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Abstract

The current models proposed for aspect-based sentiment classification
(ABSC) are mainly developed with the purpose of providing high rates
of accuracy, regardless of the inner working which is usually difficult to
understand. Considering the state-of-art model LCR-Rot-hop++ for ABSC,
we use diagnostic classifiers to gain insights into the encoded information of
each layer. Starting from a set of various hypotheses, we test how sentiment-
related information is captured by different layers of the model. Given the
model architecture, information about the related words to the target is easily
extracted. Also, the model is able to detect to some extent information about
the sentiments of the words and, in particular, sentiments of the words related
to the target. However, the model is less effective in extracting the aspect
mentions associated with a word and the general structure of the sentence.
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1 Introduction

Sentiment analysis (SA) is the task that allows understanding of human
opinions and preferences. Depending on the granularity level, SA applies
at the document, sentence, or aspect level [17]. While SA at the document
or sentence level mainly requires only a classification task, ABSC is usually
executed in three steps. According to [25], the steps consist of the detection of
sentiment-aspect pairs, classification of the pairs, and the aggregation of the
newly obtained information. Among all these three subtasks, we focus only
on the sentiment classification of aspects known as aspect-based sentiment
classification (ABSC) [5].

The application of ABSC is wide, and, although more complicated than
SA, can lead to a much more comprehensive analysis. For this purpose, a
state-of-the-art technique was developed in [28], which proposed a hybrid
approach to ABSC. Firstly, the authors make use of a domain ontology
to identify aspects and sentiments towards these. Any inconclusive cases
are then passed to a neural network that predicts the sentiments. Due to
its high performance, we make use of this technique as the basis of our
research.

Neural networks are considered to be black-box methods as the user is
not able to explain the results based on the structure of the neural network,
hence their inner workings are not clear. Therefore, our research aims to
improve the understanding of neural networks with a focus on the architecture
presented in [28], which is part of the larger field of explainable AI (XAI).
To solve this problem, we investigate if the model presented in [28] can
capture specific information regarding the relationships between words and
aspects. We further extend this by using the domain ontology to test if LCR-
Rot-hop++ can encode the domain knowledge represented, in a sentiment
analysis context, in the domain ontology. To investigate these questions, we
use diagnostic classifiers as introduced in [13]. The major contributions of
this work are as follows. While in [19] diagnostic classifiers are used to
understand the inner workings of the LCR-Rot-hop model, we focus on the
more advanced LCR-Rot-hop++ model in this paper. Furthermore, in addi-
tion to diagnostic classifiers discussed in [19], we investigate if the aspects
represented in the domain ontology are encoded in the neural network. To
our knowledge, this is one of the first works that investigates the presence
of a domain sentiment ontology signal in the representations produced by
a neural attention model. All source data and code can be retrieved from
https://github.com/KunalGeed/DC-LCR-Rot-hop plus plus.

https://github.com/KunalGeed/DC-LCR-Rot-hop_plus_plus
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This paper is an extension of our previous work using diagnostic classi-
fiers for explaining LCR-Rot-hop++ [10]. To be precise, we have enlarged
the related work by better stressing the differences between our solution
and existing ones. Also, we have added an example for ABSC to help the
reader better understand the task. More details on the explained model, LCR-
Rot-hop++, are also provided. In addition, we have given information on the
performance of the deep neural model that we have explained.

The paper is structured as follows. In Section 2 we discuss the literature
associated with ABSC and XAI. Section 3 explores the dataset used in this
study and describes the pre-processing steps used to convert the dataset
into the final dataset. In Section 4, we describe the methodology of the
used aspect-based sentiment classifier and the methodology of diagnostic
classifiers. Section 5 presents the results. Lastly, Section 6 draws conclusions
from the results, states the limitations of our study, and suggests avenues for
further research.

2 Related Works

This section discusses the relevant literature for this study. Section 2.1 pro-
vides a more in-depth analysis of ABSC. Section 2.2 describes the related
work of diagnostic classifiers.

