
Crawling the Deep Web Using
Asynchronous Advantage Actor

Critic Technique

Kapil Madan∗ and Rajesh Bhatia

Computer Science & Engineering Department, Punjab Engineering College
(Deemed to be University), Sector 12, Chandigarh, India
E-mail: er.kapilmadan@gmail.com
∗Corresponding Author

Received 10 March 2020; Accepted 10 February 2021;
Publication 02 June 2021

Abstract

In the digital world, World Wide Web magnitude is expanding very promptly.
Now a day, a rising number of data-centric websites require a mechanism
to crawl the information. The information accessible through hyperlinks can
easily be retrieved with general-purpose search engines. A massive chunk
of the structured information is invisible behind the search forms. Such
immense information is recognized as the deep web and has structured
information as compared to the surface web. Crawling the content of deep
web is very challenging and requires filling the search forms with suitable
queries. This paper proposes an innovative technique using an Asynchronous
Advantage Actor-Critic (A3C) to explore the unidentified deep web pages.
It is based on the policy gradient deep reinforcement learning technique that
parameterizes the policy and value function based on the reward system. A3C
has one coordinator and various agents. These agents learn from different
environments, update the local gradients to a coordinator, and produce a
more stable system. The proposed technique has been validated with Open
Directory Project (ODP). The experimental outcome shows that the proposed

Journal of Web Engineering, Vol. 20 3, 879–902.
doi: 10.13052/jwe1540-9589.20314
© 2021 River Publishers

880 K. Madan and R. Bhatia

technique outperforms most of the prevailing techniques based on various
metrics such as average precision-recall, average harvest rate, and coverage
ratio.

Keywords: Web crawler, deep web, reinforcement learning, A3C.

1 Introduction

World Wide Web (www) content is increasing very rapidly in the modern
era. This information has importance in various domains, e.g., research,
education, business, etc. A web crawler is required to retrieve the infor-
mation automatically. A web crawler is software that traverses the www
systematically and automatically. There are billions of websites that contain
large amount of information. Web crawler traverses through the hyperlinks
that are interconnected to each other and retrieve the Uniform Resource
Locators (URL). This URL list is known as Publically Index able Web
(PIW) or surface web. In contrast, deep web/hidden web is an extensive
collection of high-quality information hidden behind the search forms. It
collects dynamically generated web pages retrieved by filling the search
forms and successfully submitting them. The general-purpose search engines
cannot index dynamically generated deep web pages. The deep web size is
considerable as compared to the surface web [1]. The deep web has structured
information in comparison to the surface web. Such large and structured
information gives the motivation to crawl the deep web. The discovery of
deep web pages is challenging because of the unknown query set and its
size [2, 3].

Research Questions: Following Research Questions (RQ) have been solved
in the current work related to deep web crawling.

RQ1: Why deep web needs to be crawled?
RQ2: What existing Reinforcement Learning (RL) algorithms have been
used in the deep web?
RQ3: How large state space search problem of the deep web has been
handled? Which RL algorithm has been used to address this problem?

Motivation: The deep web contains huge chunk of structured information
that general search engines cannot crawl. As information is hidden behind the
search forms, it can retrieve only by querying the search forms. Q-learning
and learning automata are the RL algorithms applied to explore the search

Crawling the Deep Web Using Asynchronous Advantage 881

forms and retrieve the deep web content. However, Asynchronous Advantage
Actor-Critic (A3C) is an RL-based technique that has not been explored in the
context of deep web before this work. A3C has been applied in various other
domains such as gaming, traffic management, web-based tasks, vehicular
networks, etc. A3C has been proved successful in large state space problems.
The deep web has the large state space search problem that encourages the
use of A3C.

The main challenge here is to explore the unidentified deep web pages.
This paper proposes an innovative algorithm using A3C to crawl the deep web
through the search forms. A3C is a type of RL technique based on the policy
gradient method [4]. It parameterizes both the policy and value function.
It has one coordinator and various agents. The coordinator initializes all
the agents with global parameters. Various agents work asynchronously and
interact with the environment. Agent updates its local parameters and sends
parameters to the coordinator after a fixed time. This parallel functioning
leads to improve stability of the system. Each agent has a state that represents
a webpage. A webpage can be of two types – PIW or deep web page. PIW
is accessed by various hyperlinks, whereas various actions access deep web
pages. Actions can be query form submission or value submission. Critic
calculates the value function that helps to find the optimal policy and captures
how good action at a given state. Here, the actor is a policy function that learns
through the value function. It selects the actions based on the critic, which
leads to reward. The advantage function captures how an action is better than
other actions. Action probabilities of various actions have been initialized,
and the selection of action has been made based on the probabilities of
various actions. The main contribution of this work is improved precision,
recall, coverage ratio, and average harvest rate as compared to the existing
state of the art techniques such as random, generic frequency, and learning
automata. To the best of our knowledge, A3C based technique entitled Deep
Web Asynchronous Advantage Actor-Critic (DW-A3C) has been applied first
time to the deep web domain to reach unexplored deep web pages. The rest
of the paper is organized as follows. Section 2 emphasizes the related work of
deep web crawling techniques and RL based techniques. Section 3 presents
DW-A3C architecture and its detailed working. The proposed algorithm, to
discover the deep web pages with multiple parameters and functions are
presented in Section 4. Experimental evaluation, discussion, and performance
metrics are given in Section 5. Finally, Section 6 summarizes the conclusion
and its scope for further implementation.

882 K. Madan and R. Bhatia

2 Related Work

In this section, different deep web crawling techniques have been discussed.
Various assessment parameters and datasets used in the literature have been
analyzed. RL techniques corresponding to the information retrieval domain
have been studied. This section also discusses the significance of A3C
techniques in different domains.

