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Abstract

Videos contain visual and auditory information. Visual information in a
video can include images of people, objects, and the landscape, whereas
auditory information includes voices, sound effects, background music, and
the soundscape. The audio content can provide detailed information on the
story by conducting a voice and atmosphere analysis of the sound effects
and soundscape. Metadata tags represent the results of a media analysis
as text. The tags can classify video content on social networking services,
like YouTube. This paper presents the methodologies of speech, audio, and
music processing. Also, we propose integrating these audio tagging meth-
ods and applying them in an audio metadata generation system for video
storytelling. The proposed system automatically creates metadata tags based
on speech, sound effects, and background music information from the audio
input. The proposed system comprises five subsystems: (1) automatic speech
recognition, which generates text from the linguistic sounds in the audio,
(2) audio event classification for the type of sound effect, (3) audio scene
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classification for the type of place from the soundscape, (4) music detection
for the background music, and (5) keyword extraction from the automatic
speech recognition results. First, the audio signal is converted into a suitable
form, which is subsequently combined from each subsystem to create meta-
data for the audio content. We evaluated the proposed system using video
logs (vlogs) on YouTube. The proposed system exhibits a similar accuracy to
handcrafted metadata for the audio content, and for a total of 104 YouTube
vlogs, achieves an accuracy of 65.83%.

Keywords: Content retrieval, speech recognition, music detection, audio
event classification, audio scene classification.

1 Introduction

Video understanding is an essential characteristic of human intelligence, and
video dramas are the best medium for its stimulation. The video Turing test
(VTT) has been proposed for measuring video understanding intelligence.
Figure 1 describes the process of VTT, which is as follows: (i) players,
including AI, and the jury watch a video. (ii) A question on the video is
given to both the players and the jury. (iii) Each player submits an answer to
the question. (iv) The submitted responses are presented to the jury. (v) After
checking all the answers, the jury predicts who the AI agent is and votes for
their prediction.

A video for VTT represents a multimodal dataset, where continuous
images and sounds are mixed with implicit, complex, and spatiotemporal
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Figure 1 An illustration of the video Turing test (VTT).
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Figure 2 An example of extracting auditory information by metadata tags.

causal relationships. For this reason, one cannot obtain information using
only one modality. Video information can be represented using textual
metadata. The textual metadata are the means of implicitly representing infor-
mation, called data-containing information. There are four levels classifying
the difficulty of VTT for metadata extraction [1]. Difficulty 1 represents the
ability to analyse one fact for a still picture, and difficulty 2 represents
the ability to analyse several facts for a still picture. Difficulty 3 represents a
fact about the video, and Difficulty 4 includes a causal relationship that does
not appear in the video. Visual and auditory information is required to solve
the problems of difficulties 3 and 4 [2].

Auditory information in particular plays an important part in solving
difficulties 3 and 4. For example, Figure 2 presents a one-day trip video clip.
This video is about a one-day trip to Seoul and includes visiting a famous
hotel, restaurant, and theme park. To describe this video, it must be possible
to transcribe the voice description of the narrator and extract the location
information through the audio as metadata. The first scene is where the car
travels to the restaurant, where the narrator explains the plan for the trip.
Through the narrator’s explanation, we can see that he is visiting the hotel’s
restaurant and theme park today. The second and third scenes are in the
hotel restaurant, where the narrator explains ready-to-cook food and food.
Also, you can know the atmosphere of the video through the background
music. The fourth and fifth are information about the theme park. You can
get information about people screaming while riding the rides, and you can
find out information about the sound of a dog being included along with the
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music during a parade. The purpose of this study is to represent information
that can be obtained through hearing with metadata tags.

This paper focus on the metadata extraction of auditory information.
Unlike visual information which contains metadata on the attributes and
locations of people and objects, auditory information includes metadata
about the atmosphere and story through a person’s voice, sound effects, and
background music. Audio information in a video includes speech, sound
effects, background music, and the soundscape [1]. The speech provides
information on the characters and the story told in the video. The sound
effects include information about events and indirect details of the visual
information. The background music provides information on the mood of
the video. The soundscape provides information regarding the location of the
video [1, 3].

With the continuous rise of broadcasting content, the importance of
metadata increases accordingly. For example, a recommendation system
using metadata for a video is used in the media commerce market for
product placement and second screens (smartphone, tablet, or PC). Recently,
the possibility of automating metadata generation has attracted significant
interest. To date, metadata was created manually by human resources. How-
ever, with the increase in media production, the demand for automation has
grown [4, 5].