2.1 Aspect-based Sentiment Classification

ABSC is the task of identifying the sentiment value of a target-sentiment
pair [25] and the approaches to complete this task can be divided into
three major classes, the knowledge-based approach, the machine learn-
ing approach, and the hybrid approach, which is a combination of the
knowledge-based and machine learning approach.

The knowledge-based approach uses domain knowledge to perform the
sub-tasks of ASBC. We discuss the ontology-based approach designed
in [26]. An ontology represents the shared concepts present in a certain
domain and the relationships between the concepts plus the axioms that
govern the domain in a way that can be understood by machines [11]. The
domain knowledge was encoded in the form of an ontology proposed in [26]
for it to be understood by the computer. The ontology relies on a set of rules
to identify aspects and determine the polarity of the sentiment.

More recent work on ABSC has shown good performance from machine
learning approaches. ABSC is approached with a support vector machine
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(SVM) in [16]. They used five one-vs.-all SVM classifiers (one for each
considered aspect category), and treated the task as a multi-class multi-label
text classification problem to detect the aspects. For determining the polarity
associated with an aspect, the authors trained linear SVM classifiers that
used the information about the target term, the words around the target term,
and the nodes in the parse tree connected to the target term. In [22], naive
Bayes classifiers are used for the sentiment classification task for product
reviews and also showed relative success. However, most success has been
found in the field of deep learning, by the use of neural networks. Within
neural networks, long short term memory (LSTM) [12], and its variants,
have shown great success in ABSC. The left-center-right (LCR) separated
neural networks are introduced in [27] for ABSC. They make use of bi-
directional LSTM in their model. The purpose is to better address two
problems. Firstly, how to represent the target better when the target is a phrase
(multiple words) and, secondly, how to use the connection between target and
context to capture the most important words to represent targets and contexts.
They had further improved the model by generating new context and aspect
representations adjusted by an attention mechanism applied multiple times or
in a rotatory way.

Although knowledge-based approaches and machine learning approaches
had shown individual success, the hybrid techniques developed by combin-
ing them proved to be of greater success. A hybrid approach to ABSC is
introduced in [26], which uses an ontology-based model to first find as many
sentiment classifications as possible and to pass the inconclusive cases to
the bag-of-words (BOW) model, which classifies the rest. Next, the previous
model is improved in [29] by changing the backup classifier to the LCR-Rot
models proposed in [27]. The authors further extend and improve upon the
LCR-Rot model by repeating the rotary mechanism n times (in order to refine
representations), yielding the LCR-Rot-hop model. Using the methods pro-
posed in [29] as their basis, a next set of improvements are further proposed
for the LCR-Rot-hop model in [28], by introducing deep contextual word
embedding and hierarchical attention leading to the LCR-Rot-hop++ model.

2.2 Diagnostic Classifiers

With the increase in the use of black-box methods, such as neural networks,
there is a growing need for techniques to investigate what happens inside
this black-box method part of XAI [8]. An approach similar to diagnostic
classifiers was proposed in [1]. In their work, the authors outline a framework
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that facilitates the understanding of encoded representation using auxiliary
prediction tasks. They score representations by training classifiers which
take the representations as input to tackle the auxiliary prediction tasks. If
the trained classifier is unable to predict the property being tested in the
prediction task, then it is concluded that the representations have not encoded
that information [1].

Another technique used to facilitate understanding of the models’ inner
working is introduced in [2]. Using a generator model like variational auto-
encoder or a generative adversarial network, the proposed approach aims
to produce artificial inputs that mimic the output produced by the analyzed
model. As the models are considered black-box methods with no access to
their inner gradients, the optimization of the generator relies on an evolution-
ary strategy. In the end, the artificial inputs are analyzed to provide insights
into the model capabilities.

Considering that the visualization techniques were not sufficient to gain
insight into the information encoded by a recurrent neural network (RNN),
diagnostic classifiers are introduced in [13] to gain better insight into the
information encoded by RNNs. This led to the development of diagnostic
classifiers where the authors tested multiple hypotheses about the information
processed by the network. If the diagnostic classifiers can accurately predict
the information, then it is concluded that the information is encoded in the
network [13].

