cloud-based IoT. The user gives the voice command, and it is interpreted by
the mobile using the NLP. The mobile acts as a central support, and it decides
what type of operation should be fulfilled by appliances according to the
requests. Similarly, considering that users can communicate with smart home
automation by speaking their native language, allowing the devices to run the
command-and-control mechanism more quickly, the study in [20] integrates
a cloud-based speech recognition system into smart home automation. All of
the methods mentioned before only concentrate on achieving function using a
single natural language description, such as closing the light and opening the
television, neglecting that end-users always have complex requirements that
a single description cannot satisfy. Unlike these approaches, our proposed
method automatically generates the executable scripts to complete more
complex tasks based on the user’s Chinese description, including various
home devices, events, conditions, and actions. The complexity refers to the
difference between a scenario and a normal command. The scenarios contain
a series of devices linked together, and scenarios can be executed repeatedly.
In contrast, a command is for a single device and can only be executed
once.

Some programming tools focus on designing visual programming sys-
tems for homes in which users can synthesize some smart home system
functions according to their complex and diverse requirements. Existing
earlier work [21] builds a prototype of the home automation system with
the visual programming solution and code generation module. Meanwhile,
previous work [22] designs a smart home system that adopts message queuing
telemetry transport (MQTT) as the communication protocol of the smart
home system and introduces the component-oriented flow-based program-
ming (FBP). Those systems are more friendly for the end-users to combine
the tasks they need. However, they require a certain degree of complexity
knowledge that most users have difficulty understanding and mastering.
Moreover, they mainly work for specific phone or computer operating

An Automation Script Generation Technique for the Smart Home 225

systems. In contrast, our proposed method automatically generates scripts
based on the user’s Chinese text without complex operations and knowledge,
and the proposed intermediate language specification can support most of
the home automation systems. There are many kinds of home automa-
tion systems. The compatibility between devices is a big problem. This
paper solves the compatibility problem by introducing intermediate language
specifications. The extracted Chinese content is not directly converted into
scenario scripts but first converted into intermediate language specifications
and then into executable scenario scripts under the target home automation
system. For different home automation systems, only the step of converting
the intermediate language specification to specific home automation differs in
the processing flow. It is only necessary that the particular home automation
platform can support the intermediate language specification. In this paper,
we take the Home Assistant platform as an example. We do not experiment
with many platforms. That is because only the conversion of the intermediate
language specification is different. Simulating a series of devices under
the home automation system is a lot of work. Home Assistant is chosen
because it is a representative platform with good compatibility between
devices.

The ability to implement complex scenario functionality and the degree
of automation integration are the key metrics to consider when using home
automation systems. Some existing studies use artificial intelligence (AI)
methods to replace programmers to write programs [23]. Although some
human intelligence technologies like machine learning are a breakthrough
to automatic programming without any user operations, they could write a
few lines of code and achieve a little function [24, 25]. Such a small amount
of code cannot satisfy the growing demand for smart homes and a complex
device environment of the home. In contrast to these works, the method
proposed in this paper includes an automatic generation of scripts for home
automation. Its automation process is easier and does not require any training
process. At the same time, this method does not require a training model
and can save computing resources. What is more, our proposed method uses
cheap devices such as Raspberry Pi to provide a simple edge service that
can reduce the pressure on the core network while protecting user privacy.
Every command given by the user needs to be transmitted to the cloud in
some existing smart home systems, which will leak the information of various
devices in the user’s home. As shown in Figure 1, since there is no need to
train the model, the devices don’t need to have strong performance to deploy
the service. Because the method in this paper can deploy the text processing

226 J. Kuang et al.

Figure 1 The details of the architecture in this paper.

service and the intermediate language specification conversion service to the
edge area or the user’s home, there is no need to transfer information about
the user’s devices, etc., to the cloud. Therefore, user privacy can be protected.

Automation using script generation technology involves robots and
smartphone fields. The existing works [26] propose a practical framework
named Nerva, which can automatically synthesize robot applications using
natural language descriptions. Other examples of the existing works [27]
present Smart Synth, a novel end-to-end programming system for syn-
thesizing smartphone automation scripts generated using natural language
descriptions. Inspired by these papers, our proposed method aims to auto-
matically generate home automation script directly utilizing user-natural
language descriptions. In such a way, users can enter Chinese text containing
the description of various complex device events, conditions, and actions to
generate scripts.

3 Preliminaries

This section introduces basic technologies, including natural language pro-
cessing, first-order logic, intermediate language specification, and related
tools.

3.1 Natural Language Processing

Natural language processing (NLP) is a subfield of artificial intelligence (AI).
This is a widely used technology for personal assistants that are used in
various business fields/areas. This technology works on the speech provided
by the user, breaks it down for proper understanding and processes accord-
ingly. Natural language processing is an upcoming field where already many
transitions such as compatibility with smart devices and interactive talks with
a human have been made possible [28]. Knowledge representation, logical
reasoning, and constraint satisfaction were the emphasis of AI applications in
NLP. Here, first it was applied to semantics and later to the grammar.

An Automation Script Generation Technique for the Smart Home 227

3.1.1 Lexical semantics
Lexical semantics is a branch of linguistics which is concerned with the
systematic study of word meanings. Two of the most fundamental questions
addressed by lexical semanticists are the following ones: (a) how to describe
the meanings of words, and (b) how to account for the variability of meaning
from context to context. These two issues are necessarily connected, since
an adequate description of meaning must be able to support our account of
variation and our ability to interpret it. The study of contextual variation leads
in two directions: on the one hand, to the processes of selection from a range
of permanently available possibilities; and on the other hand, to the creation
of new meanings from old, by such means as metaphor and metonymy, in
response to contextual pressure [29].

The first part of the semantic analysis, studying the meaning of individ-
ual words is called lexical semantics. It includes words, sub-words, affixes
(sub-units), compound words, as well as phrases. All these elements are col-
lectively called lexical items [30]. In other words, lexical semantics reflects
the relationship between the lexical items, the meaning of sentences, and the
syntax of a sentence.

Lexical semantics include the following steps: Classification of lexical
items like words, sub-words, and affixes, is performed in lexical semantics.
Next, decomposition of lexical items like words, sub-words, and affixes, is
performed in lexical semantics. Finally, differences and similarities between
various lexical semantic structures is also analyzed [31].

3.1.2 Named entity recognition (NER)
The goal of the NER is to label names of people, places, organizations, and
other entities of interest in text documents. There are three major approaches
to NER: lexicon-based, rule-based, and machine learning-based. However,
an NER system may combine more than one of these categories. Some
approaches to NER rely on POS tagging [32]. NER is a preprocessing step
for tasks such as information or relationship extraction.