The word “vlog” combines the words “video” and “log”, representing
a form of social media post, mainly referring to videos acquired by ama-
teur camera operators. For modern media posts, vlogs have the most need
for metadata analysis [6]. Because a broadcasting station does not manage
vlogs, the domain boundary of a video is ambiguous. Moreover, it is not
easy to extract the metadata manually due to variations in the characters,
filming location, and filming equipment [7, 8]. This study proposes automatic
metadata generation using auditory information from videos. The proposed
method consists of four parts: (1) an audio speech recognizer (ASR) for voice
analysis, (2) an audio event classifier (AEC) for classifying sound effects,
(3) an acoustic scene classification (ASC) for sound landscape analysis, and
(4) music detection for background music analysis.

We evaluate our proposed system using YouTube vlogs. In this paper,
the accuracy of the proposed system was measured by comparing it with
manually tagged metadata. The metadata output from ASR, AED, ASC,
music detection, and keyword extraction were compared with the handcrafted
metadata for vlogs collected from YouTube.



Deep Neural Networks-based Classification Methodologies 5

The article is organized as follows. Section 2 presents previous ASR,
ASC, AED, and music detection studies. Section 3 provides a brief descrip-
tion of these models and describes our proposed system in detail. Section 4
describes the experiments. Finally, we present our experimental results and
conclusions in Section 5.

2 Related Works

Research on visual content analysis has been actively conducted and has
shown comparable performance [1]. An integrated system for audio content
has not been proposed to date. The information obtained from the audio
includes the character’s dialogue, soundscape, sound effects, and background
music, enabling the precise analysis of the type of video content. Our pro-
posed system consists of five subsystems: ASR, AED, AEC, music detection,
and keyword extraction. In this section, we describe related studies on each
system in detail.

Automatic speech recognition (ASR) accepts voice input and outputs
the word sequence with the highest probability in the model [9–12]. ASR
is implemented through sound and language models to create a defined
pronunciation dictionary [13, 14]. The acoustic model outputs the probability
of a speech feature vector for a phoneme defined in the pronunciation dic-
tionary [9, 10]. The language model outputs the probability of the sequence
of words defined in the pronunciation dictionary [14]. Speech recognition
implements the pronunciation dictionary, language and sound models as a
search network using a weighted finite-state transducer (WFST) [15]. Recent
studies in speech recognition research made remarkable advances in the
development of acoustic models. The traditional recognition process based
on an acoustic model transforms the training data through forced alignment
of a hidden Markov model (HMM) [16, 17], and outputs the probability
distribution of the HMM state showing high probability using a deep neural
network (DNN) [9]. However, owing to the development of DNNs, such as
convolutional neural networks (CNNs), recurrent neural networks, and atten-
tion mechanisms, a model with similar performance to the existing acoustic
model without forced alignment of the HMM has been proposed [18–20].

Kaldi, the most common speech recognition toolkit is used to implement
automatic speech recognition for extracting metadata. It contains almost any
algorithm currently used in ASR systems. It also contains recipes for training
acoustic models on commonly used speech corpora such as LibriSpeech, Wall
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Street Journal Corpus, TIMIT, and more. These recipes can also serve as a
template for training acoustic models on speech data.

Audio event classification identifies a defined event from the audio gener-
ated from video content. Audio scene classification identifies places through
soundscapes in the video content [21–24]. Audio scene classification (ASC)
classifies places through soundscapes that occur in the video content [25].
These two audio classification models are implemented using CNNs suitable
for image classification problems. They convert audio signals into two-
dimensional images called spectrograms, which feature vectors that express
an audio signal on the time and frequency axes [26]. The input spectrogram
passes through a convolutional layer. It is converted into a plurality of filter
images, and the transformed filter image outputs the probability of occurrence
of classes learned through a fully connected neural network.

Audio event classification and audio scene classification is a regular task
in the detection and classification of acoustic scenes and events (DCASE)
challenges. In this paper, MobileNet v2 is used for AEC and ASC tasks.
The Mobilnetv2 is a convolutional neural network based on an inverted
residual structure where the residual connections are between the bottleneck
layers. This model showed remarkable performance in DCASE 2021 task 1.
This model achieved an accuracy of 72.6% within the 128 KB model size.