[14] makes use of diagnostic classifiers to link what is going on inside
the neural network to linguistic theory. Specifically, they examine the ability
of LSTM to process negative polarity items (NPIs). The results show that the
model can determine a relationship between the licensing context and NPIs.
As explained in [14], NPIs are words that need to be licensed by a licensing
context to form a valid sentence, for example, “He did not buy any books”
where “any” is an NPI and “not” is a licensing context. The authors determine
that a good language model must be able to encode this relationship. This
study is able successfully to link linguistic theory to deep learning [14].

The work in [3] attempts to understand the inner workings of neural
networks and specifically what the neural networks learn about the target
language. The authors determine that lower levels of a neural network are
better at capturing morphology. Hence they also hypothesize that lower levels
of the neural network capture word structure and the higher levels capture
word semantics [3].

[19] makes use of diagnostic classifiers for ABSC. Specifically, the
authors evaluate, in detail, the LCR-Rot-hop method developed in [29].
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<Review rid="1028246">

<sentences>

<sentence id="1028246:0">

<text>Service was devine, oysters where a sensual as

they come, and the price can’t be beat!!!!</text>

<Opinions>

<Opinion to="7" from="0" polarity="positive" category=’

SERVICE#GENERAL’ target="Service"/>

<Opinion to="27" from="20" polarity="positive" category=

’RESTAURANT#GENERAL’ target="oysters"/>

<Opinion to="0" from="0" polarity="positive" category=’

RESTAURANT#PRICES’ target="Null"/>

</Opinions>

</sentence>

</sentences>

</Review>

Figure 1 A sentence from the SemEval-2016 dataset.

In [19] the LCR-Rot-hop method is analyzed to investigate if the internal
layers can encode word information, such as a part-of-speech (POS) tag, sen-
timent value, presence of aspect relation, and aspect related sentiment value
of words. The authors conclude that the word structure (POS) is captured by
the lower levels of the neural network, and the higher levels are able to encode
information about aspect relation and aspect related sentiment value, which
is in line with a hypothesis proposed in [3],

3 Specification of the Data

This study makes use of the SemEval 2016 Dataset, Task 5, Sub-task 1, which
contains an annotated dataset for ABSC [24]. Figure 1 shows an example of
an annotated review found in the training dataset. A review is divided at a
sentence level and for each opinion in a sentence, the target, category, and
polarity are stated. The polarity of the opinion is the sentiment (positive,
negative, or neutral) that the opinion has towards the target. The target is
the word in the opinion towards which the sentiment is directed. Lastly, the
category is related to the target and shows which aspect the target belongs to.

In Figure 1, we can see that in the sentence, “Service was devine, oysters
where a sensual as they come, and the price can’t be beat!!!”, the reviewer is
complementing the price, food, and service of the restaurant. This is reflected
in the positive polarity for each of the categories (“SERVICE#GENERAL”,
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Table 1 Polarity frequencies in training and test sets

Training Data

Polarity Frequency %

Negative 488 26.0

Neutral 72 3.8

Positive 1319 70.2

Test data

Polarity Frequency %

Negative 135 20.8

Neutral 32 4.9

Positive 483 74.3

“FOOD#QUALITY”, and “RESTAURANT#PRICES”) and associated tar-
gets expressed in the sentence.

Table 1 shows the class frequencies for the training and test set used to
evaluate LCR-Rot-hop++. In both the test and training set, the positive class
is in the majority with more than 70%, and the neutral class is in the minority
with less than 5%. This imbalance could make it more difficult for the neural
network to learn the neutral class.

