
Improved Design of Concurrent
Synchronization System Controller

Based on Petri Net

Xu Yang1,∗, Shaocui Guo2, Dongming Xiang3,
Yuxin Yang4 and Yijun Chen5,∗

1Department of Computer Science, Tongji University, Shanghai 201804, China
2Open Education College, Yantai Vocational College, Yantai 264670, China
3The School of Information Science and Technology, Zhejiang Sci-Tech University,
Hangzhou 310018, China
4The Experimental High School Affiliated to Shenzhen University, Shenzhen
518083, China
5National Maglev Transportation Engineering R&D Center, Tongji University,
Shanghai 201804, China
E-mail: 1610482@tongji.edu.cn; gscytvc@126.com; flysky_xdm@163.com;
yy2964@tc.columbia.edu; chenyijun@tongji.edu.cn
∗Corresponding Author

Received 07 April 2023; Accepted 08 December 2023;
Publication 03 February 2024

Abstract

At present, the advancement of science and technology has contributed to the
emergence of various network parallel environments, web service concur-
rency environments and massively parallel processors. In order to abstract
some practical systems into concurrent system models, it is necessary to
conduct model analysis, and to perform deadlock detection of the concurrent
system. Despite prior studies on the control problem of the synchronous
concurrent system, there remains room for improvement in terms of work-
load, time, and efficiency. Some very practical methods are explored by

Journal of Web Engineering, Vol. 22_7, 961–982.
doi: 10.13052/jwe1540-9589.2272
© 2024 River Publishers

962 X. Yang et al.

introducing locking and unlocking to synchronize the concurrent system,
and the algorithm that involves the specific regulation is provided. The Petri
net model of the controller is developed to provide an effective method
applicable to find the deadlock and to prevent and eliminate the deadlock
for synchronous concurrent systems.

Keywords: Synchronization concurrent system, Petri net, deadlock detec-
tion, deadlock controller, concurrency, deadlock elimination, Petri net with
data, data consistent.

1 Introduction

Preventing and eliminating deadlocks [1, 2] play an essential role in ensuring
the security of various concurrent systems. Removing the deadlock of circular
possession of resources is to either deprive one party of resources to the other
party, or to regain the resources. One method undermines fairness, while the
other may cause the deadlock to recur.

Petri net is one of the research hotspots in the field of computer sci-
ence, providing a solution to modelling and the control of discrete event
systems (DES). Applicable in discrete event systems, Petri net also provides
a mathematical framework to remove the deadlock from various concurrency
systems. It is effective in preventing the deadlock in automated manufacturing
systems (AMS).

For concurrent systems, there are two ways to conduct deadlock analysis.
One is to find the deadlock marking using a reachability graph. The other
is that the incidence matrix solution is used to judge which transitions
are causal, concurrent and conflicting relationships for subsequent deadlock
analysis. As a regulation or requirement for the system behavior, specification
is introduced into Petri net according to the reachability graph. It can include
a set of constraints applied to limit the operation of the system, thus ensuring
the correctness and reliability of the system.

The synchronization of the concurrent events [8, 9] is to execute a
pair of critical areas protected by lock synchronization sequentially twice.
Through deadlock avoidance [10, 11] and deadlock elimination, the deadlock
is removed from the root. Thus, further deadlock is prevented. To remove
the deadlock of cycle possession of resources is either to deprive one party
of resources to the other party, or to regain the resources. One method
undermines the fairness, while the other may cause the same deadlock to
recur.

Improved Design of Concurrent Synchronization System Controller 963

S3PR net is premised on a control/supervisory place. In a Petri net with
resources, the deadlock can be removed by introducing the control place that
is a special type of place. It plays a role in limiting the allocation and use of
resources, thus preventing the deadlock.

An incidence matrix is based on place-invariant. In the Petri net, the
incidence matrix and P-invariants are combined to remove the deadlock. As a
property of calculating the state of the Petri net, the P-invariant is used to
describe the pattern of the number of markers in the place over transitions.
By analyzing the incidence matrix and P-invariants, the position of deadlock
can be traced and it can be eliminated. Siphon and trap is the basic structure
of Petri net. If the siphon lacks token in a marking, there remains no token
in successor marking. That is to say, a siphon loses tokens only. The trap
contains at least one token in a marking, and then it is marked in each post
marking. That is to say, the trap can gain tokens only. Deadlocks can be
prevented by using siphons and traps to analyze the liveness of the Petri net.