Music detection aims to identify the section of an audio stream containing
music [27]. In this study, background music is detected with one-class clas-
sification, which is used in image classification to identify musical and non-
musical sounds. In one-class classification, samples of the same concept are
used only to recognize instances of the concept. The Gaussian mixture model
(GMM) yields comparable performance with one-class classification [28].

Keyword extraction receives the text from speech recognition as input
and extracts keywords corresponding to metadata using the TextRank algo-
rithm [29]. TextRank is a method employed for extracting critical keywords
for a given text using the PageRank algorithm after constructing a co-
occurrence graph of the input sentence [30]. An advantage of TextRank is
that it does not require domain-specific training data for supervised learning.
A disadvantage is that the possible representation is limited compared to a
DNN-based model, because it is based only on a given input.

3 Proposed System

This section describes the architecture of the proposed metadata genera-
tion system. We discuss each subsystem: speech recognition with keyword
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extraction, audio event classification, audio scene classification, and music
detection.

3.1 System Architecture

Figure 3 shows the structure of the proposed system – the audio signal from a
video pass through the music detection, which extracts information about the
background music. The audio signal given to each subsystem is segmented;
for ASR, the audio signal is divided into segments that have an only speech
by the voice activity detector (VAD); for AEC, AED, and music detection,
the audio signal is split into segments of equal length. For AEC, these have
a length of 0.1 s, whereas, for ASC, they have a length of 1.0 s. For music
detection, the length is 30 s.

Each subsystem can recognize several classes. To recognize speech, ASR
has a pronunciation dictionary that contains 200,000 words. AEC can identify
11 classes of audio events: a baby crying, car horn, bicycle horn, car passing,
scream, chattering, dog barking, door knocking, water boiling, whispering,
and jackhammer. ASC identifies just three classes: indoors, outdoors, and on
transportation.

3.2 Automatic Speech Recognition

Figure 4 depicts the structure of the ASR and keyword extraction sys-
tem. The proposed ASR system consists of several modules: VAD, feature
extractor, acoustic model, decoding network including a pronunciation
model, and a language model.

The VAD is a pre-processing module for speech recognition tasks and is
used to improve their performance. The VAD is mainly used in speech recog-
nition and speech synthesis. When the signal is inputted, the audio signal is
spilled into voice segments by VAD. Numerous vlog videos usually contain
non-speech audio signals, such as audio events and soundscapes. These non-
speech signals are considered noise in speech recognition. The VAD based on
short-time average energy is widely used to erase these noises. The method
depends on a threshold to distinguish between speech and non-speech and
works efficiently [31]. Furthermore, contextual information (CI) is significant
for the VAD. The CI helps improve the performance of the VAD in low SNR.
The energy-based method and CI are employed in the proposed system of
this study. Feature extraction transforms a speech signal into a feature vector
containing compressed information for speech recognition. This method
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Figure 4 Detailed diagram of ASR and keyword extraction in the proposed system.

significantly reduces the complexity of speech recognition. In this study,
Mel-frequency cepstral coefficients are used for feature extraction. This
method represents the short-time power spectrum of speech signals using a
Fourier transform and Mel-scale frequencies.

The acoustic model determines the probability of a feature vector repre-
senting a phoneme sequence. A phoneme is a unit of speech sound. A word
is pronounced based on the phonemes it contains. An HMM is used in the
acoustic model to train a phoneme’s length for a feature vector. Afterward,
a DNN is used to classify phonemes from feature vectors as input. The
relationship between feature vectors and phonemes is calculated by forced
alignment in HMM. Forced alignment is a pre-processing process for model
learning, which automatically extracts the data required for learning by HMM
by identifying the position where a specific word is uttered in the entire
learning data. The Viterbi algorithm is used to perform the forced alignment.
It is possible to generate learning materials for each recognition unit for data
given as a word string.

HMM determines the optimal sequence of states through the Viterbi
algorithm. The acoustic model of HMM shows high performance for a given
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learning dataset. However, because it learns only on the fixed feature parame-
ter dimension of the learning data, it offers a problem that the performance is
low for feature vectors with noise. A deep neural network (DNN) method can
efficiently change the feature parameter dimension and improve performance.
However, it still depends on HMM because DNN cannot align feature vectors
and phonemes. Because each state of DNN does not indicate a specific
phoneme, unlike HMM, it is impossible to distinguish the recognition unit
for speech. Therefore, a general acoustic modelling method uses a hybrid
DNN-HMM model that employs a fusion of DNN and HMM.