3.2 First-order Logic

First-order logic known as predicate logic, quantificational logic, and first-
order predicate calculus is a collection of formal systems used in mathe-
matics, philosophy, linguistics, and computer science. The first-order logic
keeps all the Boolean operators of propositional logic. However, it adds some
important new mechanisms. The propositions are analyzed into predicates

228 J. Kuang et al.

and arguments that take it a step closer to the structure of natural lan-
guage [33]. The standard construction rules for the first-order logic recognize
terms such as individual variables and individual constants, and predi-
cates which take different numbers of arguments.

3.2.1 Lambda calculus
Lambda calculus (also written as λ-calculus) is a formal system in mathe-
matical logic for expressing computation based on function abstraction and
application using variable binding and substitution. Lambda calculus, as a
widely used calculation model, can clearly define what a computable function
is, and any computable function can be expressed and evaluated in this
form [34].

The syntax of the lambda calculus defines some expressions as valid
lambda calculus expressions and some as invalid. A valid lambda calculus
expression is called a “lambda term”. The following three theoretical rules
give an inductive definition that can be applied to build all syntactically valid
lambda terms: First of all, a variable, x, is itself a valid lambda term [35].
Next, if t is a lambda term, and x is a variable, then (λx, t) is a lambda term
(called an abstraction). An abstraction (λx, t) is a definition of an anonymous
function that is capable of taking a single input x and substituting it into the
expression t. It thus defines an anonymous function that takes x and returns
t; Finally, if t and s are lambda terms, then (t, s) is a lambda term (called
an application).

3.2.2 Alpha equivalence and beta reduction
There are two evaluation rules in first-order logic: Alpha equivalence (or
conversion) and beta reduction [36].

A basic form of equivalence, definable on lambda terms, is alpha equiv-
alence [37]. It captures the intuition that the particular choice of a bound
variable, in an abstraction, does not (usually) matter [38].

The beta reduction rule states that an application of the form λ(x.t)s
reduces to the term t[x := s]. The λ-calculus may be seen as an idealized ver-
sion of a functional programming language. Under this view, beta reduction
corresponds to a computational step [39]. This step can be repeated contin-
uously by the additional beta reduction in an iterative way, until there are
no more applications left to reduce. In the untyped λ-calculus, as presented
here, this reduction process may not terminate completely. That is, the term
reduces to itself in a single beta reduction, and therefore the reduction process

An Automation Script Generation Technique for the Smart Home 229

will never terminate [40]. Another aspect of the untyped λ-calculus is that it
does not distinguish between the different kinds of data.

3.3 Intermediate Language Specification

An intermediate language specification with representative features of the
current smart homes is introduced in this paper. Our proposed method can
port the automation scripts to other smart home platforms using it. It is
designed to represent a wide variety of smart home tasks, and keep the
structure information from the NLP. The syntax of the intermediate language
specification is shown in Figure 2.

In Figure 2, a script S represents a new scenario. P is a set of parameters.
B is the main body of the module. B consists of a sequence of instructions that
executed in order. A condition C consists of an event for a triggered scenario
and I to be executed when the event is raised. Each instruction I contains
the attribute set Attr and the action A. The T represents the conversion
function, which converts the intermediate instructions to target instructions,
and it contains the instruction conversion function Trans_I and the attribute
conversion function Trans_Attr.

The intermediate language specification mainly includes events, condi-
tions and actions:

• Events: These represent events that occur in the daily home environment.
For example, the event of people going home, or the event of high
humidity in the living room. These events trigger scenario generation.

• Conditions: These denote the conditions on the state of the intelligent
devices in the home. For example, the light is on or off, or the level of
the current temperature.

 foreach temp
 do

 od

Figure 2 The syntax of the intermediate language specification.

230 J. Kuang et al.

• Actions: These are normal control home operations, such as turning off
the television or light connection, identifying face, or speaking “Hello”.
It executes a sequence of actions when its event is triggered and the
conditions are satisfied.

An example is given to explain the intermediate language specifica-
tion syntax in this part. The Chinese description is “ ,

45 , LED , ”. The message (At 5:00
p.m., the water heater is turned on and set to 45 degrees, and the LED lights
in the living room are turned on, followed by the lights in the hallway.)
corresponds to the intermediate instruction shown in Figure 3.

when (trigger, parameter): = Message Received: = time trigger
if (trigger = "17:00") then

instruction := Turn on the water heater ()
instruction := Turn on the LED light (Living room)
instruction := Turn on the light (Hallway)

execute

Figure 3 Intermediate instruction corresponding to the example.

3.4 Related Technical Tools

The tools covered in this paper are Natural language Toolkit (NLTK) and
Home Assistant. The NLTK is used for the first-order logic to discriminate
between the true and false sentences. The Home Assistant is used to build
home scenarios and deploy experiments.

3.4.1 NLTK
The NLTK is a complete toolkit for all the NLP techniques in which the
method has been used. The NLTK is written in Python language, a simple
yet powerful scripting language with excellent functionality for processing
linguistic data. The NLTK defines a basic infrastructure that can be used to
build the NLP programs in Python [41].

3.4.2 Home assistant
Home Assistant is a mature and complete Python-based smart home automa-
tion system.1 Due to its advantages, Home Assistant was used in the exper-
iment to build smart home scenarios. Then the experiments were conducted

1https://www.home-assistant.io/

https://www.home-assistant.io/

An Automation Script Generation Technique for the Smart Home 231

by combining the collected data with our proposed method running on Home
Assistant to verify its effectiveness.

4 The Script Generation Method

This chapter describes the technical details of the script generation method
for home automation. In total, the steps for generating scripts contain text
processing, validity check, and generating intermediate scripts. The main
processes of the text processing include the scenario trigger condition extrac-
tion, operation extraction, and attribute extraction. The general steps of script
generation are shown in Figure 4.

Figure 4 Steps for script generation.

Scripts generated from natural language scenarios given by the user
are called scenario scripts. In the scenario script, the processing flow can
divide into the two parts, including the scenario recognition and command
recognition. The related symbol descriptions of the algorithm are shown in
Table 1.

Table 1 Related symbol descriptions of the algorithm
Symbol Description
Fi Information about the user’s devices Fu

Ru User’s home environment information
Du User-defined dictionaries
Fu The list of devices for user u
Ttext The natural language text to be processed
Ssentences Sentences divided according to pause symbols in the text
C′ Conditions for scenario triggering
Sremains The rest sentences of Ssentences

Fi,obj The specific information of device obj

attrobj The attributes attrobj of device obj, and attrojb ∈ Fi

The steps consist of the following six algorithms. The first step is to
perform a pre-load of the device data. Algorithm 1 is the overall process-
ing flow. Algorithm 2 proposes the conditions for the scenario triggering.
Algorithms 3 and 4 are used to extract the command to be executed and the
attributes to be set. Algorithm 5 checks the validity of the crucial information.
Algorithm 6 is used to generate a series of intermediate language scripts [42].
The relationship between the algorithms is shown in Figure 5.