One cause of deadlock is the uneven distribution of resources. For exam-
ple, there are excess resources on one assembly line, while there are no
resources on the other assembly line. The solution to this is very simple;
that is, the excess resources are transferred to the assembly line lacking in
resources. Another cause of the deadlock is as follows. When a resource r1 is
occupied by one thread thread1, an application is made for a resource r2 that
has been preoccupied by another thread thread2. Thus, thread1 and thread2
are made to wait for each other.

The solution in the current practice is detailed as follows. The resources r1
and r2 are treated as a whole to apply for r1 and r2 simultaneously. After the
resource is used, the resources r1 and r 2 are released at the same time. In this
paper, a new solution is proposed. According to this solution, an inhibitor arc
is used to inhibit other transitions for occupying r2, which prevents resource
r2 from being occupied by thread1.

In Section 2, the basic process of eliminating deadlocks is followed
to obtain the marking by building the reachability tree or graph. As for
deadlock marking, the cause of deadlock is analyzed. Based on the marking
deadlock, the specification basic algorithm is applied to remove the deadlock.
In Section 3, different targeted solutions are provided for different dead-
lock cases. In Section 3.1, deadlock occurs due to limited resources. For
this reason, the resources are used in this paper to eliminate the deadlock.
In Section 3.2, when a thread occupies the resources and the resources
occupied by other threads are requested, the threads wait to be occupied,
and the deadlock is eliminated by increasing the inhibitor arc. In Section 3.3,

964 X. Yang et al.

the conversion of resource is performed to remove the deadlock with one
pipeline awaiting resource and another pipeline with excessive resource.
In Section 3.4, a more common way is adopted to solve the deadlock, which
is to introduce the control/supervision place. Through the incidence matrix,
the initial token of the place is analyzed. With the corresponding arc added,
the deadlock is eliminated. In Section 3.5, the Petri net with data operation is
proposed to formally describe the multi-threaded concurrent system. In this
paper, it is concluded that data reading is inconsistent. Therefore, lock and
unlock mutually exclusive resources need to be added in the code to ensure
the consistency of data reading and writing. In Section 4, a summary of this
paper is presented.

2 Controller Synthesis Algorithm

Definition 1 (Petri net). N = (P,T,F) where P is a set of places, T is a set of
transitions, F is a flow relation F ⊆ (P × T) ∪ (T × P), and P ∩ T = ∅.
Figure 1 shows a net, where a circle represents a place (P), a bar or box
represents a transition (T), and the arc between the box and circle represents
the flow (F) relations.

In Figure 1 the set {s1, s2} is a siphon; the set {s3, s4} is a trap, denoted
as s2 and s1 respectively. Therefore,

•{s1, s2} ⊆ {s1, s2}•.

This property is referred to as siphons. Therefore,

{s3, s4}• ⊆ •{s3, s4}.

This property is referred to as traps.

s3 s4

t4

t5

s1 s2

t2

t1

t3

Figure 1 Siphon and trap.

Improved Design of Concurrent Synchronization System Controller 965

According to the definition of siphon and trap, if the siphon is out, it
cannot gain entry again. As a trap, once it enters a trap, it will never get out
again. The precursor of Siphon is included in the successor, and the successor
of the trap is included in the precursor.

Definition 2 (deadlock). Let Pn = (P,T,F, M0) be a Petri net and Me be the
end marking. M ∈ R(Pn,M0) is a deadlock w.r.t Md (deadlock marking for
short) if ∀t ∈ T,∧M[t > ∧Md ̸= Me.

Definition 3 (livelock). Let Pn = (P,T,F,M0) be a Petri net and Me be the end
marking. M ∈ R(Pn,M0) is a livelock w.r.t Mv (deadlock marking for short)
if Mv ∈ R(Pn,M0),∋ t ∈ T,Mv[t > ∧Mv ̸= Me.

It is necessary to apply control on the deadlock of the system. In this
system, the controller is introduced to remove the deadlock integrating the
control specification. The specific process is as follows:

Step 1: From the Petri net model of the original system, its reachable marking
diagram (RMG) is generated.

Step 2: From the original system reachable marking diagram RMG and the
control specification (Spec) [2–5], the reachable state graph of the
target system is generated.

Step 3: From the target system reachable marking diagram, the reachable
marking diagram RMG (C) [6–8] of the controller is generated.