2.1 Deep Web Crawling Techniques

The deep web term was first introduced by Bergman in 2001 and was given
importance due to its large size and structured information as compared to
the surface web [1]. He et al. proposed an approach based on IP sampling for
different web servers to identify the deep web-scale and structural complex-
ity [5]. Raghavan et al. proposed the architecture of the deep web crawler
entitled Hidden Web Exposer [6]. This architecture consists of different
modules to manage the URLs, search forms, and retrieves the deep web
content. Search forms are the entry nodes for the deep web and are filled
by the Label Value Set (LVS) manager. LVS manager retrieves the value
from various data sources and updates the LVS table. LVS table consists
of key-value pairs used to fill the search form. The discovery of the search
forms from the billions of connected web pages is a complicated task. A pre-
query survey consists of various methods/techniques related to the discovery
of search forms [7]. This survey does not include the form filling research
papers, which is post-query based techniques. On the contrary, a post-query
survey was discussed by Kantorski et al. to explore the form filling challenges
and their solutions [8]. Systematic literature review papers have explained
both the pre-query and post-query techniques in detail [9, 10]. Madhavan
et al. proposed the deep web crawling system to retrieve more content with
fewer submissions [11]. An informativeness test was used to evaluate the
search forms. It is based on various input values combination and discards the
irrelevant one. This technique is applicable to complex search forms that con-
tain multiple text boxes. Ntoulas et al. proposed a technique to generate the
queries without human intervention [12] automatically. This category comes
under the post-query selection technique. It is based on an approximation
algorithm that finds the near-optimal query set. Assessment parameters such
as coverage ratio and impact of the initial query were used. The datasets used
for evaluation were Open Directory Project (ODP), PubMed, and Amazon
website. Barrio et al. proposed query-based sampling strategies to generate
an efficient sample for the deep web [13]. As claimed by the author, this

Crawling the Deep Web Using Asynchronous Advantage 883

technique is the first large scale evaluation of sampling the deep web. ODP
dataset and assessment parameters such as coverage ratio, unique tuples were
used for evaluation. Wang et al. recommended a sampling method to learn
queries from a set of sample documents [14]. A learnable query set covered
a significant region of the deep web. Kumar et al. proposed an algorithm
based on learning automata to explore the deep web pages [15]. Dmoz.org
website, a replica of ODP, was used as a dataset. Assessment parameters
such as precision-recall curve and depth of crawling were used to evaluate
the algorithm.

2.2 RL and A3C Based Techniques

Nowadays, RL techniques are extensively used in information retrieval
domains. RL uses Markov Decision Process (MDP) where action proba-
bilities are unknown. MDP is the combination of 4 tuples (S, A, P, R),
whereas ‘S’ is the set of states {s1t, s2t, s3t . . . skt }, ‘A’ is the set of actions
{a1t, a2t, a3t . . . akt }, ‘P’ (s’/s, a) is the probability of reaching new state
s’ on receiving an action ‘a’ at state s and ‘R’ is the reward produced by
the environment from current state s to new state s’ by using some action.
If an action helps to achieve the target, the reward is assigned, and policy
is learned through experience. If an action takes away from the target, the
penalty is assigned, and similar action is discarded in the future. Zhou et
al. presented a technique based on the deep Q network for searching the
content in social media platforms [16]. This method was used in microblog
platforms for security topics. Liu et al. proposed a fast learning method
based on Workflow Guided Exploration (WGE) [17]. WGE is useful in
sparse reward domains. Learning was achieved through the demonstrations,
which is the sequence of state-action pairs. Kumar et al. used an algorithm
based on Distributed Learning Automata (DLA) to discover the hidden web
pages [18]. Ortiz et al. suggested a deep RL technique to find a subquery
generation technique [19]. Shi et al. developed the RL platform to perform
the web task with the mouse, keyboard actions, domain object model, and
suggested the world of bit platform to do the internet tasks using RL [20].
This technique did not handle the complex queries. In the deep web, the
‘Q’ value estimation method was recommended to deal with the myopia
problem to some extent [21]. Myopia problem arises when the future reward
of each query is ignored. Singh et al. proposed a framework based on an
intelligent agent to find more relevant information in the deep web [22].
A3C is also a type RL technique that estimates the value function and policy

884 K. Madan and R. Bhatia

function to learn intelligently. In literature, there are various applications of
A3C learning techniques. Some of them are used in Atari games [4], Motion
planning such as car racing simulator [4], 3D maze games [4], Rogue video
games [23], controlling the traffic signals [24], WGE [17], a vehicular net-
work for efficient resource allocation strategy [25], etc. Yang et al. proposed
an enhanced algorithm derived from A3C to tackle the traffic signal control
challenges in the multi-intersection [24]. This algorithm proposed a flexible
matrix to design an effective policy for traffic control signals. A3C technique
is also used in the information extraction domain with the help of parallel
agents [26]. Asperti et al. suggested a technique based on A3C to solve the
exploration of Rogue dungeon games [23]. The problem was considered a
partially observable MDP and partitioned the sample space into situations.
Situations were assigned to the agents to solve it. This technique achieved
a 98% success rate with ample state space and action space. A3C has been
proved successful in dealing with large state space and action space problems.