232 J. Kuang et al.

Figure 5 The relationship between the algorithms.

In the pre-data loading process, the method needs to obtain information
about the smart devices in the user’s home. They contain some basic infor-
mation such as which rooms are in the user’s home and which devices are
in these rooms. Moreover, it also needs to know the device information,
including the properties supported by the device actions, such as lights
supporting brightness settings. If the user provided the model number of the
device, the properties of the device are easily available. Once this information
is loaded, the algorithm can proceed to the next process.

Algorithm 1 is the steps for script generation. In Algorithm 1, lines 1 to 4
load the device information and the text information. Line 5 wraps the text in
the sentences, and line 6 calls Algorithm 2 via the Trigger function to extract
the conditions triggered by the scenario. Line 10 extracts the commands in
the text sentence by sentence, line 12 to line 16 extracts a command, which
includes the device body and the attributes to be set by calling Algorithms 3
and 4, respectively. Line 17 checks the validation of the extracted command
and finally wraps the command and the trigger conditions.

The following scenario is used as an example to demonstrate the
script generation process. Take a typical Chinese description “ ,

45 , LED , (At 5:00
p.m., turn on the water heater and set the temperature to 45 degrees while
turning on the LED lights in the living room and then the lights in the
corridor.)” as an example.

An Automation Script Generation Technique for the Smart Home 233

Algorithm 1 Steps for script generation
Function: Scenario = Generating (Fu,Ttext)
Input:

Fu the list of devices for user u
Ttext the natural language text to be processed

Output:
Scenario A scenario, including the conditions under which the scenario is triggered, the
instructions that already need to be executed

1: Load Fi

2: Load Ru

3: Load Du

4: The Ttext is processed by word separation, encapsulating words and lexicalities into
Tword

5: Divide Tword into sentence lists Ssentences according to the stop sign
6: (C′, Sremains) = Trigger (Fu, Ssentences,Fi,Ru)
7: Initialize a scenario object scenario
8: scenario.condition← C′

9: Initialize a list L of the command class
10: FOR all sentences sentence ∈ Sremains

11: Instantiate an object cmd of the command class
12: FOR all words word ∈ sentence
13: IF the operation data of cmd is not finished extracting
14: Opera (word, Ru, Fu, cmd)
15: ELSE
16: Attribute (word, Fi, cmd)
17: cmd′ = Check (cmd, Fi, Ru)
18: IF cmd′ not null
19: L← cmd
20: scenario.commands← L
21: return scenario

Algorithm 2 is mainly used to extract the trigger conditions of the sce-
nario. Line 2 traverses the conditional statement and extracts the condition in
line 3. Lines 4 and 9 determine the type of the condition, extract the trigger
condition and encapsulate it in Sremains. As shown in Algorithm 2, it defines
two modes of triggering the scenario, one is time-triggered (at a fixed point
in time, such as when it is dark or at 6:00 pm), and the other is state triggered
(when the state is satisfied, such as when I go home, or when the burglar
device is triggered). In the above example, 5:00 PM would be extracted as a
trigger time.

234 J. Kuang et al.

Algorithm 2 Scenario trigger condition extraction

Function: (C′, Sremains) = Trigger (Fu, Ssentences,Fi,Ru)
Input:

Ssentences sentences divided according to pause symbols in the text
Fu the list of devices for user u
Fi information about the user’s devices Fu

Ru user room information
Output:

C′ Conditions for scenario triggering
Sremains The rest sentences of Ssentences

1: Load Fi

2: FOR all sentences sentence ∈ Ssentences

3: Identify the temporal gerund t and the temporal entity e
4: IF both t and e satisfy the condition
5: Create the time condition time
6: C′ ← time
7: BREAK
8: Identify the state clause s
9: IF s satisfies the state condition
10: Extraction of object o and the state condition o ∈ Fu

11: Create the state condition state
12: C′ ← state
13: BREAK
14: Sremains ← the rest of the sentences in Ssentences

15: return (C′, Sremains)

Algorithm 3 extracts the operation of the instruction using the syntax of
Chinese grammar. It includes the device that is the subject of the instruction,
the action to be performed, and the location of the device, if it exists. Lines 3
to 4 determine if it is the location of the device based on the list of nouns and
locations. Lines 5 to14 identify the device based on the noun and preposition
relationship. Lines 15 to 22 identify the action to be performed by the device
based on the verb-object structure. Lines 23 to 24 encapsulate the data. Based
on Algorithm 3, the three entities in the example, water heater, LED light, and
corridor light will be extracted, including the actions and known locations of
the entities (e.g., the action “on” for the three devices and the locations of the
two lights).

The function of Algorithm 4 is to extract the attributes of the instruction,
in the case that they exist. Before this step, the algorithm has already obtained

An Automation Script Generation Technique for the Smart Home 235

Algorithm 3 Operation extraction

Function: Opera (word, Ru, Fu, cmd)
Input:

word the word in the text
Fu the list of devices for user u
Ru user’s room information
cmd the object of the command class

1: Initialize a global list name_buf for caching data such as names
2: Initialize a global action list action_buf to cache data for verb types
3: IF word.lexical ∈ n and word ∈ Ru

4: cmd.location← word
5: ELIF word.lexical ∈ (n, vn)
6: IF word ∈ Fu

7: cmd.obj ← word
8: Load the set of action functions Fi for device i
9: ELIF ∃x ∈ (name_buf + word) and x ∈ Ru

10: cmd.obj ← word
11: Load the set of action functions fi for device i
12: name_buf ← empty
13: ELSE
14: name_buf ← word
15: IF word.lexical ∈ (v, vn)
16: IF word ∈ Fcmd.obj

17: cmd.opera← word
18: ELIF ∃x ∈ (action_buf + word) and x ∈ Fcmd.obj

19: cmd.opear ← x
20: action_buf ← empty
21: ELSE
22: action_buf ← x
23: IF cmd.opear ̸= null and cmd.obj ̸= null
24: the operation data of cmd is not finished extracting
25: return cmd

the body of the device through Algorithm 3, and the subsequent attributes
belong to the body of the device. There are two types of the attributes, one
is a key–value pair, and the other is value only. Lines 4 to 6 perform a key–
value pair determination. Lines 7 to 12 extract the values of the attributes.
Lines 13 to 21 reorganize it according to the prepositional relationship. In the
previously mentioned example, the temperature property 45◦ for the water
heater will be extracted. The light has no attributes and is set to the default
brightness in the script.