Step 4: From the reachable marking diagram RMG (C) of the controller, the
Petri net model (C) of the controller is generated.

2.1 Algorithm 1

Enter:
∑

= (P, T, F,M0).
Output: RMG(

∑
) = (V,E; f).

Step 1: Sets V ← {M0}, E ← ∅, the initial value and marks M0, it as
“new”.

Step 2: If there is no “new” node in V , the construction process ends,
otherwise go to Step 3.

Step 3: Select M ∈ V , a “new” node and do the following:
Step 3.1: ∀t ∈ T , if, M [t > do the following work:
Step 3.1.1: Find out M ′, which makes M [t >.
Step 3.1.2: If M ′ ∈ V , then set E ← E ∪ {(M,M)}, f((M,M ′)) ← t,

turn to Step 3.2, otherwise revert to Step 3.1.1.
Step 3.1.3: If ∃M ′′ ∈ V , ∀p ∈ P , and M ′′(p) ≤ M ′(p), all the p.s.t

M ′′(p) < M ′(p) that M ′(p)←∞ are satisfied.

966 X. Yang et al.

Step 3.1.4: Set V ← V ∪{M ′}, E ← E∪{(M,M ′)}, f((M,M ′))← t,
mark “new”, and revert to Step 3.1.

Step 3.2: Cross out M , the “new” and revert to Step 2.
According to the literature [9], the finite termination and correctness of

the Petri net reachability tree generation algorithm are performed. Combining
the same identification nodes in the reachability tree, the reachability graph
algorithm [10–12] ensures the limited termination and correctness of the
reachability graph generation algorithm.

2.2 Algorithm 2

Input: RMG (
∑

), Spec//Spec is a set of linear inequalities about the
identification//

Output: RMG(
∑

ΘC).
Step 1: According to the actual requirements, Tc determines the con-

trolled transition set and Tu determines the uncontrolled transition set. Thus,
Tc ∩ Tu = ∅, and Tc ∪ Tu ̸= ∅.

Step 2: ∀tc ∈ Tc is correct, for which pc place is controlled by the
transition tc. Thus, the control place Pc is collected.

Step 3: Increase the length |P | of the identification vector of any node
M ∈ V in the RMG (

∑
) to |P |+ |Pc|.

Step 4: According to the requirements of the specification, solve Pc,
which is the value of the part of the sub-vector, and fill in the value of the
corresponding sub-vector in the processed RMG (

∑
) for compliance with

the requirements of the specification. Thus, RMG(
∑

ΘC) is obtained.
Spec is a set of linear inequalities about the identity, involving the conser-

vation equations, each of which contains one of the identification variables.
Since the node identification in the RMG (

∑
) is deterministic, the partial

vector Pc can be solved. Due to the constraints of the specification, the
deadlock in the RMG (

∑
) is prevented. This RMG(

∑
ΘC) contains no

deadlocks.

2.3 Algorithm 3

Enter: RMG(
∑

and C) = (V,E, f).
Output: RMG(C) = (V C,EC, fC).
Step 1: V C = {ΓP−Pc(M)|(∀M ∈ V) ∧ (ΓP→Pc(M))}, PC is the

projection vector.

Improved Design of Concurrent Synchronization System Controller 967

Step 2: ∀M ′, M ′′ ∈ V , if (M ′,M ′′) ∈ E, and f((M ′,M ′′)) = t,
then set EC ← EC∪{(ΓP→Pc(M),ΓP→Pc(M

′′))}, fc(ΓP−Pc(M),ΓP→Pc

(M ′′))← t.
Since

∑
ΘC it is actually

∑
synchronized with C, for ∀t ∈ T∑

ΘC, there
are cases as follows.

Case 1: If t ∈ T∑ − TC , then M ′[t > M ′′, iff ΓP→P
∑(M ′)[t >

ΓP→P
∑(M ′′) and ΓP→Pc(M

′) = ΓP→PC
(M ′′).

Case 2: If t ∈ T∑ − TC , then M ′[t > M ′′, iff ΓP→Pc(M
′)

[t > ΓP→PC
(M ′′) and ΓP→P

∑(M ′) = ΓP→P
∑(M ′′).

Case 3: If t ∈ T∑ ∩ TC , then M ′[t > M ′′, iff ΓP→Pc(M
′′)[t >

ΓP→P
∑(M ′′) and ΓP→Pc(M

′)[t > ΓP→P
∑(M ′′).