3 Proposed Architecture

This section proposes an architecture diagram for deep web crawling. It is
a combination of the A3C and WGE technique. This section also discusses
the sample of demonstration and workflow lattice. A3C is a type of policy
gradient RL method that parameterize the policy and value function. It has
two neural networks that help to learn the policy and value function. It has
various agents and one coordinator. The coordinator initializes, controls, and
coordinates the working of agents. Agents interact with their corresponding
environment, performs an action ‘aj’ based on the probability that is given
by Equation (1). ‘Q’ is the state transition function that helps to decide the
next state based on action ‘aj’. Softmax as the activation function that helps to
convert into probabilities. Action selection is made using softmax function.
Probability of action ‘aj’ with given state st is represented by

P(aj/st) =
exp(Q(st, aj))∑N
j=1 exp(Q(st, aj))

(1)

The environment responds either by reward or penalty to the agent. Based
on the environment response, the parameters of an agent are adjusted. Asyn-
chronous means the parallel functioning of agents that learn from different
environments and leads to more stability of the system. Here, main actor is
the policy denoted by Π(at/st,θp) whereas ‘at’ is the action taken by agent

Crawling the Deep Web Using Asynchronous Advantage 885

Figure 1 Sample of demonstration ‘d’ with state-action pair.

Figure 2 Sample of workflow lattice with selected path {s1, a3, s2, a6}.

at a time ‘t’ based on st, st is the state corresponding to an agent, and ‘θp’
is the policy learning parameter. The critic is the value function denoted by
V (st, θv) wherein ‘θv’ is the value learning parameter. Deep web problems
can be devised as a multi-agent task that uses RL. Here, agents work in par-
allel, accomplish various actions, receive the response from the environment,
and learn the policies. Figure 1 shows the demonstration, i.e., a generalized
sequence of state-action pairs. It tells the high level of information, e.g., fill
the search form, click on the button, and save the resultant webpage. It does
not tell about specific details of the text box and the submit button. It just
guides the direction of workflow during crawling. It helps to identify the
relevant actions that are similar to the demonstrations so that reward can be
generated, and learning does not stagnate.

The selection of demonstration ‘d’ is done by matching with the policy
goal ‘g’ and demonstration goal ‘gd’ as shown in Equation (2):

d ∼ P(d/g) α exp (sim (g, gd)) (2)

whereas sim (g,gd) is the similarity between policy goal ‘g’ and demonstra-
tion goal ‘gd’. Its value is equal to 1 if fundamental goals are same else, this
value is −∞. It helps the formulation of workflow lattice. Figure 2 shows
the sample of workflow lattice made from the demonstrations. Dotted lines

886 K. Madan and R. Bhatia

Figure 3 Proposed architecture diagram.

represent the selected path {s1, a3, s2, a6}. Workflow lattice further builds
the workflow policy based on the reinforce algorithm [27].

Figure 3 shows the proposed architecture diagram to learn the policy and
its parameters to find the unexplored deep web pages. As there are large
number of actions and very few actions lead to reward. So, WGE can be
beneficial because it handles sparse reward very efficiently. The selection of
those actions that lead to reward is crucial otherwise, agent learning stagnates.
Demonstration is an input to the workflow module and helps to generate
rewarded episode. This workflow policy is independent of the environment as
there is no parameter of state ‘s’. It is represented by Πw(z/d t) whereas z is
a workflow step with fewer parameters. It learns more quickly and generates
the episodes. Episodes are the state-action pairs that produce either reward
or penalty. This policy cannot solve the given problem independently due to
environment blindness. However, it helps the coordinator to solve the task and
learns quickly. WGE generates the rewarded episodes, which are transferred
to the coordinator. The coordinator assigns the rewarded episodes to various
agents that guide them to select the action. Agents interact with the environ-
ment through action. Environment in turn gives the response to agent-based
on action. Agents update their parameters and send the shared parameter to

Crawling the Deep Web Using Asynchronous Advantage 887

coordinator. Description of the algorithm and mapping of various tuples of
deep web are presented in the Section 4.

4 Proposed Algorithm

In this section, a technique, namely Deep Web Asynchronous Advantage
Actor-Critic (DW-A3C), is proposed to retrieve the deep web pages. It is a
type of RL technique that helps to acquire the policy and value function. This
policy helps to generate reward by searching unidentified deep web pages.

The DW-A3C is defined with 12 tuples (I, S, A, £, H, Q, V, Ad, Ω, γ, Π,
and EH). These tuples are explained below:

i. I = {I1, I2, I3 . . . In } is the set of agents that have deep learning neural
networks to learn the local parameters for policy formulation. Here, ‘n’
is the number of agents.

ii. S = {s1t, s2t, s3t . . . skt } is the set of states/web pages for an agent at a
given time ‘t,’ and it can be PIW or deep web pages.

iii. A = {a1t, a2t, a3t . . . akt } is the set of actions available on a given
webpage ‘skt’ for anagent at time ‘t’.

iv. ‘£’ is the seed URL of a website that is the starting state. Each seed
URL belongs to the state of a website £ ∈S. Every seed URL is a subset
of the set ‘S’, i.e., £ ⊆ S. It can be equal to S for a single-page website.

v. ‘H’ is the set of deep web pages which is a proper subset of S (H ⊂ S).
It is always a proper subset because every website has a seed URL ‘£’.
‘H’ can be an empty set or ‘H’ = φ because some websites may not have
deep web pages ‘H’.

vi. ‘Q’ is the state transition function that helps to decide the next state
based on action ‘akt’. It can be defined as St × A → St+1. ‘St’ is the
present state and ‘St+1’ is the next state after an action ‘akt’.

vii. V(sit) is the value function which is estimated return for the subsequent
policy Π from state ‘sit’. It captures how good an action ‘ait’ is to be at
this state.

viii. ‘Ad’ is the advantage function that captures how better an action as
compared to other actions at akt with a given state. It is represented by
Equation (3):

Ad(s, akt) = Q(s, akt)− V (s) (3)

ix. ‘Ω’ is the response generated by the environment corresponding to a
given episode that can be a reward (1) or penalty (0). The episode is the
set of pairs consisting of state and action.