The acoustic model in ASR is constructed from a time-delay neural net-
work (TDNN) and a recurrent neural network with long short-term memory
(RNN-LSTM). The TDNN, similar to one-dimensional convolution, trans-
forms the input feature vector into a vector with a context correlation between
vectors to learn the relationship between the feature vector and a phoneme.
RNN-LSTM is a kind of sequence-to-sequence model. The input vector is a
combination of the previous vector and the present vector. These two DNN
architectures are widely used to build acoustic models in speech recognition.
In this study, TDNN-LSTM is used to build the acoustic model. Two TDNN
layers and one LSTM layer are stacked as one block of TDNN-LSTM,
and then three blocks of TDNN-LSTM are stacked to build the acoustic
model. Each TDNN layer and each LSTM layer have 520-dimensional
vectors.

The TDNN structure is shown in Figure 5. A general FFNN learns entire
input features for processing contexts. However, the TDNN architecture is
learned in narrow contexts, where the upper layers of the networks process
broader contexts of the input features. Each layer in a TDNN is updated by a
different resolution that increases in higher network layers.

A decoding network, a search network for speech recognition, contains
four graphs: HMM, context, lexicon, and grammar. The HMM and the
context graph represent the relationship between the feature vector and
phonemes. These graphs are built from the acoustic model. A feature vector is
converted into the HMM states of a phoneme by an HMM graph. The context
graph represents the left and right contexts of the phonemes in speech.
The lexicon graph is built from a pronunciation model. The pronunciation
model describes the relationship between phonemes and words. The grammar
graph contains information about the sequence of words from the n-gram-
based language model. The n-gram model is a kind of probability model
for a contiguous sequence of n symbols from a given text. The WFST is
widely used for decoding networks in speech recognition, and it can compose
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Figure 5 TDNN architecture.

and optimize two complexity graphs as a transducer by using composition,
determination, and minimization [15]. Composition, determination, and min-
imization combine all ASR components into an integrated transducer using a
convenient, efficient, and general method.

3.3 Keyword Extraction

Keyword extraction retrieves essential words from the text found by speech
recognition. The keyword extraction can be learned by supervised or unsu-
pervised. Supervised keyword extraction, usually based on a DNN, extracts
keywords based on a sizeable in-domain training dataset. It works effi-
ciently for text in the same domain but requires a large amount of training
data. Unsupervised keyword extraction, usually implemented by a statistical
model [31], does not require much training data and has a relatively faster
processing speed than the supervised model. The TextRank algorithm is a
graph-based ranking algorithm using PageRank to extract keywords [29, 30].
Google’s website search engine uses the PageRank algorithm to measure
the importance of web pages by assigning them a score or rank. TextRank
represents words as a vertex in a graph and the relationship between the words
as an edge. This co-occurrence graph finds keywords using the PageRank
algorithm.
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3.4 Audio Event and Audio Scene Classification

In audio event and scene classification, audio events and their locations are
determined from soundscapes. Audio events and soundscapes are used to
predict the atmosphere, shot changes, and occurrence of events in the video.
Figure 6 shows the structure of the AEC and ASC. These systems have three
components: the segmenter, feature extractor, and classifier.

The audio signal from a video is split into chunks by both the audio event
and soundscape segmenter. The audio event segmenter divides the audio
signal into segments of 400 ms length, whereas the soundscape segmenter
divides the audio signal into segments of length 1000 ms. These lengths were
chosen based on the properties of the sound types. An audio event, such as a
scream or door knock, has a shorter duration than a soundscape, such as the
background sound of transportation.

Both the AEC and ASC models are built with a CNN. CNNs are widely
used to model audio events from audio feature vectors. This type of neural
network was mainly used to transform acoustic feature vectors into spectro-
grams and then to train them [32]. The correlations between local information
and feature vectors are learned by the CNN. Recently, residual learning by a
CNN has significantly contributed to the improvement of AEC and ASC [33].
In this study, MobileNet v2 was used to implement the AEC and ASC
classifiers [34]. MobileNet v2 is used for the low-complexity classification
of a fixed-length feature vector. This model uses a residual CNN, which has
low complexity and high accuracy.