In this way, RMG(C) = (Vc, Ec, fc), which is actually RMG(
∑

ΘC)
projected on C.

The algorithm for generating a reachable tree is Algorithm 4.

2.4 Algorithm 4

Input: RMG (C).
Output: C = (Pc, Tc, Fc,Mc0).
Step 1: Set Fc ← ∅, mark Mc0 = Φ, and push Mc0 to stack.
Step 2: If the stack is not empty, do Step 3, otherwise it ends.
Step 3: Top node Mc that is not marked, then proceed to Step 4 or Step 5

otherwise.
Step 4: ∆MC = MC−stack(top), remember f(stack(top),MC) = t,

and proceed to Step 4.1.
Step 4.1: ∀pc ∈ Pc, if ∆MC(pC) > 0; that set FC → FC ∪ {t, pC}, if

∆Mc(pc) < 0, that set Fc ← Fc ∪ {(pc, t)}.
Step 4.2: Push Pc and Mc into stack, to run Step 3.
Step 5: Pop the stack and run Step 2.
According to the state equation of the net theory [10–12], it is known that

Mc−stack(top) = AT t, where AT represents the transferred array of the
correlation/incidence matrix [9] of the net C. t = f((stack(top),Mc)). Thus,
from every two nodes of the RMG (C) and their associated edges, the previous
equation of state is used to obtain the net (Pc, Tc, Fc). The structure of C
about the initial identification of C, denoted as Mc0, is obtained by identifying
the initial node of the RMG (C). Then, the net C = (Pc, Tc, Fc,Mc0) is
obtained.

968 X. Yang et al.

3 Handling of the Deadlock Phenomenon

Deadlocks are one of the anomalies that are likely to occur in concurrent
systems [13–15]. If they are not eliminated, they would lead to the failure
of the whole system. In this section, it is analyzed how the deadlock can be
prevented.

One of the contributors to deadlock is the uneven distribution of
resources, such as the circumstance that there are excess resources on one
assembly line but no resources on the other assembly line. A simple solution
to this problem is to direct the excess resources to the assembly line with a
lack of resources.

In Figure 2(a1),
∑

1 is a Petri net. In Figure 2(a2), the Petri net suffers
deadlock. Figure 2(b) shows the reachable marking diagram RMG (

∑
1).

As can be seen clearly from Figure 2(c), there are two deadlock states, of
which one (02000) is caused by t1 and the other (00200) is caused by t2.
Figure 2(d) shows the reachability graph in which the deadlock is controlled.

In order to eliminate the deadlock, the control places s1 and s2 are
introduced, and they agree on the control specification.

Spec = {M(p2) < 2,M(p3) < 2,M(p2) +M(s1) = 1,

M(p3) +M(s2) = 1|M ∈ R(M0)}.

Since M0(p3) = M0(p2) = 0, M0(s2) = M0(s1) = 1, and the RMG
(
∑

1) evolves into RMG (
∑

1ΘC1), as shown in Figure 2(c). According to
Algorithms 3 and 4, respectively, the RMG, including (C1) (Figure 2(b)) and
C1 (Figure 2(c)), are obtained. What C1 is obtained is the Petri net of the
controller model that is sought. The structure C1 should be noted.

3.1 Method 1

Introducing resources to eliminate deadlock.
The lack of resources is one of the main reasons for the deadlock, as

shown in Figure 2. If a token is added into p0, it is easy to eliminate the
deadlock, as shown in Figure 3.

3.2 Method 2

Introducing the inhibitor arc to avoid deadlock.
Another reason for the deadlock is that resource r1 is occupied by one

thread thread1 and then resource r2 is requested that has been occupied by
another thread thread2. Thus, thread1 and thread2 wait for each other.

Improved Design of Concurrent Synchronization System Controller 969

(a1) A Petri net. (a2) The emergence of the deadlock.

t1

11000

(20000)

10100

02000

t1

t1

t1

t2

t2

t2

t2

t2

t3

t4

t4

t4

t5 t5

t5

t1

t5

t4 (00200)

(00101)
(10001)

(01001)(00110)

(10010)

(01010)

(01100)

(00011)

(b) RMG 1 .