Due to the fact that we use BERT word embedding to represent words,
we need to re-concatenate words that have been divided into word pieces in
order to generate the dataset used to train and test the diagnostic classifiers.
As any words that begin with “##” is a word piece belonging to the word
preceding it, we can combine them into a single word. Due to each word also
needing its own BERT word piece embedding and hidden states, when we
combine the word pieces we also need to generate a single word embedding
or hidden states for the newly formed word. The word embedding and hidden
states represent the layer information that is output by each layer of the LCR-
Rot-hop++ model, prior to the final MLP layer for sentiment classification.
A proposed solution [31] was to use a recurrent neural network to combine
word piece embeddings into a single word embedding, however, without a
large dataset to train the neural network this would result in inadequate word
embeddings. One of the methods to get a single embedding that captures
the meaning of a larger piece of text, such as a phrase or a sentence, from
the individual embedding is to average the word embedding to get a single
word embedding representing the entire phrase [15]. We use this approach
to combine word pieces and their embeddings and layer information into a
single vector due to its simplicity.

4 Method

This section is dedicated to the proposed methodology. Section 4.1
presents the backup model of the the two-step approach HAABSA++,
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and Section 4.2 provides an overview of the diagnostic classifiers used to
understand the inner working of the LCR-Rot-hop++ model.

4.1 LCR-Rot-hop++

In this study we make use of the LCR-Rot-hop++ model proposed by [28].
This model is specifically designed for the task of target sentiment classifi-
cation. LCR-Rot-hop++ model makes use of the LCR-Rot model proposed
by [27] as its basis. Other approaches tend to not account for the size of the
target, as it can range from being a single word to phrase [27]. We begin by
splitting the sentence into three parts, the left context, the target, and the right
context. The word embeddings, BERT in this case, are also generated for the
words in the sentence.

We make use of BERT embeddings in this study as the research by [28]
showed that BERT embeddings led to best performance for the HAABSA++
model. BERT embeddings are contextual word embeddings which take into
account the context surrounding the words when coming up with vector
representation of the words [9]. Hence the same word can have different
BERT embeddings as it is likely to have different contexts. To this end,
when generating the embeddings we follow the same procedure as [28]. The
words are labeled using a coding number to differentiate between multiple
occurrences of the same word. For this study we used the BERT embedding
generated by [28] as we make use of the same dataset. Furthermore the length
of the BERT embedding vector was set to be 768 by [28], which we follow
also in our study.

Now we describe the LCR-Rot-hop++ model method-4 proposed
by [28]. The left, target and right context are fed into three bi-directional long
short term memory (LSTM) cells which output hidden states [hl1, h

l
2, . . . , h

l
L],

where L is the number of words in the left context, [hr1, h
r
2, . . . , h

r
R], where

R is the number of words in the right context, and [ht1, h
t
2, . . . , h

t
T ], where T

is the number of words in the target. After this a two-step rotatory attention
mechanism is applied on the hidden states. Below we describe the two-step
rotatory attention mechanism. The formulas are symmetrical for left and right
side, hence we show it only for one side.

Step 1: We use an average pooling operation to get the vector rtp . We also
use rtp and the hidden states extracted from the left context to generate the
attention scores. The attention scores are given in Equation (1). W l

c is the
weight matrix and blc is the bias term.

f(hli, r
tp) = tanh(hli ×W l

c × rtp + blc). (1)
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Using a softmax function, a normalized attention scores are calculated
which take f(hli, r

tp) as input.

αl
i =

exp(f(hli, r
tp))∑L

j=1 exp(f(h
l
j , r

tp))
. (2)

Using the left normalized attention scores and the hidden states of the
left context we generate the left context representation. This is the left
target2context vector and is shown in Equation (3). The right target2context
is generated in a similar fashion using the hidden states from the right context.

rl =

L∑
i=1

αl
i × hli. (3)

Step 2: In this step we generate the target representation. The target rep-
resentation is divided into two parts, the left target representation and the
right target representation. These representations make use of the left and
right context representations calculated in Step 1. The attention scores are
computed as shown in Equation (4).

f(hti, r
l) = tanh(hti ×W t

c × rl + btc) (4)

Then we calculate the normalized attention score similar to in Step 1 as
shown in Equation (5).