888 K. Madan and R. Bhatia

x. ‘γ’ is the discount factor in the range of 0 and 1 (0 ≤ γ ≤ 1).
xi. Π(akt/sit) is the policy function that decides action based on state ‘sit’.

Here, the policy objective function is S − H→ H to find the unknown
deep web pages from given seed URL ‘£’. Π∗ is the optimal policy that
selects the episodes which have earned maximum reward by selecting
suitable actions.

xii. ‘EH ’ is entropy used to encourage exploration. The sum of the probabil-
ity of action multiply the log of the probability of action. It is represented
by Equation (4):

EH = −
K∑
k=1

Πk log Πk (4)

Figure 4 shows the flow chart of the DW-A3C algorithm to learn the policy
parameter. For each seed URL, LVS table is populated with their corre-
sponding key-value pair [6]. WGE helps to find rewarded episodes that lead
to quick learning of the parameter, as shown in Figure 3. The coordinator
initializes the agents, passes the rewarded episodes, and assigns seed URLs
to each agent. URL queue is maintained to check the status of seed URLs.
Agents interact with the environment, learn the local policy, and send local
gradient to a coordinator for updating the parameter. The agent starts crawling
corresponding to seed URLs. This process stops when the depth of crawling is
completed, or the terminal state is reached, or the agent time limit is exceeded.
Seed URL is popped out from the URL queue. The coordinator sends a shared
gradient to all agents. If the URL queue is empty, then it stops. Else new seed
URL is assigned to the agent by the coordinator.

An algorithm is proposed to explore the dynamically generated deep web
pages. It has various inputs, i.e., seed URLs, rewarded episodes, and form tag
vector. Seed URLs are a collection of starting URLs. Rewarded episodes are
a sequence of state-action pairs that lead to reward. Form tag vector provides
entry to the deep web and is found by proposed crawler. LVS table contains a
key-value pair corresponding to the domain of seed URL. It has a set of deep
web pages represented by U as output. A3C architecture has one coordinator
and n agents, as shown in Figure 3. The coordinator assigns each agent with
different seed URLs. Each agent assigns the probability to each action, as
shown in step 2 of the algorithm. The coordinator resets, initializes each
agent, and passes the rewarded episodes to each agent, as shown in step 3.
Assume shared parameter vector ‘θ’ and ‘θv’, shared counter variables are
initialized t = 0, dθ ← 0, t=0, and dθv ← 0. ‘tw’ is the maximum agent
time. Exit criteria for each agent are time ‘tw’ or it finds all the deep web

Crawling the Deep Web Using Asynchronous Advantage 889
g y

START

Seed URLs & its LVS tables

WGE Policy returns rewarded episodes

Coordinator initializes agent, picks new seed URLs, and pass
rewarded episodes

Agents play episodes, learn local policy and send
gradient to coordinator

Is agent time limit
exceeded or depth

crawling completed ?

Coordinator sends latest
parameter to agent

Is URL queue
empty?

STOP

No

Yes

Yes

No

Figure 4 Flow chart of DW-A3C algorithm.

pages for the given seed URL as shown in step 6. Embedding technique
word2vec converts the rewarded episode and form tag into vector form.
Convolution Neural Network helps to learn the features from the rewarded
episode vector and the form tag vector, as shown in Figure 5. Policy and
value functions are generated from the Long Short Term Memory (LSTM)

890 K. Madan and R. Bhatia

and fully connected layer. The crawler uses the policy function to find the
next action and reaches to the new state ‘sjt’. Reward and penalty criteria are
explained in steps 11 to 16 of the algorithm. It updates the action probability,
local parameters of the agent, and asynchronous updates the shared counter
variable ‘θ’ and ‘θv’. Once the agent time limit is exceeded, the coordinator
resets the agent and assigns a new seed URL. If the URL queue is empty, then
it stops.

Algorithm for finding the deep web pages

Input: Seed URLs with LVS table values, rewarded episode, and form tag vector.
Output: ‘U’ is a set of the deep web pages retrieved by crawler. ‘H’ is a set of deep web

pages retrieved manually and used for validation purposes. U ⊆ H.
1: Create A3C architecture, and each agent is assigned a set of web pages for a given seed

URL.
2: Initialize the probability of each action as illustrated in Equation (1).
3: Coordinator resets, initialize agents, and pass the rewarded episodes.
4: Let ‘t’ be the time in seconds, ‘t’=0. ‘tw’ is the agent time limit.
5: for each agent
6: while (U = H or t <= tw)
7: word2vec embedding is used to convert rewarded episodes and form tag webpage

into form vector.
8: Learn the features from episode vector and form vector through Convolution Neural

Networks and fully connected layer.
9: LSTM helps to find the relationship and dependency between rewarded episode and

web pages. It generates the policy Π(akt/sit, θ), and value function V(s). Perform
akt according to the policy

10: The crawler uses this policy function Π(akt/sit) to find the next action given state
as defined in DW-A3C.

11: Increment by time t by 1 unit.
12: if ‘sit’ and ‘sjt’ are connected with a dotted line
13: reward the action ‘ait’.
14: save the ‘sit’ and add it to set ‘H’.
15: else
16: penalize the action ‘ait’.
17: update action probability and local parameter
18: end if
19: send local parameter and rewarded episodes discovered to the coordinator
20: end while
21: Perform update ‘θ’ using ‘dθ’ and ‘θv’ using ‘dθv’.
22: end for

Crawling the Deep Web Using Asynchronous Advantage 891

Figure 5 An agent architecture for learning the policy and value function.