1100001

(2000011)

1010010

t1

t1

t1

t2

t2

t2

t2

t3

t4

t4

t4

t5 t5

t5

t1

t5

t4

(0010110)
(10001)

(0100101)(0011010)

(1001011)

(0101001)

(0110000)

(0001111)

(c) RMG C .

t1

t2
t3

t1

t2
t4

t4 t5

t5

(d) RMG C .

Figure 2 Petri net and the RMG, control place/transition, and the controlled RMG.

970 X. Yang et al.

Figure 3 Introducing resources to eliminate deadlock.

The solution is as follows. Resources r1 and r2 are taken as a whole to
apply for r1 and r2 at the same time. After the resource is used, resources r1
and r2 are released at the same time. In this paper, a new solution is proposed
by means of the inhibitor arc. The resource r1 inhibits other transitions to
occupy r2, thus occupying resource r2.

Definition 4 (inhibitor net). An inhibitor net is a tuple InN = (P,T,F,I,m0),
where P is a set of places, T is a set of transitions, P ∩ T = Φ, F ⊆ (P × T)
∪ (T × P) is a flow relation, I ⊆ P × T is a set of inhibitor arcs, and m0 ⊆ P
is the initial marking. An inhibitor arc (p,e) ∈ I means that e is enabled only
if p is unmarked. In graphs, the inhibitor arc (p, e) is indicated by an edge
with a small circle at the end, and any set of places m ⊆ P is referred to as a
marking.

When there is already a token in p1 or p2, which means t1 or t2 has
occurred once in Figure 2, the inhibitor recurs, as shown in Figures 4(a) and
4(b). The reachability graph is shown in Figure 4(c).

3.3 Method 3

Add the mutually conversion transition.
Adding mutual conversion transitions means that two tokens are posi-

tioned in one place, after a transition into the corresponding place synchro-
nized with the place shown in Figure 5. The reachability graph is presented
in Figure 6 where no deadlock nodes exist.

3.4 Removing the Deadlock: Implementation Usage of the
Resource Controller

In this paper, the red transition represents the enabling transition. That is to
say, the transition in red can be fired. In Figure 7, there is no transition that
can be fired, which means no red transition is present.

Improved Design of Concurrent Synchronization System Controller 971

(a) Introducing an inhibitor arc. (b) Running without deadlock.

(c) Inhibitor arc improved RMG 1 .

11000

(20000)

10100

t1

t1

t1

t2

t2

t2

t2

t3

t4

t4

t4

t5 t5

t5

t1

t5

t4

(00101)
(10001)

(01001)(00110)

(10010)

(01010)

(01100)

(00011)

Figure 4 Using the inhibitor arc to avoid deadlock.

(a) The occurrence of deadlock on the net. (b) Introducing transition to eliminate deadlock.

Figure 5 Introducing the mutually converted transition.

According to the business flow net in Figure 7(b) (deadlock occurs),
deadlock occurs due to the competition for shared resources. Add Figure 8
for access control of resources to achieve Figure 9(a) for dead free. With the
concept of atomicity introduced, t1 or t5 or p9 and p10 show simultaneity and
avoid deadlock in Figure 9(b). In order to ensure the safety and stability of
the system, control place is introduced, as shown in Figure 10(a)(b).

972 X. Yang et al.

t1

11000

(20000)

10100

02000

t1

t1

t1

t2

t2

t2

t2

t2

t3

t4

t4

t4

t5 t5

t5

t1

t5

t4t6 t7
(00200)

(00101)
(10001)

(01001)(00110)

(10010)

(01100)

(00011)

Figure 6 RMG (
∑

1) for converted transition improvement.

(a) Exemplary net. (b) Deadlock.

Figure 7 Deadlock occurs to the net.

Figure 8 One solution of introducing t9 to automatically release the deadlock when it
occurs.

Improved Design of Concurrent Synchronization System Controller 973

Figure 9 (a) Introducing reading arc to avoid deadlock. (b) Introducing reading arc between
p10→t1 and p9→t5.

Figure 10 (a) Introducing control place to release the deadlock and (b) read arc to release
the deadlock.