αtl
i =

exp(f(hti, r
l))∑T

j=1 exp(f(h
t
j , r

l))
. (5)

Lastly, we use the normalized attention scores to calculate the left context-
aware target representation depicted in Equation (6).

rtl =

T∑
i=1

αtl
i × h

t
i. (6)

This model was improved by [29] by repeating Step 1 and Step 2 n
number of times (hops). After the first iteration, in Step 1 the rtp is replaced
by the left (rtl) or right (rtr ) context-aware representation depending on the
side. The ideal number of hops was found to be three hops [29]. [28] furthered
this method by implementing hierarchical attention into the model. Before,
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the model only make use of local information, but by including hierarchical
attention one can update the target2context and context2target vector using a
relevance score calculated at the sentence level [28]. The authors found that
the neural network gave the best performance when the hierarchical attention
was applied to all hops of the rotatory attention mechanism. The process for
applying hierarchical attention to the context2target and target2context vector
is shown below. Firstly, the attention function f(vi) is calculated, where
vi ∈ rl, rr, rtl , rtr and W is the weight matrix and b is the bias term.

f(vi) = tanh(Vi ×W + b). (7)

We use the attention function to calculate the normalized attention scores
for each context. [28] normalizes the score for the left and right context repre-
sentations together and the left target and right target representations together.
Hence we have the following conditions, α1+α4 = 1 and α2+α3 = 1, α1 is
the left normalized attention score, α2 is the left target normalized attention
score, α3 is the right target normalized attention score and α4 is the right
normalized attention score. Equation (8) shows the calculation for the left
and right normalized attention score. The normalized attention scores for the
left-target and right-target are calculated in a similar manner.

αi =
exp(f(vi))∑

j∈1,4 exp(f(v
j))
. (8)

Finally the context2target and target2context are scaled using their
respective attention scores.

vi
′
= αi × vi. (9)

After applying hierarchical information over multiple hops, we have the
four context representations: left context representation, right context repre-
sentation, and the target representations from the left and right context point
of view. These are concatenated and fed into a MLP with softmax function
designed for sentiment classification. The whole neural network architecture
is showcased in Figure 2.

4.2 Diagnostic Classifier

An overview of diagnostic classifiers is provided in Figure 3. In this figure, we
are evaluating the word “lousy” for the POS hypothesis. Knowing that each
word is assigned a label that ranges between 0 and 4 for POS tags: nouns,
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Figure 2 Architecture of LCR-Rot-hop++.

Figure 3 Overview of the diagnostic classifier.
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adjectives, adverbs, verbs, or “remaining” words, we notice that the adjective
“lousy” is properly classified only by the first layers of the model.

In this paper, we test various hypotheses to analyze whether the neural
network encodes certain information. Below we list the various hypotheses
being tested in this paper and how the corresponding tests are generated.
Some of these have already been considered in [19]; however, for the simpler
LCR-Rot-hop model and not the advanced LCR-Rot-hop++ model.

POS tagging is the process of assigning tags to the words based on
their POS and their grammatical categories such as tense, singular/plural,
etc. Due to limited amounts of data available we omit POS tags, already
mentioned above. The words classified as anything other than these four
are categorized under “remaining”. This process is done using the Stanford
CoreNLP package [18]. The POS hypothesis is designed to check if the
neural network can understand the structure of a sentence and its various
components. Figure 4a shows an example for POS classification.

(a) POS tagging

(b) Mention tagging

(c) Relation tagging

(d) Word sentiment classification

(e) Aspect sentiment classification

Figure 4 Examples with POS tagging, mention tagging, relation tagging, word sentiment
classification, and aspect sentiment classification.
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Mention tagging involves predicting the aspect mention related to the
word. We use the ontology to identify the aspect mention a word is connected
to. We match the word to a concept in the ontology and ensure maximum
matches by checking all lexicalizations of a concept. If there is a match, we
check what aspect mention this concept is a subclass of in order to identify the
aspect the word is referring to. Due to the limited coverage of the ontology,
the size of this dataset is much more limited than the others. The mention
tagging hypothesis helps to understand what part of the ontology the neural
network can understand and is encoded in the neural network. We test the
mention tagging hypothesis by checking if the neural network can identify
various aspects of the ontology. An example of mention tagging is given in
Figure 4b.