5 Experimental Evaluation

All experiments were performed on the Intel Xeon W-2155 and Windows 10
Professional with 64 GB RAM. Various information retrieval metrics were
used to validate the proposed technique (DW-A3C). ODP is the most popular
open-source subject system used in literature. It is the collection of URLs
which have been categorized manually and are not biased by commercial
concern. ODP website, i.e., dmoz.org, was closed after March 2017. Since
then, the curlie.org domain is used as a dataset to represent the ODP. This
dataset contains fifteen domains that were chosen for evaluation. From each
domain, one website was randomly chosen. The selected domains were
arts, business, computers, games, health, home, news, recreation, reference,
regional, science, shopping, society, sports, and kids & teens with the corre-
sponding names as db1, db2, db3, db4, db5, db6, db7, db8, db9, db10, db11,
db12, db13, db14, and db15 respectively. The proposed crawler was able to
identify various forms, such as search forms, login forms, and subscription
forms for a given website. This crawler traversed each website of a domain
and crawled both the types of web pages, such as PIW pages and deep
web pages. It was developed using the Python language. The main libraries
used were selenium web driver, scrapy, regular expressions, urllib2, urljoin,
requests, os, enchant, beautiful soup, clipboard, etc.

The LVS table was populated with the corresponding key-value pair
entries based on each domain. The proposed crawler used LVS table values
to fill the search forms and retrieve the dynamically generated deep web
pages. This crawler collected all the web pages, such as PIW and deep web
pages. It traversed up to seven depths for a website. Depth seven was selected
because very little information of deep web pages was retrieved after depth 7.
Manually collected web pages were used to evaluate the crawler performance.
A total of 1,52,680 web pages that contain 80,486 deep web pages were

892 K. Madan and R. Bhatia

collected manually. This manual result helps to validate all new deep web
pages retrieved by the proposed crawler. A graph was prepared by connecting
the starting seed URL and its corresponding web pages using matplotlib.
There were two types of lines in the graph first was the dark line, and the
second was dotted line. A dark line connects the two PIW pages or one deep
web page followed by a PIW page. A dotted line is connected by two deep
web pages or one PIW page followed by a deep web page. This graph was
used to calculate various metrics such as average harvest ratio and coverage
ratio.

5.1 Performance Evaluation Based on Number of Searchable
Forms vs. Depth

Deep web pages are generated dynamically after filling the searchable form.
Searchable forms are the entry points to the deep web. The proposed crawler
was able to identify the searchable forms during crawling. Figure 6 shows
the distribution of several searchable forms discovered during the depth of
crawling. With an increase in crawling depth, the number of searchable forms
also increases and reaches the maximum number of searchable forms at depth
d. The value of d for fourteen domains is three except for db3, whose value of
d is two. The number of searchable forms starts to decrease for all domains
after depth d. As depicted in Figure 6, the number of searchable forms for
domains such as db1, db4, db6, db14, and db15 is less than other domains.

5.2 Performance Evaluation Based on Fraction of Deep Web
Pages with the Depth of Crawling

Figure 7 shows the graphical distribution of deep web pages with the depth
of crawling. No deep web page is found at depth 0 because it contains only
the seed URL. As the crawler starts to traverse, more searchable forms are
discovered that leads to an increase in deep web pages. The fraction of deep
web pages is maximum at depth three except for domain db3. Subsequently,
a fraction of deep web pages starts decreasing up to depth 7.

5.3 Receiver Operating Characteristics

Receiver Operating Characteristics (ROC) curve is the plot between the True
Positive Rate (TPR) on the y-axis and False Positive Rate (FPR) on the
x-axis. TPR is the ratio of true positive and all actual positive that is the
combination of a true positive and false negative. TPR is also named as recall

Crawling the Deep Web Using Asynchronous Advantage 893

0

5

10

15

20

25

30

35

40

45

50

0 1 2 3 4 5 6 7

N
o.

 o
f S

ea
rc

ha
bl

e
Fo

rm
s

Depth of Crawling

db1 db2 db3 db4 db5 db6 db7 db8

db9 db10 db11 db12 db13 db14 db15

Figure 6 Distribution of the number of searchable forms w.r.t. depth of crawling.

0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4 5 6 7

Fr
ac

tio
n

of
 D

ee
p

W
eb

 p
ag

es

Depth of Crawling

db1 db2 db3 db4 db5 db6 db7 db8

db9 db10 db11 db12 db13 db14 db15

Figure 7 Fraction of deep web pages with the depth of crawling.

894 K. Madan and R. Bhatia

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5

T
ru

e
Po

si
tiv

e
R

at
e

False Postive Rate

db1 db2 db3 db4 db5 db6 db7 db8

db9 db10 db11 db12 db13 db14 db15

Figure 8 ROC curve for different domains.

or sensitivity. FPR is the ratio of false-positive and all actual negatives that
is the combination of false positives and true negatives. It is desired for ideal
scenarios to have point on the top left corner. Figure 8 shows the ROC curve
for fifteen domains. Initially, the value of TPR and FPR is minimal because
it contains fewer true positives and false positives. As more web pages are
crawled, the value of true positive increases rapidly as compared to false
positive. The value of FPR increases much rapidly at TPR of 0.5 because
more false-positive are added in the queue as compared to low value of recall.
This behavior is observed for all the fifteen domains, and the average value of
TPR reaches the value of 0.93. The average FPR value is 0.22 for all fifteen
domains.