3.5 Removing Inconsistent Data: Implementation Usage of the
Lock and Unlock Mutex

Definition 5 (Petri network with data, DPN). A 9-tuple Σ = (Pc, Tc, Fc,
Pd, Tr, Tw, Fr, Fwr, Fww) is called a Petri net with data, if it satisfies the
following conditions:

(1) Pc is the control library, Pd is the database, and they meet Pc ∩Pd = ∅;
(2) Tc is a collection of control changes;
(3) Fc is a control arc, including Tc× Pc ∪ Pc× Tc;

974 X. Yang et al.

Figure 11 Concurrency code.

t1

t3

t5t8

t2

t6

t9t7

p1

x:=2

p3

r1:=x

p5

p6

if(r1=2) if(r1!=2)

y(0)

x(0)

y:=1

x:=1

p2

p4

p7

p8

r2:=y

if(r2!=0) x:=3
if(r2=0)

3

2

Figure 12 A DPN description of the concurrent code (Figure 11).

(4) Fd reading and writing data arc, {Tr, Tw}×Pd∪Pd×{Tr,Tw}, where
Fd includes reading data (Fr), writing data (Fwr, Fw) arc, i.e. Fr:Pd ×
Tr and Fw (Fwr, Fww) i e. Fw:(Pd × Tw, Tw × Pd).
The operation on the data is as follows: Fd →Pd and Pd →Fd, and Pd

= {[D1, val1], [D2, val2]. . . , [Dn, Valn]} is a finite set of shared data
elements D, where vali is the value of Di.

(5) C: m (Pc ∪ Pd) {0,1,2. . . }, indicating the configuration or state, where
D = (m, d), m is marking, d is the data value, while C0 and D0 are the
initial configuration.

For the pd ∈ Pd of the data in DPN, the function getValue (pd) is applied
to obtain its value. For convenience, a set of implementation data opera-
tion functions are proposed as well. Read: getValue (pd), Write: setValue
(pd) = D. The database is described in the form of (Key, Value), and it is
also simply recorded as x (value), where x is the shared variable name.

Improved Design of Concurrent Synchronization System Controller 975

Figure 13 The introduced control place c.

Figure 14 Locking/unlocking to the concurrency code.

Figure 11 shows a concurrent code of two threads used to access the
shared variables x and y. An inconsistency of data reading occurs in Figure 12
where description is made using Petri net with data: r1 may be 1 or r1 is 2 or 3.
As shown in Figure 13, the control place is added to synchronously control
the access of x. As shown in Figure 14, locking and unlocking are performed
for the synchronous coding of x.

4 Conclusion

As a solution to concurrent system modeling, Petri net is widely used for
deadlock control. Currently, it is common to study the method of Petri net-
based synchronous concurrency control. In this paper, the deadlock caused
by synchronous concurrency control is explored. The method proposed in

976 X. Yang et al.

this study and the research result provide some guidance. Petri net pro-
vides an effective solution to model detection and construction in concurrent
systems. It is worth exploring the methods used to detect dead-lock and
live-lock in concurrent systems, and the elimination of dead-lock and live-
lock is achievable. In this paper, the existence of dead-lock and live-lock is
determined by calculating the reachability graph and using the correlation
matrix. With the assistance of a reading arc and inhibitor arc, the Petri net
with data reading and writing place can eliminate deadlock, achieve live-
lock and enable the control of inconsistency in data reading and writing, thus
ensuring the correctness of the concurrency system.

Through the removal of deadlocks, the marking is obtained by construct-
ing a reachability tree or graph. For the purpose of deadlock marking, the
cause of the deadlock is analyzed. With the deadlock eliminated from the
graph, the specification basic algorithm is applied to eliminate the deadlock.
Different targeted solutions are provided for different cases of deadlock.
Due to the deadlock caused by the limited availability of resources, there
is an increase in the resources needed to eliminate the deadlock. When a
thread occupies the resources and applies for the resources occupied by other
threads, the threads wait to be occupied, and the deadlock is eliminated
by increasing the inhibitor arc. The conversion of resource is performed to
remove the deadlock with one pipeline waiting resource and another pipeline
with excessive resource. The more common solution to the deadlock is to
increase the control/supervision place. Through the correlation matrix, the
initial token of the place is analyzed and the corresponding arc is introduced,
thus eliminating the deadlock. The Petri net with data operation is proposed
to make the formal description of the multi-threaded concurrent system. It is
concluded that the data reading is inconsistent. Therefore, the locking and
unlocking of mutually exclusive resources are required for coding to ensure
the consistency of data reading and writing.

Furthermore, the corresponding controller is integrated through the intro-
duction time Petri model and control specification. The running trace is
reduced by analyzing the running trace of the concurrent system on the Petri
net with data reading and writing.