Aspect relation classification is the task of predicting the presence of
a relation between the words in the context and the target/aspect. Hence,
this is a binary classification problem. To generate the dataset, we make
use of the Stanford Dependency Parser [7], which identifies the various
grammatical relationships between words in a sentence. If any relationships
exist between a context word and its target, we label that word as 1, and 0,
otherwise. The aspect relation hypothesis helps to check if the neural network
is encoding information about the relationship between a context word and
the target. Figure 4c shows an example of relation tagging. The dependencies
are indicated by an arrow from the context word to the target word.

Word sentiment classification is the task of predicting the sentiment of a
word as either positive, neutral/no sentiment, or negative. To identify word
sentiment, we make use of a two-step procedure. First, we match the word to
a concept in the ontology if it is possible. For this, we use the various lexical
representations a concept has. After matching words to a concept, we check
if the concept belongs to the positive or negative subclasses of the sentiment
value class defined in the ontology and use that to identify the sentiment.
If the word does not match any concept in the ontology or is related to a
concept that does not belong to the positive or negative subclasses, we use as
back-up the NLTK SentiWordNet library [4] to identify the word sentiment.
NLTK SentiWordNet identifies the sentiment based on its most frequently
used context. It can also classify the word as neutral/no sentiment. Due to the
limited coverage of the ontology, we have to use the NLTK SentiWordNet so
that we have a larger dataset to be used to train and test. The word sentiment
hypothesis is designed to identify if the neural network can correctly detect
the sentiment of the word. Figure 4d shows an example of word sentiment
classification.



160 K. Geed et al.

Target-related sentiment classification is a combination of the previous
two tasks discussed, namely word sentiment classification and aspect relation
classification. We generate another dataset which combines the information
from the previous two datasets. If a word has a relation with the target
(aspect relation classification) we gather the sentiment of the word (word
sentiment classification) and assign that sentiment. If there is no relation or if
the sentiment is neutral, we identify it as “no sentiment”. The target-related
sentiment hypothesis checks if the neural network can identify the words that
have a relation to the target and what sentiment they hold. An example of this
can be seen in Figure 4e.

The diagnostic classifiers are implemented using the scikit-learn

library in Python. We make use of the MLPClassifier function in the library
for the diagnostic classifiers. MLPClassifer has the ReLU activation func-
tion and a constant learning rate of 0.001. Hyper-parameter optimization was
performed using the GridSearchCV function provided in the scikit-learn
library on the training data with three folds. Due to time and computational
constraints we only optimize the number of neurons in the neural network for
each of the diagnostic classifiers. We vary the number of neurons from 500
to 1100 with increments of 200.

5 Evaluation

This section discusses and presents the results of this study. Section 5.1
discusses the evaluation measures used to gauge the performance of the
diagnostic classifiers. Section 5.2 discuss the performance of the LCR-Rot-
hop++ model. Section 5.3 presents the results for the diagnostic classifiers.
Section 5.4 summarizes our findings with respect to the tested hypotheses.

5.1 Evaluation Measures

To measure the performance of any classifiers, there exist different per-
formance measures. For this study, we limit ourselves to the weighted F1
score and the accuracy as performance metrics. Both of these measures are
implemented using the scikit-learn library on Python. Accuracy mea-
sures the closeness between between predicted and true class label of data
instances [20]. A higher accuracy would indicate a better model; however, it
is not the case when the dataset is imbalanced because the minority classes
have a small impact on the accuracy compared to the majority class [30].
Hence, the accuracy measures could possibly lead to incorrect conclusions
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when evaluating results and checking what the neural network is learning
best out of all the hypotheses. To this end, we also include the weighted F1
measure as a performance measure in our dataset, which calculates a F1 score
accounted for class imbalance [23]. The F1 measure is more robust to imbal-
ances, as it is the harmonic mean between the recall and precision, hence
a higher F1 measure indicates higher performance [30]. Hence, a weighted
F1 measure is likely to give a more accurate depiction of the learning
capabilities of the diagnostic classifiers and through them the original neural
network.