5.4 Precision-Recall Curve

The precision-recall curve helps to measure the performance of crawler
wherein recall is on the x-axis & precision is on the y-axis. A recall is the
fraction of true positive and all actual positive. All actual positive is the
combination of true positive, and false negative. Precision is a fraction of
true positive and all predicted positive. All predicted positive is combination

Crawling the Deep Web Using Asynchronous Advantage 895

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pr
ec

isi
on

Recall

db1 db2 db3 db4 db5 db6 db7 db8

db9 db10 db11 db12 db13 db14 db15

Figure 9 Precision-Recall curve for different domains.

of true positive, and false positive. As crawling starts, the value of precision is
high and the value of recall is low, as shown in Figure 9. As crawling proceeds
further, the value of false-positive increases more than true positive. It leads
to a decrease in precision value. The value of true positive increases which in
turn increases the recall value. Later on, the value of precision increases and
then starts to decrease again. It is observed the same for all fifteen domains.
The minimum value of precision, i.e., 0.72, is observed at a recall value of
0.44 for domain db11.

5.5 Comparative Analysis

This subsection contains the comparative analysis of the proposed technique
(DW-A3C) with existing techniques such as DLA [18], Random, Generic
frequency, and Adaptive [12]. Various metrics such as deep web pages vs.
PIW pages, average harvest rate, and coverage ratio were used for evaluation.
DLA technique was chosen for comparison because it also detects the deep
web pages. Random, Generic, and adaptive techniques are related to query
selection problem of the deep web. ODP dataset was used by all these
techniques for evaluation.

896 K. Madan and R. Bhatia

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0.1 0.3 0.5 0.7 0.9

A
ve

ra
ge

 P
re

ci
sio

n

Recall

DW-A3C DLA

Figure 10 Average Precision-Recall curve for DW-A3C and DLA.

5.5.1 Average precision-recall curve
The average precision-recall metric is used for comparing the proposed
technique with the DLA technique. Average precision is the sum of different
precision points of various domains divided by the total number of domains
n for a given value of recall. Figure 10 shows the average precision-recall
curve for DW-A3C and DLA technique [18]. DW-A3C outperforms the DLA
technique for all the values of recall. Initially, the value of average precision
is high. As the more number of web pages are crawled, average precision
starts decreasing with an increased value of recall.

5.5.2 Fraction of deep web pages vs. PIW pages
As shown in Table 1 below, the fraction of deep web pages retrieved from
DW-A3C is more than DLA. As the number of deep web pages is more,
this small difference leads to the large number of web pages. The difference
between DW-A3C and DLA in terms of fraction of PIW pages is more
significant. DLA crawls all PIW pages, whereas DW-A3C explores less
fraction of PIW pages because DW-A3C is based on WGE that explores
reward paths rather than all paths.

5.5.3 Average Harvest ratio
The average harvest ratio is the fraction of deep web pages retrieved, and
all the crawled web pages retrieved containing PIW and deep web pages.

Crawling the Deep Web Using Asynchronous Advantage 897

Table 1 Comparison of proposed technique with DLA
Fraction of Deep Web Pages Fraction of PIW Pages

DLA 0.90 1

DW-A3C 0.94 0.72

Table 2 Comparison of different techniques with proposed based on coverage ratio
Techniques Random Generic DLA DW-A3C Adaptive

Coverage ratio 0.26 0.72 0.83 0.93 0.99

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7

A
ve

ra
ge

 H
ar

ve
st

 R
at

e

Depth of crawling

DW-A3C DLA

Figure 11 Average harvest rate versus depth of crawling for ODP.

Havg = Ud/Sd, whereas Havg is the average harvest ratio, ‘Ud’ is the deep
web pages retrieved during depth ‘d’ and ‘Sd’ is the total web pages retrieved
during depth ‘d’. Figure 11 shows a graph of the average harvest ratio
with crawling depth. The increase in the average harvest rate is due to the
asynchronous nature of DW-A3C that makes the architecture more stable and
uses WGE to find the reward path. DW-A3C outperforms as compared to
DLA during all the depths of crawling.

5.5.4 Coverage ratio
Figure 12 shows the coverage ratio of documents w.r.t query number for the
art section of ODP. The adaptive technique is based on a query generation
problem that is a part of deep web crawling [12]. Whereas DW-A3C, a
proposed technique, contains the whole deep web crawling process. The

898 K. Madan and R. Bhatia

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 50 100 150 200 250 300 350 400 450 500

Fr
ac

tio
n

of
 D

oc
um

en
ts

Query Number

Random Generic Frequency Adaptive DW-A3C DLA

Figure 12 Coverage ratio of documents for the art section of ODP.

query generation part is compared with the adaptive technique, Generic
frequency, and DLA [18]. From Table 2, it is clear that the coverage ratio of
DW-A3C is 0.93, which outperforms the coverage ratio of 0.83 in DLA, 0.72
in generic technique, and 0.26 in random technique. However, the coverage
ratio of adaptive technique is 0.99, which is more as compared to DW-
A3C because of the adaptive technique ability to find new queries from the
previous queries.

In our work, coverage ratio and precision depend on initial keywords
selected to represent the domain. The current achieved coverage ratio of 0.93
is quite promising. This work can be further improved with an automated and
efficient way of selecting keywords for domain representation.