Funding

This research is funded by the National Natural Science Foundation of
China (62172166), the Shanghai Maglev and Rail Transit Collaborative
Innovation Center, and the Science Research Project of Shanghai Science

Improved Design of Concurrent Synchronization System Controller 977

and Technology Committee (Grant No. 18DZ1205803). The Huang Yanpei
Education Foundation (ZJS2022YB363).

Conflicts of Interest

The authors declare that there are no conflicts of interest to report in this
manuscript.

References

[1] D. Xiang, S. Lin, X. Wang and G. Liu, “Checking Missing-Data Errors
in Cyber-Physical Systems Based on the Merged Process of Petri Nets,”
in IEEE Transactions on Industrial Informatics, vol. 19, no. 3, pp. 3047–
3056, March 2023, doi: 10.1109/TII.2022.3181669.

[2] L. He and G. Liu, “Prioritized Time-Point-Interval Petri Nets Modeling
Multiprocessor Real-Time Systems and TCTL_x,” in IEEE Transactions
on Industrial Informatics, vol. 19, no. 8, pp. 8784–8794, Aug. 2023, doi:
10.1109/TII.2022.3222342.

[3] F. Zhao, D. Xiang, G. Liu and C. Jiang, “A New Method for Measuring
the Behavioral Consistency Degree of WF-Net Systems,” in IEEE Trans-
actions on Computational Social Systems, vol. 9, no. 2, pp. 480–493,
April 2022, doi: 10.1109/TCSS.2021.3099475.

[4] L. Qi, Y. Su, M. Zhou and A. Abusorrah, “A State-Equation-Based
Backward Approach to a Legal Firing Sequence Existence Problem
in Petri Nets,” in IEEE Transactions on Systems, Man, and Cyber-
netics: Systems, vol. 53, no. 8, pp. 4968–4979, Aug. 2023, doi:
10.1109/TSMC.2023.3241101.

[5] G. Liu, W. Reisig, C. Jiang and M. Zhou, “A Branching-Process-Based
Method to Check Soundness of Workflow Systems,” in IEEE Access,
vol. 4, pp. 4104–4118, 2016, doi: 10.1109/ACCESS.2016.2597061.

[6] Z. Zhang, G. Liu, K. Barkaoui and Z. Li, “Adaptive Deadlock Control
for a Class of Petri Nets with Unreliable Resources,” in IEEE Trans-
actions on Systems, Man, and Cybernetics: Systems, vol. 52, no. 5,
pp. 3113–3125, May 2022, doi: 10.1109/TSMC.2021.3062469.

[7] D. Xiang, G. Liu, C. Yan and C. Jiang, “A Guard-Driven Analysis
Approach of Workflow Net with Data,” in IEEE Transactions on Ser-
vices Computing, vol. 14, no. 6, pp. 1650–1661, 1 Nov.–Dec. 2021, doi:
10.1109/TSC.2019.2899086.

978 X. Yang et al.

[8] Yang, Xu. ‘Performance Analysis of Petri Net Based on Moment Gen-
erating Function’. 1 Jan. 2023: 1131–1139. https://content.iospress.com
/articles/journal-of-intelligent-and-fuzzy-systems/ifs231137.

[9] Y. Huang, T. Wang, Z. Yin, E. Mercer and B. Ogles, “Improv-
ing the Efficiency of Deadlock Detection in MPI Programs Through
Trace Compression,” in IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 34, no. 1, pp. 400–415, 1 Jan. 2023, doi:
10.1109/TPDS.2022.3218346.

[10] Liu, G. (2020). PSPACE-Completeness of the Soundness Problem of
Safe Asymmetric-Choice Workflow Nets. In: Janicki, R., Sidorova, N.,
Chatain, T. (eds) Application and Theory of Petri Nets and Concurrency.
PETRI NETS 2020. Lecture Notes in Computer Science(), vol. 12152.
Springer, Cham. https://doi.org/10.1007/978-3-030-51831-8_10.

[11] Yang, X., Ye, C., Chen, Y. Depth-First Net Unfoldings and Equivalent
Reduction. Symmetry 2023, 15, 1775. https://doi.org/10.3390/sym150
91775.

[12] Xu Yang and Chen Ye. Analysis of Concurrent Systems Based on
Interval Order MVLSC Volume 42, Number 1–3 (2024).