5.2 LCR-Rot-hop++ Model

In [28], it is determined that the best results, an accuracy of 87.0%, for the
neural network model, were found using BERT embeddings as input and
applying hierarchical attention at all the hops. The authors had also compared
BERT to non-contextual word embeddings such as GloVe which was used
in [29] and contextual word embeddings such as ELMo. The HAABSA++
model was compared to other state-of-the-art models for ABSC and the
winners of the SemEval 2015 and 2016 contests. The authors found that
HAABSA++ performance tied with the winning method of the SemEval
2015 contest and came second in the SemEval 2016 contest. This study only
focuses on the LCR-Rot-hop++ model and not the complete hybrid method.
Hence, only the neural network was replicated for the sake of this research.

The results are shown in Table 2. We observe an overall accuracy of
86.6% for the test set and 90.6% for the training set. This result does suggest
that there might be slight overfitting, as the observed training accuracy is
higher than the test accuracy. If we further break down the accuracy in the
training set and test set, we notice that the accuracy for the neutral class
is extremely low, which is expected due it being the minority class which
accounts for only 3.8% of the total training data. This is due to the fact the
LCR-Rot-hop++ model did not have enough instances of the neutral class
to train on. Lastly, the positive class is the majority class and it can be seen
that the neural network excels at identifying positive instances. Our overall
results were slightly different from the ones reported in [28].

A possible reason could be due to the difference in hyper-parameter
for the neural networks and the fact that the model has a certain degree
of randomness due to it selecting random batches to train the network.
Furthermore, the results were reported for the hybrid model, which included
the use of an ontology. It is possible that the ontology was able to identify
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Table 2 Results for the LCR-Rot-hop++ model
Training Set Test Set

Size % Accuracy % Size % Accuracy %
Negative 26.0 89.37 20.8 82.96
Neutral 3.8 1.4 4.9 0
Positive 70.2 95.91 74.3 93.38
Total 100 90.63 100 86.61

Table 3 Diagnostic classifier results for POS tagging
Layer Accuracy (%) F1 (%) Number of Neurons
Embedding 65.51 69.96 500
Hidden state 58.18 63.58 700
Hierarchical weighted state 1 55.57 61.53 500
Hierarchical weighted state 2 55.54 61.62 500
Hierarchical weighted state 3 56.50 62.19 700

difficult instances and only pass easier ones to the neural network, resulting
in higher overall accuracy.

The whole model is implemented in Python 3.5. We make use of the
TensorFlow 1.13 library to develop the models and use the model developed
in [28] as the basis for our code. For the ontology we make use of the
Owlready2 library, which is designed to create and explore ontologies.

5.3 Diagnostic Classifier

This subsection is dedicated to the analysis of the diagnostic classifiers. The
subsection is structured as follows. Sections 5.3.1 and 5.3.2 are related to
the POS tagging and aspect mention hypotheses, respectively. The next three
sections, 5.3.3, 5.3.4, and 5.3.5, are dedicated to the classification of the
aspect relations, word sentiments and target-related sentiments, respectively.