236 J. Kuang et al.

Algorithm 4 Attribute extraction
Function: Attribute (word, F i, cmd)
Input:

word the word in the text
Fi information about the user’s devices
cmd the object of the command class

1: Initialize a global list buf for caching data
2: Initialize global variables key
3: Load Fi,cmd.obj

4: IF word.lexical = m
5: IF key ̸= null
6: cmd.attributes← (key, word)
7: IF word ∈ Fi,cmd.obj and word.lexical ̸= m
8: IF key = null
9: key ← word
10: ELSE
11: cmd.attributes← key
12: key← word
13: ELIF ∃x ∈ (buf + word) and x ∈ Fi,cmd.obj

14: IF key = null
15: key ← x
16: ELSE
17: cmd.attributes← key
18: key← x
19: buf ← empty
20: ELSE
21: buf ← x

Algorithm 5 performs a validation check to verify the validity of the
extracted information. Lines 4 to 7 perform a check on the device location.
Line 8 traverses the attributes of the instruction. Lines 10 to 12 check the
validation of the attribute values. The invalid commands are eliminated. Algo-
rithm 5 processes the example by checking the validation of the three devices
extracted from the above algorithms. All three devices are in the correct
position as well as the operation function. The temperature of the water heater
is within the legal range.

Once the algorithm has the set of scenario trigger conditions and com-
mand objects, the method proposed in this paper converts the scenario into the
intermediate language instruction obtained according to the method described
in Section 3.3. Algorithm 6 represents the intermediate script generation
process.

An Automation Script Generation Technique for the Smart Home 237

Algorithm 5 Validity check

Function: cmd′ = Check (cmd, Fi, Ru)
Input:

Fi information about the user’s devices Fu

Ru user room information
cmd a wrapper object for the command class

Output:
cmd′ instruction object after first-order logic detection

1: Initialize a command object cmd′

2: Load attributes attrobj of device cmd.obj, attrojb ∈ Fi

3: Get the corresponding devices d in room cmd.location, cmd.location ∈ Ru

4: IF cmd.obj ∈ d
5: cmd′.location← cmd.location
6: ELSE
7: return null
8: FOR all attributes attr ∈ cmd.attributes
9: Instantiate an object cmd′ of the command class
10: IF attr.key ∈ attrobj
11: IF attr.value is within legal limits
12: cmd′.attributes← attr
13: return cmd′

Algorithm 6 Generation of scenario intermediate language scripts
1: scenario name:
2: Get the trigger condition→ trigger
3: Get instructions→ instruction set
4: Get command parameters→ params
5: when (trigger, parameter): = Message Received
6: if (trigger = trigger) then
7: for each in instruction set:
8: Get and parse instruction each
9: Get and set parameters→ each
10: Generate an intermediate instruction im_instruction
11: Add im_instruction→ intermediate instruction set
12: scenario name:
13: Get the trigger condition→ trigger

Algorithm 6 converts the extracted scenario-correct crucial information
into an intermediate language script. Lines 2 to 6 read the trigger conditions
to set them and get the parameters and instruction set. Lines 7 to 13 iterate
through each instruction in the instruction set and set the attributes and the
values of the attributes. The corresponding results in the example are shown
in Figure 6.

238 J. Kuang et al.

Figure 6 The intermediate script for Algorithm 6 corresponds to the example.

5 Evaluation

To validate the method proposed above, the experiments are designed on
Home Assistant, and a home environment is built on this platform. In addi-
tion, the experimental part describes how to convert from the intermediate
script to Home Assistant. The real data were collected to verify the effective-
ness of the method based on the baseline data. Afterwards, the experiments
were analyzed in terms of whether they could be run successfully and to
assess the total running time of the generated results.

The experimental environment configurations are shown in Table 2.
The two computers are used in the experiment, the Home Assistant Server
is used to run Home Assistant, and the other Script Server is used to run the
generated smart home automation scripts.

Table 2 Experimental environment configurations
Participant Hardware Condition Platform Environment Network
Home assistant server Intel Core i5–3770 CPU,8GB Python v3.6.2rc2 100Mbps
Script Server Intel Core i5-11320H,16GB Python v3.8.10 100Mbps

5.1 Convert From Intermediate Script to Home Assistant
Automation Script

When the valid information is obtained, our proposed method mapped inter-
mediate script to the target software language. As shown in Algorithm 7, this
step aims to associate the intermediate script with the specific smart home
platform. In the experiment, this platform refers to the Home Assistant.

Algorithm 7 converts intermediate scripts to the executable scripts. Line
1 loads specific smart home platform information and conversion rules. Lines

An Automation Script Generation Technique for the Smart Home 239

Algorithm 7 Convert from the intermediate scripts to executable scripts
Function: file = Translate (scenario, name)
Input:

scenario A smart home scenario
name The name of the smart home platform

Output:
file the deployment file corresponding to this scenario in a certain smart home platform

1: Loading the transfer rules of platform name
2: Initializing an empty file file
3: IF scenario.condition is the time type
4: Generate the corresponding time class time
5: file← time
6: IF scenario.condition is the state type
7: Generate the corresponding state conditions state
8: file← state
9: Combination trigger conditions to condition
10: file← condition
11: FOR all commands cmd ∈ scenario.commands
12: Get the id and function of the device in the smart home platform
13: FOR all attributes attr ∈ cmd.attributes
14: Get the attr field and set the value
15: file← (attr, value)
16: return file

3 to 8 set the trigger conditions of the script according to the type. Lines 10
to 15 iterate through all commands in the scenario and set the properties of
the commands.

The experiment assumed that the smart home system platform is Home
Assistant, which has a web client, and take Chinese description “

45 (Turn on the bathroom water heater then set the temper-
ature to 45◦.)” as an example. It will eventually call service in the Home
Assistant that reads “Turn on the water heater and set the temperature
property to 45◦”, with the specific code in the home assistant as shown in
Figure 7.