[13] S. Wang, X. Guo, O. Karoui, M. Zhou, D. You and A. Abusorrah, “A
Refined Siphon-Based Deadlock Prevention Policy for a Class of Petri
Nets,” in IEEE Transactions on Systems, Man, and Cybernetics: Sys-
tems, vol. 53, no. 1, pp. 191–203, Jan. 2023, doi: 10.1109/TSMC.2022.
3174421.

[14] G. Liu, W. Reisig, C. Jiang and M. Zhou, “A Branching-Process-Based
Method to Check Soundness of Workflow Systems,” in IEEE Access,
vol. 4, pp. 4104–4118, 2016, doi: 10.1109/ACCESS.2016.2597061.

[15] Chao DY, Yu TH. “MLR: A new concept to launch a partial deadlock
avoidance policy for k-th order system of Petri Nets”, Industrial Elec-
tronics Society IECON 2015 – 41st Annual Conference of the IEEE,
pp. 003148–003152, 2015.

[16] Yu TH. “Parameterized of Control Related States of Gen-Right k-th
order system of Petri nets based on proof by model of Gen-Left”,
Industrial Electronics Society IECON 2016 – 42nd Annual Conference
of the IEEE, pp. 276–281, 2016.

[17] Chao DY, Yu TH, Chen TY. “Computation of Control Related States
of Middle k-th Order System (with a Nonsharing Resource Place) of
Petri Nets”, Computer Consumer and Control (IS3C) 2014 International
Symposium on, pp. 244–247, 2014.

https://content.iospress.com/articles/journal-of-intelligent-and-fuzzy-systems/ifs231137
https://content.iospress.com/articles/journal-of-intelligent-and-fuzzy-systems/ifs231137
https://doi.org/10.1007/978-3-030-51831-8_10
https://doi.org/10.3390/sym15091775
https://doi.org/10.3390/sym15091775

Improved Design of Concurrent Synchronization System Controller 979

[18] W. Luan, L. Qi, Z. Zhao, J. Liu and Y. Du, “Logic Petri Net Synthesis
for Cooperative Systems,” in IEEE Access, vol. 7, pp. 161937–161948,
2019, doi: 10.1109/ACCESS.2019.2950971.

[19] Watt C, Pulte C, Podkopaev A, et al. 2020. Repairing and mechanising
the JavaScript relaxed memory model. In Proceedings of the 41st ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI 2020). Association for Computing Machinery, New
York, NY, USA, 346–361. doi: 10.1145/3385412.3385973.

Biographies

Xu YANG (1977’02–) male, doctoral candidate, He graduated from Qufu
Normal University with a bachelor’s degree in 1999, and graduated from
Tianjin Polytechnic University with a master’s degree in 2006. Now he is
studying in Tongji University for a doctor’s degree. member of CCF. Research
fields: formal methods, concurrency theory.

Shaocui Guo (1980’11–), female, associate professor. In 2004, he graduated
from Qufu Normal University with a bachelor’s degree in computer science.
After graduation, She taught in the Department of Computer Science of Open
education college, Yantai vocational college. His main research interests are

980 X. Yang et al.

machine learning (deep learning), big data analysis and its application in the
field of industrial intelligence.

Dongming Xiang received the Ph.D. degree in Computer Science and Tech-
nology from Tongji University, Shanghai, China, in 2018. He is currently
an associate professor with the Department of Computer Science and Tech-
nology, Zhejiang Sci-Tech University. He has authored over 25+ papers
including TII, TSC, TCSS, JAS, and ICPADS. His research interests include
model checking, Petri net, formal methods, business process management,
and service computing.

Yuxin Yang (1997’07–), female. She graduated from Hong Kong Baptist
University with a bachelor’s degree in Translation and Interpretation in 2019,
and graduated from Columbia University with a master’s degree in TESOL
in 2021. Now she is working as an English teacher in The Experimental High
School Affiliated to Shenzhen University.

Improved Design of Concurrent Synchronization System Controller 981

Yijun Chen (1971’05–) male, senior engineer, member of CCF. Research
fields: formal methods, runtime verification.

	Introduction
	Controller Synthesis Algorithm
	Algorithm 1
	Algorithm 2
	Algorithm 3
	Algorithm 4

	Handling of the Deadlock Phenomenon
	Method 1
	Method 2
	Method 3
	Removing the Deadlock: Implementation Usage of the Resource Controller
	Removing Inconsistent Data: Implementation Usage of the Lock and Unlock Mutex

	Conclusion