6 Conclusion and Future Scope

Crawling the deep web is a challenging task as structured information is
hidden behind the search forms. Different types of RL techniques have been
applied to extract the deep web data. RL technique namely A3C, has not
been applied for deep web crawling. In this paper, a new technique has
been proposed to utilize A3C for crawling the deep web and is termed as
Deep Web Asynchronous Advantage Actor-Critic (DW-A3C) technique. This
proposed technique was validated on fifteen domains of ODP. Various metrics
such as the number of searchable forms vs. depth, a fraction of deep web

Crawling the Deep Web Using Asynchronous Advantage 899

pages vs. depth, and ROC curve were used to assess the performance of
the proposed technique. It is revealed that the average precision-recall curve,
number of deep web pages vs. PIW pages, and average harvest rate shows
the improvement of DW-A3C over DLA for retrieving the deep web pages.
The proposed technique also performed better in terms of coverage ratio than
other existing techniques such as Generic frequency, Random, and DLA in
the domain of art section of ODP. DW-A3C can further be improved by
incorporating query optimization techniques. It will help to further increase
the coverage ratio using the lesser number of queries.

References

[1] M. K. Bergman, “White Paper: The Deep Web: Surfacing Hidden
Value,” J. Electron. Publ., vol. 7, no. 1, 2001.

[2] I. Hernández, C. R. Rivero, and D. Ruiz, “Deep Web crawling: a survey,”
World Wide Web, vol. 22, no. 4, pp. 1577–1610, Jul. 2019.

[3] M. Kumar, R. Bhatia, and D. Rattan, “A survey of Web crawlers for
information retrieval,” WIREs Data Min. Knowl. Discov., vol. 7, no. 6,
p. e1218, 2017.

[4] V. Mnih et al., “Asynchronous methods for deep reinforcement learn-
ing,” 33rd Int. Conf. Mach. Learn. ICML 2016, vol. 4, pp. 2850–2869,
2016.

[5] B. He, M. Patel, Z. Zhang, and K. C.-C. Chang, “Accessing the deep
web,” Commun. ACM, vol. 50, no. 5, pp. 94–101, May 2007.

[6] S. Raghavan and H. Garcia-Molina, “Crawling the Hidden Web,” in 27th
VLDB Conference - Roma, Italy, 2001, pp. 1–10.

[7] M. C. Moraes, C. A. Heuser, V. P. Moreira, and D. Barbosa, “Prequery
Discovery of Domain-Specific Query Forms: A Survey,” IEEE Trans.
Knowl. Data Eng., vol. 25, no. 8, pp. 1830–1848, Aug. 2013.

[8] G. Z. Kantorski, V. P. Moreira, and C. A. Heuser, “Automatic Filling
of Hidden Web Forms,” ACM SIGMOD Rec., vol. 44, no. 1, pp. 24–35,
May 2015.

[9] Y. Ru and E. Horowitz, “Indexing the invisible web: a survey,” Online
Inf. Rev., vol. 29, no. 3, pp. 249–265, 2005.

[10] J. Madhavan, L. Afanasiev, L. Antova, and A. Halevy, “Harnessing the
Deep Web: Present and Future,” Syst. Res., vol. 2, no. 2, pp. 50–54, 2009.

[11] J. Madhavan, D. Ko, £. Kot, V. Ganapathy, A. Rasmussen, and A.
Halevy, “Google’s Deep Web crawl,” Proc. VLDB Endow., vol. 1, no. 2,
pp. 1241–1252, Aug. 2008.

900 K. Madan and R. Bhatia

[12] a. Ntoulas, P. Pzerfos, and J. C. J. Cho, “Downloading textual hidden
web content through keyword queries,” Proc. 5th ACM/IEEE-CS Jt.
Conf. Digit. Libr. (JCDL ’05), pp. 100–109, 2005.

[13] P. Barrio and L. Gravano, “Sampling strategies for information extrac-
tion over the deep web,” Inf. Process. Manag., vol. 53, no. 2, pp. 1339–
1351, 2017.

[14] Y. Wang, J. Lu, J. Liang, J. Chen, and J. Liu, “Selecting queries from
sample to crawl deep web data sources,” Web Intell. Agent Syst., vol. 10,
no. 1, pp. 75–88, 2012.

[15] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
1998.

[16] N. Zhou, J. Du, X. Yao, W. Cui, Z. Xue, and M. Liang, “A content search
method for security topics in microblog based on deep reinforcement
learning,” World Wide Web, vol. 23, no. 1, pp. 75–101, 2020.

[17] E. Z. Liu, K. Guu, P. Pasupat, T. Shi, and P. Liang, “Reinforcement
Learning on Web Interfaces Using Workflow-Guided Exploration,” in
6th International Conference on Learning Representations, ICLR 2018 –
Conference Track Proceedings, 2018.

[18] M. Kumar and R. Bhatia, “Hidden Webpages Detection Using Dis-
tributed Learning Automata,” J. Web Eng., vol. 17, no. 3–4, pp. 270–283,
2018.

[19] J. Ortiz, M. Balazinska, J. Gehrke, and S. S. Keerthi, “Learning
State Representations for Query Optimization with Deep Reinforce-
ment Learning,” DEEM’18 Int. Work. Data Manag. End-to-End Mach.
Learn., 2018.

[20] T. Shi, A. Karpathy, L. Fan, J. Hernandez, and P. Liang, “World of
bits: An open-domain platform for web-based agents,” in In Proceed-
ings of the 34th International Conference on Machine Learning, 2017,
pp. 4834–4843.

[21] Q. Zheng, Z. Wu, X. Cheng, L. Jiang, and J. Liu, “Learning to crawl
deep web,” Inf. Syst., vol. 38, no. 6, pp. 801–819, Sep. 2013.

[22] L. Singh and D. K. Sharma, “An architecture for extracting information
from hidden web databases using intelligent agent technology through
reinforcement learning,” in 2013 IEEE Conference on Information and
Communication Technologies, 2013, no. Ict, pp. 292–297.

[23] A. Asperti, D. Cortesi, and F. Sovrano, “Crawling in Rogue’s Dungeons
with (Partitioned) A3C,” in Lecture Notes in Computer Science (includ-
ing subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), vol. 11331 LNCS, 2019, pp. 264–275.