Figure 6 Diagram of AEC and ASC in the proposed system.
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3.5 Music Detection

Background music refers to music played in the background of a video.
In directing a video, the background music creates the atmosphere and
the composition of emotions. Background music detection uses the emo-
tional information in a video to build metadata. Algorithms can discriminate
between musical and non-musical sounds. In addition, various feature extrac-
tion algorithms are used to detect the score and pitch information in the music.
This study uses the zero-crossing rate, Mel-frequency cepstral coefficients,
and chroma features in music detection [35].

One-class classification is used to distinguish between music and non-
music. The classification is a kind of unary classification that differs from
classification methods that distinguish between two or more classes. This
study uses GMM and isotonic regression to implement a one-class classifica-
tion. Isotonic regression is used to train the probability distribution sequence
from a Gaussian mixture of music training data. In Gaussian assumption,
a mixture of a finite number of Gaussian distributions generates all data
samples. This model generalizes k-means clustering based on the centre
and covariance of the Gaussian distribution. Isotonic regression predicts the
sequence of observations and must be non-decreasing [28]. It is suitable for
audio signals, depending on the time sequence.

4 Experiments

This section evaluates the proposed automatic metadata generation system
using YouTube vlogs. Furthermore, each subsystem was assessed using
speech data, the audio event audio scene, and music data. Labelling of all
datasets was hand-crafted, and the accuracy was measured by comparing the
labels and hypotheses of the model. Metrics for each system were described
in the experimental setup.

4.1 Speech Recognition Task

4.1.1 Experimental setup
The Kaldi, the most common speech recognition toolkit, was employed to
build the acoustic model. This toolkit shows The YouTube corpus was used
as training and test data. Altogether, 917,346 Korean YouTube videos were
collected as part of the training data, and 5147 videos were used as test data.
KsponSpeech, SiTEC DICT, and ETRI Korean reading were also used as
training data. Table 1 shows a description of the training data.
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Table 1 Training data of ASR

Training Dataset Hours Number of Utterances

ETRI Korean reading 277.78 100,000

SiTEC DICT 57.79 20,806

Korean mobile assistant 100.00 92,874

KsponSpeech 965.2 620,000

The language model in ASR is constructed from the n-gram model, a
probability model for a contiguous sequence of n symbols from a given
text. The symbols include words, characters, syllables, morphemes, and
sub-words. In particular, sub-words are pieces of words identified by the
statistical tokenization model to avoid the out-of-vocabulary problem. In this
experiment, the SRILM toolkit was employed to build our language model,
and Sentencepiece was employed to tokenize sub-words [36, 37]. Text data
from various Korean websites can be used as training data, such as YouTube
transcriptions from the Google speech recognition API and YouTube video
subtitles.

OpenFST was used to build WFST as a decoding network in our ASR.
WFST combines the acoustic model, pronunciation model, and language
model. This study employed the Kaldi decoding network with OpenFST
libraries [38].

4.1.2 Experimental results
Model A is an acoustic model trained on corpora recorded in a quiet place:
KsponSpeech, SiTEC DICT, and ETRI Korean reading. Model B is an
acoustic model trained on 1053 hours of audio data from videos only on
YouTube. Model C was trained with all the datasets used for models A and B.

The performance of ASR in the proposed system was assessed with four
test datasets.

1. The Korean voice assistant commands (VAC) dataset has 871 Korean
utterances recorded by a voice assistant, such as “   ?” (How
is the weather today?). It is recorded in a quiet office environment.

2. The spontaneous speech dataset has 170 Korean utterances in various
environments. It includes examples of complex spontaneous speech,
such as filler words, pauses, repeated words, and word fragments.

3. The YouTube VLOG dataset contains 104 videos, with a total duration
of approximately 17 hours. Various vlog creators record these in clean
environments. In this dataset, only one person speaks simultaneously,
and the videos are recorded in a relatively quiet place.
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Table 2 Evaluation of ASR for different models for different test datasets

Test Dataset Model A (CER, %) Model B (CER, %) Model C (CER, %)

VAC 2.06 6.01 3.01

Spontaneous speech 12.54 11.87 9.91

VLOG 23.05 23.33 17.31

VLOG-noisy 40.14 42.30 29.52

4. The YouTube VLOG-noisy dataset is a noisy version of YouTube
VLOG. In this dataset, several people can speak simultaneously, and the
videos are recorded in a relatively noisy environment, such as outdoors
or in a concert hall.