5.2 The Experiment

We first built a home scenario on Home Assistant, including family members,
home areas, and smart home components. Xiao Ming and Xiao Hong are fam-
ily members. The home areas are divided into nine areas, including the living
room, balcony, corridor, bathroom, kitchen, bedroom 1, bedroom 2, corridor,
storage room, and a smart door. It is equipped with a smart door lock, a

240 J. Kuang et al.

Figure 7 The specific code in the home assistant.

camera, a door magnetic alarm, and audio. The living room is equipped with
a smart TV, an air conditioner, an electric curtain, a light, a microphone, an
infrared detector, a temperature, and a humidity sensor. The balcony has a
light, an electric drying rack, an infrared detector, a temperature, and a humid-
ity sensor. There are two lights and an infrared detector in the corridor. The
bathroom has a washing machine, a lamp, a ventilation fan, a showerhead, a
faucet, an infrared detector, and a temperature, humidity sensor. The kitchen
has a gas switch, a refrigerator, a water heater, a microwave oven, an oven, a
pressure cooker, a hood, a faucet, and a gas alarm. There is a light and a fan
in the dining room. The smart devices in the master bedroom 1 are a bedside
lamp 1, a lamp 1, an electric curtain, a desktop computer, an air conditioner,
a temperature and a humidity sensor, and a closet. Master bedroom 2 has a
bedside lamp 2, a lamp 2, an electric curtain, an air conditioner, a temperature
and a humidity sensor, and a closet. The storage room has a light and an
infrared detector.

All the components of the home include virtual and actual devices, while
they are also smart devices that can be properly connected to the Home
Assistant via the Internet. The first-order logic process for loading data into
a Python data structure is shown in Appendix A.2. The configuration of the
home environment devices in Home Assistant is shown in Appendix A.3.

An Automation Script Generation Technique for the Smart Home 241

Based on the above home scenarios, 30 baseline data of the daily use
environment of the smart home were set up. To collect the descriptions of
the users, we conducted a user study at Yunnan University and provided a
document to describe the tasks. Thirty students participated in this study and
600 different descriptions were given for 30 baseline data, correspondingly.
The experiment used all these data to evaluate our method.

The success of the experiment is determined by checking whether the
correct YAML generates, whether it can convert to the expected script file
and whether the generated script file can run correctly in Home Assistant.
According to these criteria, in these 600 hundred data, there was an error in
38 data entries. We found that our method was able to express 93.66% of the
experimental environment data. In Table 3, the first column gives the descrip-
tions of tasks. The statement n is used here to simplify the table. All these data
are presented in English and Chinese in Appendix A.1; the latter two columns
“success” and the “tms” shows whether the task can be successfully expressed

Table 3 Characteristics of the baseline data
Description Success tms

Sentence 1 YES 160.00
Sentence 2 YES 130.99
Sentence 3 YES 142.99
Sentence 4 YES 104.00
Sentence 5 YES 107.00
Sentence 6 YES 141.98
Sentence 7 YES 145.99
Sentence 8 YES 116.00
Sentence 9 YES 133.99
Sentence 10 YES 105.00
Sentence 11 YES 101.99
Sentence 12 YES 116.00
Sentence 13 YES 102.99
Sentence 14 YES 111.00
Sentence 15 YES 117.00
Sentence 16 YES 118.00
Sentence 17 YES 127.99
Sentence 18 YES 129.99
Sentence 19 YES 144.00
Sentence 20 YES 122.99

(Continued.)

242 J. Kuang et al.

Table 3 Continued
Description Success tms

Sentence 21 YES 132.99
Sentence 22 YES 101.99
Sentence 23 YES 106.00
Sentence 24 YES 101.99
Sentence 25 YES 106.99
Sentence 26 YES 100.00
Sentence 27 YES 114.00
Sentence 28 YES 137.00
Sentence 29 YES 106.99
Sentence 30 YES 128.99

and the total running time of the program. The time unit is milliseconds. What
is used in the experiment is the Chinese language text.

In the experiment, some data occurred in error for the following reasons.
The method proposed in this paper is mainly based on syntactic analysis to
process the text. In the collected data, the results cannot be extracted correctly
when there are syntactic errors in the sentences or when the overall format
of the instructions is not followed. The algorithm in this paper bundles the
device instructions and attribute settings together and thus does not allow
multiple devices to be set consecutively in a single phrase. There are some
limitations of the algorithms. First, the instructions that exceed the functional
scope of the home device are not executed successfully. In addition, specific
dictionaries must be set up for phrases that cannot be handled correctly by
syntactic and lexical analyses.

6 Conclusion

The smart home automation system is one of the IoT applications that facil-
itates the control of home appliances over the Internet using an automation
system. The complexity of the devices in the home IoT has increased the
needs of users, specifically for the combined tasks of the multiple scenarios,
conditions, and devices used simultaneously. However, the existing Chinese
smart home automation systems and some research only provide limited

An Automation Script Generation Technique for the Smart Home 243

applications that can perform a single task that is mostly a time-consuming
and costly process. Users need a lot of professional programming knowledge
and manual work to develop a system according to their own needs. To solve
these problems and fill in the existing gap in technological development,
we have proposed a method that generates smart home automation scripts
using Chinese texts. Our proposed method has two main features. Firstly, it
provides a smart home automation system independent intermediate language
specification so that the method can easily adapt it to different systems.
Secondly, based on the specification, it generates the smart home script
automatedly. The experimental result demonstrated that 93.66% of the 600
Chinese texts from user research in the experiment can successfully generate
the executable scripts.

Acknowledgement

This work has been supported by the Science and Technology Plan in Key
Fields of Yunnan Province under grant No. 202202AD080002, and the Open
Foundation of Key Laboratory in Software Engineering of Yunnan Province
under grant No. 2020SE318.

Ethics

The authors strictly declare that there are no safety, environmental or ethical
issues associated with this paper.

Appendices

A.1 Experiment Baseline Data

In the experiment, we provide the 30 representative Chinese texts. The
baseline data that users always need and their explanations are shown in
Table 4.

Based on the data mentioned above, 30 volunteers provided several of the
600 relevant descriptions used in the experiment.

244 J. Kuang et al.

Table 4 Baseline data and corresponding explanation in the experiment

(Continued)

An Automation Script Generation Technique for the Smart Home 245

Table 4 Continued

A.2 First-order Logical Home Environment Data Loading

The home environment data is loaded as follows.

def define (Fi, Ru):

v = """

246 J. Kuang et al.

An Automation Script Generation Technique for the Smart Home 247

has =>

{(livroom,LEDligliv), (livroom,smatv), (livroom,aircondition),

(livroom,curliv), (livroom,mic), (livroom,livdet),

(livroom,livtempwet),(corridor,corlig1), (corridor,corlig2),

(corridor,boldect), (kitchen,watheater),(kitchen,kicdoor),

(kitchen,smalarm), (kitchen,gasswitch), (kitchen,refrig),

(kitchen,oven), (kitchen,precooker), (kitchen,ranghood),

(kithchen,gaswith),(kitchen,kitfau), (kitchen,refrig),

(kitchen,fogalarm), (kitchen,kitdoor),(carteen,eatlig),

(carteen,fan), (bath,washer), (bath,balig), (bath,shower),

(bath, venti), (bath, bafaucet), (bath, badetor), (bath, batemwet),

(carteen,eatlig),(carteen,fan),(bedr1,bedlig1),(bedr1,tablig1),

(bedr1,bed1cur),(bedr1,computer),(bedr1,bed1tempwet),

(bedr1,closet1),(bedr1,bed1air),(bedr2,bedlig2),(bedr2,tablig2),

(bedr2,bed2cur), (bedr2,bed2air),(bedr2,bed2tempwet),(bedr2,closet2),

248 J. Kuang et al.

(stor, savelig),(stor,savedect),(smdoor,smlock),

(smdoor,camera), (smdoor,dooralarm),(smdoor,audio), (corridor,alarm)