Crawling the Deep Web Using Asynchronous Advantage 901

[24] S. Yang, B. Yang, H.-S. Wong, and Z. Kang, “Cooperative traffic signal
control using Multi-step return and Off-policy Asynchronous Advan-
tage Actor-Critic Graph algorithm,” Knowledge-Based Syst., vol. 183,
p. 104855, 2019.

[25] M. Chen, T. Wang, K. Ota, M. Dong, M. Zhao, and A. Liu, “Intelligent
resource allocation management for vehicles network: An A3C learning
approach,” Comput. Commun., vol. 151, no. 2019, pp. 485–494, 2020.

[26] A. Sharma, Z. Parekh, and P. Talukdar, “Speeding up reinforce-
ment learning-based information extraction training using asynchronous
methods,” in EMNLP 2017 - Conference on Empirical Methods in
Natural Language Processing, Proceedings, 2017, pp. 2658–2663.

[27] R. J. Willia, “Simple Statistical Gradient-Following Algorithms for
Connectionist Reinforcement Learning,” Mach. Learn., vol. 8, no. 3,
pp. 229–256, 1992.

BiographiesBiographies

Mr. Kapil Madan is a Ph.D. student from Department of Computer Science and Engineering at

Punjab Engineering College (Deemed to be University), Chandigarh, India. He attended the

Thapar Institute of Engineering Technology (Deemed to be University), Patiala, India where

he received his M.E. degree in Software Engineering. He received his B.Tech. degree in

Computer Engineering from Kurukshetra University, Haryana, India. He has more than 8 years

of Teaching and Research experience. His research areas include Information retrieval,

Focused crawling, and Reinforcement learning.

Dr. Rajesh Bhatia is currently working as a Professor in the Department of Computer Science

and Engineering at Punjab Engineering College (Deemed to be University), Chandigarh, India.

He received his Ph.D. and M.E. degrees in Computer Science Engineering from Thapar

Institute of Engineering Technology (Deemed to be University), Patiala, India. He has received

B. Tech. degree from Dr. B. Ambedkar Marathwada University, Aurangabad, India. He has

more than 25 years of Teaching and Research experience. His research areas include

Automated Software Debugging, Semantic Software Clones detection and Automated Test

Cases Generation, Information Retrieval, and Search Based Software Engineering. He is also

undertaking various Sponsored Research Projects. He has about 85 research publications in

various reputed journals and conferences.

Kapil Madan is a Ph.D. student from Department of Computer Science
and Engineering at Punjab Engineering College (Deemed to be University),
Chandigarh, India. He attended the Thapar Institute of Engineering Technol-
ogy (Deemed to be University), Patiala, India where he received his M.E.
degree in Software Engineering. He received his B.Tech. degree in Computer
Engineering from Kurukshetra University, Haryana, India. He has more than
8 years of Teaching and Research experience. His research areas include
Information retrieval, Focused crawling, and Reinforcement learning.

902 K. Madan and R. Bhatia

Biographies

Mr. Kapil Madan is a Ph.D. student from Department of Computer Science and Engineering at

Punjab Engineering College (Deemed to be University), Chandigarh, India. He attended the

Thapar Institute of Engineering Technology (Deemed to be University), Patiala, India where

he received his M.E. degree in Software Engineering. He received his B.Tech. degree in

Computer Engineering from Kurukshetra University, Haryana, India. He has more than 8 years

of Teaching and Research experience. His research areas include Information retrieval,

Focused crawling, and Reinforcement learning.

Dr. Rajesh Bhatia is currently working as a Professor in the Department of Computer Science

and Engineering at Punjab Engineering College (Deemed to be University), Chandigarh, India.

He received his Ph.D. and M.E. degrees in Computer Science Engineering from Thapar

Institute of Engineering Technology (Deemed to be University), Patiala, India. He has received

B. Tech. degree from Dr. B. Ambedkar Marathwada University, Aurangabad, India. He has

more than 25 years of Teaching and Research experience. His research areas include

Automated Software Debugging, Semantic Software Clones detection and Automated Test

Cases Generation, Information Retrieval, and Search Based Software Engineering. He is also

undertaking various Sponsored Research Projects. He has about 85 research publications in

various reputed journals and conferences.

Rajesh Bhatia is currently working as a Professor in the Department of
Computer Science and Engineering at Punjab Engineering College (Deemed
to be University), Chandigarh, India. He received his Ph.D. and M.E. degrees
in Computer Science Engineering from Thapar Institute of Engineering Tech-
nology (Deemed to be University), Patiala, India. He has received B. Tech.
degree from Dr. B. Ambedkar Marathwada University, Aurangabad, India.
He has more than 25 years of Teaching and Research experience. His research
areas include Automated Software Debugging, Semantic Software Clones
detection and Automated Test Cases Generation, Information Retrieval, and
Search Based Software Engineering. He is also undertaking various Spon-
sored Research Projects. He has about 85 research publications in various
reputed journals and conferences.

	Introduction
	Related Work
	Deep Web Crawling Techniques
	RL and A3C Based Techniques

	Proposed Architecture
	Proposed Algorithm
	Experimental Evaluation
	Performance Evaluation Based on Number of Searchable Forms vs. Depth
	Performance Evaluation Based on Fraction of Deep Web Pages with the Depth of Crawling
	Receiver Operating Characteristics
	Precision-Recall Curve
	Comparative Analysis
	Average precision-recall curve
	Fraction of deep web pages vs. PIW pages
	Average Harvest ratio
	Coverage ratio

	Conclusion and Future Scope