Table 2 shows the evaluation of ASR in our proposed system. The model’s
error rate was measured with the character error rate (CER). While the
word error rate is a commonly used metric for assessing speech recognition
performance, for Korean text, the CER is used, as the space rules are flexible
in Korean [39]. In the experiment with the VAC dataset, model A had the
lowest CER, but in all other cases, model C performed superiorly.

4.2 Audio Event and Audio Scene Classification Task

4.2.1 Experimental setup
Various datasets were used for training: UrbanSound8K and BBC Sound
FX for AEC and DCASE2016, TAU Urban Acoustic Scenes 2020, and
FREESOUND for ASC [24]. The New York University distributed Urban-
Sound8K for audio event detection. It has a total of 8732 files with ten
audio events. A subset was used in the evaluation. The BBC distributed
the BBC Sound FX dataset for audio event detection [24]. DCASE2016
and TAU Urban Acoustic Scenes 2020 were distributed by the DCASE
challenge [24]. FREESOUND, a cloud database with specific keywords, was
uploaded by numerous users. Table 3 shows a description of training data for
AEC and ASC.

Both the AEC and ASC models were built using MobileNet v2, which
is based on a CNN. To improve the performance, SpecAugment was used to
augment the data during training [40, 41].

4.2.2 Experimental results
The performance of AEC and ASC in the proposed system was measured
with audio data from the YouTube VLOG dataset.

There were five versions of the AEC model:
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1. Vanilla MobileNet v2
2. MobileNet v2 plus time augmentation
3. MobileNet v2 plus frequency augmentation
4. MobileNet v2 plus frequency augmentation and parameter tuning
5. MobileNet v2 plus time augmentation, frequency augmentation, and

parameter tuning.

The results were compared with those for VGG-Resnet, which is an
ensemble version of a CNN-based VGG network (VGGnet) [32] and a
residual network [33].

Table 4 lists the accuracies of AEC in our proposed system. In this experi-
ment, vanilla MobileNet v2 was less accurate than VGG-Resnet, although the
MobileNet v2 model performed better after data augmentation. VGG-Resnet
had a comparable performance in the audio event classification domain [32].
MobileNet v2 with time and frequency masking was considerably more
accurate than the VGG-Resnet model. Its average accuracy increased by 0.57.

The ASC experiment employed coordinate attention and the early fusion
method. Coordinate attention uses bi-directional average pooling to decom-
pose channel attention into two-feature encoding [41]. This attention mech-
anism trains the long-range dependencies in feature maps [42]. Early fusion
uses strides from two convolution layers with different strides in the first layer
of the model [43]. The two convolutional layers generate two output features
and concatenate them.

There were four versions of the ASC model:

1. Vanilla MobileNet v2
2. MobileNet v2 plus coordinate attention

Table 3 Evaluation of ASR for different models for different test datasets
Training Dataset Number of Files Collection
Baby crying 54 Urbansound8k
Bicycle bell 91 Google audio set
Boiling 51 YouTube, Freesound
Car passing 42 YouTube, Freesound
Dog barking 362 Urbansound8k
Door knocking 69 Urbansound8k
Human speech 196 YouTube
Scream 106 Google audio set
Indoor 4800 TAU urban acoustic scenes 2020
Outdoor 4800 TAU urban acoustic scenes 2020
Transcription 4800 TAU urban acoustic scenes 2020
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Table 4 Evaluation of different AEC models for different audio events. (Aug., augmentation;
Freq., frequency; Acc., accuracy)

Class

VGG-
Resnet
(Acc.)

MobileNet
v2 (Acc.)

MobileNet
v2 + time

Aug.
(Acc.)

MobileNet
v2 + Freq.

Aug.
(Acc.)

MobileNet
v2 + Freq.

Aug. +
tuning
(Acc.)

MobileNet
v2 + time

Aug. +
Freq. Aug.
+ tuning

(Acc.)

Baby crying 0.67 0.00 0.20 1.00 0.90 1.00

Bicycle bell 1.00 0.60 1.00 1.00 1.00 1.00

Boiling 0.90 0.10 0.00 1.00 1.00 1.00

Car passing 0.36 0.00 0.00 0.00 0.80 0.80

Dog 0.00 1.00 1.00 1.00 1.00 1.00

Door 0.00 0.00 1.00 0.90 1.00 1.00

Speech 0.00 0.00 0.70 0.70 0.80 0.90

Scream 0.00 0.60 1.00 0.60 0.90 0.80

Average accuracy 0.37 0.29 0.61 0.77 0.93 0.94

Table 5 Evaluation of different ASC models. (Coor. Att., coordinate attention; Acc.,
accuracy)

Classes/Model
MobileNet

v2 (Acc., %)

MobileNet
v2 + Coor.