}

attr =>

{

(watheater,temp),(watheater,on),(LEDligliv,bright),(oven,temp)

(LEDligliv,on),(LEDligliv,color),(ligcor,bright),(oven,off)

(kicdoor,off),(smalarm,off),(venti,on),(ligcor,on),(oven,on)

(smatv,on),(samtv,off),(aircondition,on),(aircondition,temp), (alarm,off)

(aircondition,wet),(aircondition,off),(curliv,on),(curliv,off),(alarm,on)

(mic,on),(mic,off),(mic,vol),(livdet,on),(livdet,off),(refrig,temp)

(livtempwet,on), (livtempwet,off),(bolig,on),(bolig,off),(bolig,bright),

(bolig,color), (rack,on),(rack,off), (rack,up),(rack,down),(boldector,on),

(boldector,off),(boltemwet,on),(boltemwet,off),(corlig1,on), (corlig1,off),

(corlig1,color),(corlig1,bright), (corlig2,on), (corlig2,off),(watheater,temp)

(corlig2,color),(corlig2,bright), (boldect,on),(boldect,off),(smalarm,on),

(smalarm,off),(gasswitch,on), (gasswitch,off),(refrig,on),(refrig,off),

(precooker,on), (precooker,off), (precooker,temp), (ranghood,on),

(ranghood,on), (ranghood,off),(kitfau,on),(kitfau,off),(kitfau,temp),

(fogalarm,on),(fogalarm,off),(kitdoor,on),(kitdoor,off),(eating,on),

(eatlig,off),(eatlig,bright),(eatlig,color),(fan,on),(fan,off),(fan,speed),

(bedlig1,on),(bedlig1,off),(bedlig1,bright), (bedlig1,color),

(bedlig2,on),(bedlig2,off),(bedlig2,bright), (bedlig2,color),

(tablig1,on),(tablig1,off),(tablig1,bright), (tablig1,color),

(tablig2,on),(tablig2,off),(tablig2,bright), (tablig2,color),

(bed1cur,on),(bed1cur,off), (bed2cur,on),(bed2cur,off),

(computer,on),(computer,off),(computer,bright),(bed1air,on)

(bed1air,off), (bed1air,temp), (bed1air,wet), (bed2air,on)

(bed2air,off), (bed2air,temp), (bed2air,wet),(bed1tempwet,on),

(bed1tempwet,off), (bed2tempwet,on),(bed2tempwet,off),

(closet1,on), (closet1,off), (closet2,on), (closet2,off),(smlock,on),

(smlock,off),(camera,on),(camera,off),(camera,bright),(dooralarm,on),

(dooralarm,off),(audio,on), (audio,off),(audio,vol),(savedect,on),

(savedect,off),(savelig,on), (savelig,off), (savelig,color), (savelig,bright),

}

"""

return v

An Automation Script Generation Technique for the Smart Home 249

A.3 Home Devices Configuration

The configuration of the home environment devices that are part of the Home
Assistant is shown in Figure 8 below.

Figure 8 Devices in home assistant.

References

[1] A. Cyril Jose and R. Malekian, “Smart Home Automation Security: A
Literature Review,” Smart Comput. Rev., no. Rtdm, pp. 6–10, 2015, doi:
10.6029/smartcr.2015.04.004.

[2] C. Paul, A. Ganesh, C. Sunitha, “An overview of IoT based smart
homes,” Proc. 2nd Int. Conf. Inven. Syst. Control. ICISC 2018, no. Icisc,
pp. 43–46, 2018, doi: 10.1109/ICISC.2018.8398858.

[3] M. Shahjalal, M. K. Hasan, M. M. Islam, M. M. Alam, M. F. Ahmed,
Y. M. Jang, “An Overview of AI-Enabled Remote Smart- Home Moni-
toring System Using LoRa,” 2020 Int. Conf. Artif. Intell. Inf. Commun.
ICAIIC 2020, 2020, pp. 510–513, doi: 10.1109/ICAIIC48513.2020.906
5199.

[4] A. Alhammadi, A. Alzaabi, B. Almarzooqi, S. Alneyadi, Z. Alhashmi,
and M. Shatnawi, “Survey of IoT-Based Smart Home Approaches,”
2019 Adv. Sci. Eng. Technol. Int. Conf. ASET 2019, 2019, pp. 1–6, doi:
10.1109/ICASET.2019.8714572.

[5] J. A. Fadhil, K. Region, O. A. Omar, K. Region, Q. I. Sarhan, K. Region,
“A Survey on the Applications of Smart Home Systems,” 2020 Inter-
national Conference on Computer Science and Software Engineering
(CSASE), Duhok, Iraq, 2020, pp. 168–173, doi: 10.1109/CSASE48920
.2020.9142103.

[6] M. Asadullah and A. Raza, “An overview of home automation systems,”
2016 2nd Int. Conf. Robot. Artif. Intell. ICRAI 2016, 2016, pp. 27–31,
doi: 10.1109/ICRAI.2016.7791223.

10.6029/smartcr.2015.04.004
10.1109/ICISC.2018.8398858
10.1109/ICAIIC48513.2020.9065199
10.1109/ICAIIC48513.2020.9065199
10.1109/ICASET.2019.8714572
10.1109/CSASE48920.2020.9142103
10.1109/CSASE48920.2020.9142103
10.1109/ICRAI.2016.7791223

250 J. Kuang et al.

[7] K. Agarwal, A. Agarwal, G. Misra, “Review and performance analysis
on wireless smart home and home automation using IoT,” Proc. 3rd
Int. Conf. I-SMAC IoT Soc. Mobile, Anal. Cloud, I-SMAC 2019, 2019,
pp. 629–633, doi: 10.1109/I-SMAC47947.2019.9032629.

[8] J. Jaihar, N. Lingayat, P. S. Vijaybhai, G. Venkatesh, K. P. Upla, “Smart
home automation using machine learning algorithms,” 2020 Int. Conf.
Emerg. Technol. INCET, 2020, pp. 1–4, 2020, doi: 10.1109/INCET498
48.2020.9154007.

[9] M. Gamba, A. Gonella, C. E. Palazzi, “Design issues and solutions in
a modern home automation system,” 2015 Int. Conf. Comput. Netw.
Commun. ICNC 2015, 2015, pp. 1111–1115, doi: 10.1109/ICCNC.2015
.7069505.

[10] C. J. Baby, F. A. Khan, J. N. Swathi, “Home automation using IoT and
a chatbot using natural language processing,” 2017 Innov. Power Adv.
Comput. Technol. i-PACT, 2017, pp. 1–6, 2017, doi: 10.1109/IPACT.20
17.8245185.

[11] Y. Inayama and H. Hosobe, “Toward an efficient user interface for
block-based visual programming,” Proc. IEEE Symp. Vis. Lang. Human-
Centric Comput. VL/HCC, 2018, pp. 293–294, doi: 10.1109/VLHCC.
2018.8506530.

[12] T. Zeng, Y. Liu, X. Ma, X. Bao, J. Qiu, L. Zhan, “Auto-programming
for numerical data based on remnant-standard-deviation-guided gene
expression programming,” 2009 Fifth International Conference on Nat-
ural Computation, Tianjian, China, 2009, pp. 124–128, doi: 10.1109/IC
NC.2009.617.

[13] S. R. Swamy, K. S. Nandini Prasad, P. Tripathi, “Smart home lighting
system,” Proc. 2020 Int. Conf. Smart Innov. Des. Environ. Manag. Plan.
Comput. ICSIDEMPC, 2020, pp. 75–81, doi: 10.1109/ICSIDEMPC490
20.2020.9299585.

[14] C. Xie, H. Qi, L. Ma, J. Zhao, “DeepVisual: A visual programming tool
for deep learning systems,” IEEE Int. Conf. Progr. Compr., May 2019,
pp. 130–134, doi: 10.1109/ICPC.2019.00028.

[15] H. Naito, T. Yokogawa, N. Igawa, S. Amasaki, H. Aman, K. Arimoto,
“A node-style visual programming environment for the nuXmv model
checker,” 2020 IEEE 9th Glob. Conf. Consum. Electron. GCCE, 2020,
pp. 71–75, doi: 10.1109/GCCE50665.2020.9291945.

[16] H. Kamada and K. Nishikawa, “The visual interactive programing learn-
ing system using image processing,” 2016 Third Int. Conf. Comput.

10.1109/I-SMAC47947.2019.9032629
10.1109/INCET49848.2020.9154007
10.1109/INCET49848.2020.9154007
10.1109/ICCNC.2015.7069505
10.1109/ICCNC.2015.7069505
10.1109/IPACT.2017.8245185
10.1109/IPACT.2017.8245185
10.1109/VLHCC.2018.8506530
10.1109/VLHCC.2018.8506530
10.1109/ICNC.2009.617
10.1109/ICNC.2009.617
10.1109/ICSIDEMPC49020.2020.9299585
10.1109/ICSIDEMPC49020.2020.9299585
10.1109/ICPC.2019.00028
10.1109/GCCE50665.2020.9291945

An Automation Script Generation Technique for the Smart Home 251

Meas. Control Sens. Netw., 2016, pp. 158–161, doi: 10.1109/CMCS
N.2016.21.

[17] R. Anbunathan and A. Basu, “Automation framework for test script
generation for android mobile,” Adv. Intell. Syst. Comput., vol. 731,
pp. 571–584, 2019, doi: 10.1007/978-981-10-8848-3_55.

[18] H. Tanno and X. Zhang, “Test script generation based on design doc-
uments for web application testing,” Proc. Int. Comput. Softw. Appl.
Conf., vol. 3, pp. 672–673, 2015, doi: 10.1109/COMPSAC.2015.74.

[19] S. Goel and R. Sharma, Economic Analysis of Solar Water Pumping
System for Irrigation, in: Sharma, R., Mishra, M., Nayak, J., Naik, B.,
Pelusi, D. (eds) Green Technology for Smart City and Society. Lecture
Notes in Networks and Systems, vol. 151, Singapore: Springer, https:
//doi.org/10.1007/978-981-15-8218-9_13.

[20] S. Oyucu, “Integration of cloud-based speech recognition system to the
Internet of Things based smart home automation,” HORA 2021 – 3rd
Int. Congr. Human-Computer Interact. Optim. Robot. Appl. Proc., 2021,
pp. 30–32, doi: 10.1109/HORA52670.2021.9461360.

[21] A. Meliones and D. Giannakis, “Visual programming of an interac-
tive smart home application using LabVIEW,” IEEE Int. Conf. Ind.
Informatics, 2013, pp. 655–660, doi: 10.1109/INDIN.2013.6622961.

[22] Z. Li, Y. Xiao, S. Liang, S. Wang, “Design of Smart home management
system based on MQTT and FBP,” Proc. 2018 Chinese Autom. Congr.
CAC 2018, 2019, pp. 3086–3091, doi: 10.1109/CAC.2018.8623113.

[23] M. Campbell, “Automated coding:” Computer, Vol. 53, No. 2, pp. 2020–
2022, 2020, doi: 10.1109/MC.2019.2957958.

[24] J. Yi, S. Fu, S. Cui, C. Zhao, “A deep contractive auto-encoding network
for machinery fault diagnosis,” Isc. 2018 – 18th Int. Symp. Commun. Inf.
Technol., 2018, pp. 85–89, doi: 10.1109/ISCIT.2018.8587983.

[25] X. Yang, H. Zhang, J. Cai, “Auto-encoding and distilling scene
graphs for image captioning,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 8828, no. c, pp. 1–14, 2020, doi: 10.1109/TPAMI.2020.3042192.

[26] H. Li, Y.-P. Wang, T.-J. Mu, “Nerva: Automated application synthesis
for humanoid robot from user natural language description,” Com-
mun. Inf. Syst., vol. 17, no. 1, pp. 45–64, 2017, doi: 10.4310/cis.20
17.v17.n1.a3.

[27] V. Le, S. Gulwani, Z. Su, “SmartSynth,” Mobisys ’13: Proceeding of the
11th Annual International Conference On Mobile Systems, Applications,
And Services, 2013, p. 193, doi: 10.1145/2462456.2464443.

10.1109/CMCSN.2016.21
10.1109/CMCSN.2016.21
10.1007/978-981-10-8848-3_55
10.1109/COMPSAC.2015.74
https://doi.org/10.1007/978-981-15-8218-9_13
https://doi.org/10.1007/978-981-15-8218-9_13
10.1109/HORA52670.2021.9461360
10.1109/INDIN.2013.6622961
10.1109/CAC.2018.8623113
10.1109/MC.2019.2957958
10.1109/ISCIT.2018.8587983
10.1109/TPAMI.2020.3042192
10.4310/cis.2017.v17.n1.a3
10.4310/cis.2017.v17.n1.a3
10.1145/2462456.2464443

252 J. Kuang et al.

[28] S. R. Joseph, H. Hloman, K. Letsholo, K. Sedimo, “Natural language
processing: A review,” Int. J. Res. Eng. Appl. Sci., vol. 6, no. 3, pp. 1–8,
2016, available at: http://www.euroasiapub.org.