Att.
(Acc., %)

MobileNet v2
+ Coor. Att.
+ Fusion
(Acc., %)

MobileNet v2 +
Coor. Att. +

Fusion + tuning
(Acc., %)

Indoor 0.61 0.71 0.70 0.68
Outdoor 0.63 0.70 0.69 0.73
Transportation 0.76 0.78 0.78 0.77
Average Acc. 0.67 0.73 0.72 0.73

3. MobileNet v2 plus coordinate attention and early fusion
4. MobileNet v2 plus coordinate attention, early fusion, and parameter

tuning.

Table 5 lists the accuracies of ASC in our proposed system. The per-
formance of MobileNet v2 with coordinate attention is higher than that of
the vanilla MobileNet v2. Adding the early fusion method improves the
performance of the outdoor class. However, the accuracy decreases for the
indoor class when the model parameters are tuned.
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4.3 Music Detection

YouTube background music and the TED-LIUM v1 corpus were used to train
and evaluate music detection. Altogether, 100 files from this dataset were
used as test data. The YouTube background music dataset was distributed
by YouTube Studio (available at https://studio.youtube.com). There were
1271 music samples from YouTube creators. TED-LIUM v1, distributed by
openSLR (available at https://www.openslr.org/resource), contained 118 h of
English TED talks. This corpus was used as a counterexample for the music.
GMM and isotonic regression were implemented with the scikit-learn library
in Python (available at https://scikit- learn.org/). The accuracy of music
detection was 73% for the test data.

4.4 Automatic Audio Metadata Generation System

4.4.1 Experimental setup
The automatic audio metadata generation system was composed of ASR with
keyword extraction, AEC, ASC, and music detection. The proposed system
was evaluated with the YouTube VLOG dataset, which was used in the ASR
task as test data. Humans tagged all audio files. Nine audio events, three
locations, whether music was detected, and keywords resulting from speech
recognition were tagged in the test data.

Audio segmenters for each subsystem were developed using the FFMPEG
library on Linux and the WebRTCVAD tool [44]. The acoustic model was
implemented in Kaldi, the decoding network in OpenFST, and the language
model in SRILM [45]. Our system used a 3.40 GHz Intel Xeon E5-2643 v4
CPU and two Nvidia Quadro RTX 5000 GPUs. To reduce the processing
time, the AEC and ASC models were converted by TensorFlow-Lite, an opti-
mization tool for DNN models. All subsystems were operated simultaneously
and generated metadata, as depicted in Figure 1.

4.4.2 Experimental results
Experimental results yielded a mean accuracy of 65.83% in the test data.
The average number of tags is 3.53. The videos that exhibit the low perfor-
mance from the proposed system contain loud background music, so other
sounds are difficult to detect in a noisy environment. In contrast, the videos
that achieved 100% accuracy contain back-recorded voices in relatively quiet
places.

https://studio.youtube.com
https://www.openslr.org/resource
https://scikit-learn.org/
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5 Conclusions

We propose an automatic metadata generation system for audio content
analysis using speech recognition, keyword extraction, audio event classifica-
tion, audio scene classification, and music detection. The speech recognizer
combines a TDNN-based acoustic model and an n-gram language model
with a WFST decoding network, which learns from vlog data collected from
the Korean reading corpus and YouTube, and self-collected YouTube vlogs.
In the experiments, the syllable recognition rate was 17.31%. After training a
MobileNet v2 model with UrbanSound8K and BBC Sound FX data, the AEC
exhibits an average accuracy of 94% for YouTube vlog data. For the ASC, a
MobileNet v2 model was trained with DCASE2016, TAU Urban Acoustic
Scenes 2020, and FREESOUND data. It had an average accuracy of 73% for
YouTube vlog data. Music detection yields an accuracy of 73% after learning
a GMM and isotonic regression model trained on YouTube studio music and
TED-LIUM data. For a total of 104 YouTube vlogs, the automatic audio
metadata generation system combining all these models yields an average
accuracy of 65.83%.
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