[29] S. J. Segalowitz and H. Chevalier, “Event-related potential (ERP)
research in neurolinguistics: Part I. Techniques and applications to
lexical access,” Handbook of Neurolinguistics, Academic Press, 1998.
https://doi.org/10.1016/B978-012666055-5/50009-5.

[30] D. Stringer, “Lexical semantics: Relativity and transfer,” Appl. Linguist.
Teach. Cult. Linguist. Divers. Learn., pp. 180–203, 2019, doi: 10.4018/
978-1-5225-8467-4.ch007.

[31] S. K. Joseph, “Natural language processing tutorial,” Tutorials Point Pvt.
Ltd., pp. 1–13, 2019, available at: https://store.tutorialspoint.com.

[32] Y. Y. Hsu and H. Y. Kao, “Curatable named-entity recognition using
semantic relations,” IEEE/ACM Trans. Comput. Biol. Bioinforma.,
vol. 12, no. 4, pp. 785–792, 2015, doi: 10.1109/TCBB.2014.2366770.

[33] A. Fern, “Lecture Notes: First-Order Logic: Syntax and Semantics Syn-
tax of FO Logic,” pp. 1–9, 2010, available at: https://web.engr.oregons
tate.edu/~afern/classes/cs532/notes/fo-ss.pdf

[34] J. Laird, “A compositional cost model for the λ-calculus,” Proc. Symp.
Log. Comput. Sci., vol. 2021-June, 2021, doi: 10.1109/LICS52264.20
21.9470567.

[35] M. Biernacka, D. Biernacki, S. Lenglet, P. Polesiuk, D. Pous, A. Schmitt,
“Fully abstract encodings of λ-calculus in HOcore through abstract
machines,” Proc. Symp. Log. Comput. Sci., pp. 1–12, 2017, doi: 10.1
109/LICS.2017.8005118.

[36] T. Lampert, “Minimizing disjunctive normal forms of pure first-order
logic,” Log. J. IGPL, vol. 25, no. 3, pp. 325–347, 2017, doi: 10.1093/ji
gpal/jzx003.

[37] A. Sernadas, “Fibring modal first-order logics: Completeness preserva-
tion,” Log. J. IGPL, vol. 10, no. 4, pp. 413–451, 2002, doi: 10.1093/jigp
al/10.4.413.

[38] C. Calvès and M. Fernández, “Matching and alpha-equivalence check
for nominal terms,” J. Comput. Syst. Sci., vol. 76, no. 5, pp. 283–301,
2010, doi: 10.1016/j.jcss.2009.10.003.

[39] S. Guerrini, “Linear β-reduction,” Electron. Proc. Theor. Comput. Sci.
EPTCS, vol. 238, pp. 44–53, 2017, doi: 10.4204/EPTCS.238.5.

[40] P. H. Azevedo De Amorim, D. Kozen, R. Mardare, P. Panangaden,
M. Roberts, “Universal semantics for the stochastic λ-calculus,” Proc.

http://www.euroasiapub.org
https://doi.org/10.1016/B978-012666055-5/50009-5
10.4018/978-1-5225-8467-4.ch007
10.4018/978-1-5225-8467-4.ch007
https://store.tutorialspoint.com
10.1109/TCBB.2014.2366770
https://web.engr.oregonstate.edu/~afern/classes/cs532/notes/fo-ss.pdf
https://web.engr.oregonstate.edu/~afern/classes/cs532/notes/fo-ss.pdf
10.1109/LICS52264.2021.9470567
10.1109/LICS52264.2021.9470567
10.1109/LICS.2017.8005118
10.1109/LICS.2017.8005118
10.1093/jigpal/jzx003
10.1093/jigpal/jzx003
10.1093/jigpal/10.4.413
10.1093/jigpal/10.4.413
10.1016/j.jcss.2009.10.003
10.4204/EPTCS.238.5

An Automation Script Generation Technique for the Smart Home 253

Symp. Log. Comput. Sci., vol. 2021, June 2021, doi: 10.1109/LICS5226
4.2021.9470747.

[41] S. Bird, E. Klein, E. Loper, “NLTK tutorial: Introduction to natural
language processing,” English, vol. 66, p. 22, 2005.

[42] V. Sinha, F. Doucet, C. Siska, R. Gupta, S. Liao, A. Ghosh, “YAML:
A tool for hardware design visualization and capture,” Proc. Int. Symp.
Syst. Synth., vol. January 2000, pp. 9–14, 2000, doi: 10.1109/ISSS.200
0.874023.

Biographies

Jiayi Kuang is a master student at the School of Software, Yunnan Uni-
versity, China. She received her B.Eng. degree from Zaozhuang University,
China, in 2019. Her research interests include the Internet of Things and
service computing.

Gang Xue received his B.Eng. degree from Wuhan Technical University
of Surveying and Mapping in 2000. He received his M.Eng. and Ph.D.
degrees from Yunnan University in 2006 and 2009, respectively. He is

10.1109/LICS52264.2021.9470747
10.1109/LICS52264.2021.9470747
10.1109/ISSS.2000.874023
10.1109/ISSS.2000.874023

254 J. Kuang et al.

currently an associate professor at the School of Software, Yunnan University,
China. His research interests include service computing, edge computing, and
embedded systems.

Zeming Yan is a master student at the School of Software, Yunnan Univer-
sity, China. He received his B.Eng. degree from Jishou University, China, in
2019. His research interests include service computing and edge computing.

Jing Liu received the Ph.D. degree in computer application technology from
the University of Electronic Science and Technology of China in 2003. From
September 2003 to July 2005, he was with No. 30 Institute of China Electron-
ics Technology Group Corporation as a postdoctoral fellow. From September
2005 to December 2012, he had been an assistant professor at Sun Yat-Sen
University. Since January 2013, he has been an associate professor at Yunnan
University. His current research interests include applied cryptography and
network security.

	Introduction
	Related Work
	Preliminaries
	Natural Language Processing
	Lexical semantics
	Named entity recognition (NER)

	First-order Logic
	Lambda calculus
	Alpha equivalence and beta reduction

	Intermediate Language Specification
	Related Technical Tools
	NLTK
	Home assistant

	The Script Generation Method
	Evaluation
	Convert From Intermediate Script to Home Assistant Automation Script
	The Experiment

	Conclusion