5.3.1 POS tagging
Table 3 shows the results for the diagnostic classifier trained to predict
the POS tag of a word. Table 3 shows that the accuracy is highest for
the embedding layer but falls as we move deeper into the neural network,
although there is a slight increase at the end. A similar trend is shown by
the F1 score, although there is an increase in the weighted F1 score in the
second weighted hierarchical layer. This suggests that the deeper layers of
the neural network encode less information about the POS tags. Overall, the
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embedding layer tends to best encode information about the structure of the
sentence, while the information is lost or becomes less pronounced in the
data as it moves deeper into the network. According to the results reported
in [19], a steep fall in the accuracy is visible after the embedding layer, which
continues in the hidden state layer. Last, the accuracy is stabilized for the
weighted layers, although there is a slight increase in the third weighted layer,
which is also observed in our results. However, our reported accuracies for
POS tags are significantly lower compared to [19]. A possible reason for the
relatively low accuracy and F1 scores could be the BERT embeddings used
to represent words. This could confuse the diagnostic classifier as the same
words have different representations, in different contexts, but could still have
the same POS tag. As we move deeper into the neural network, we are losing
information regarding the POS tags which suggest that the model is deeming
it unnecessary for sentiment classification. The optimal number of neurons
for each classifier is given in Table 3.

5.3.2 Aspect mention tagging
Aspect mention tagging is a new task introduced in the current work to check
if the various aspects in the domain are being encoded in the neural network.
According to Table 4, the accuracy falls as we move deeper into the model.
While the BERT embedding layer has the highest accuracy, the hierarchical
weighted layers are the least effective. However, within the hierarchical
weighted layers, the accuracy only decreases minutely and is relatively stable.
It is to be noted that the mention tagging hypothesis has a highly imbalanced
dataset, and after balancing the dataset we are left with a much smaller
dataset which might adversely affect the classifier. Furthermore, due to the
imbalance in the data, the weighted F1 is a better evaluation metric and also
provides a slightly different result. According to F1, the performances of the
embedding layer and the hidden state are extremely close to each other. The
embedding layer is below the hidden layer by an extremely small margin. The
trend for the weighted F1 scores is downwards, similar to the accuracy. From
this information, we can see that the embedding layer is able to best encode
information about the aspect mentions. Overall, our results suggest that as
we move deeper into the neural network, information about the aspects is to
some extent lost. It is to be noted that a word could be related to multiple
aspects, and hence a multi-class diagnostic classifier could be replaced with
a multi-label diagnostic classifier. The optimal number of neurons for each
classifier is given in Table 4.
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Table 4 Diagnostic classifier results for mention tagging
Layer Accuracy (%) F1 (%) Number of Neurons
Embedding 79.50 61.91 500
Hidden state 77.08 61.99 900
Hierarchical weighted state 1 73.49 60.40 700
Hierarchical weighted state 2 73.37 59.68 500
Hierarchical weighted state 3 73.15 58.22 500

5.3.3 Aspect relation classification
Table 5 shows the results of the diagnostic classifier for identifying aspect
relations. This task checks if the neural network can identify words that are
related to the target. Table 5 shows that the highest accuracy is present in the
hidden state layer, while the lowest accuracy is in the embedding layer. As we
go deeper into the neural network we see a huge spike in its ability to encode
aspect relations at the hidden states layers, but after that, there is a small
decline in accuracy for the next layer followed by small fluctuations in the
remaining layers. A similar pattern is seen in the weighted F1 score, where
the hidden state layer can encode the aspect relations best. This suggests
that the model can identify words related to the target better as we move
deeper into the neural network and although there is a small drop moving
into the hierarchical layers, the model is able to identify words related to the
target relatively well. This is logical as the neural network aims to identify
words that are related to the target, towards which it is trying to classify the
sentiment, and hence its ability to identify words related to the target should
improve as we go deeper into the model. Out of all the layers, the hidden
states appear to encode aspect relations the best. A possible reason for the
hidden state performing better than the hierarchical layers could be that some
words are related to the aspect but have no sentiment value, hence the model
does not pay attention to those kinds of words deeper into the model, result-
ing in slightly lower accuracy. [19] showcases a similar pattern for aspect
relations. There is a spike for the hidden state layer followed approximately
the same values (or lower) for the weighted layers. The optimal number of
neurons for each classifier is given in Table 5.

5.3.4 Word sentiment classification
Table 6 shows the performance of the diagnostic classifiers for identifying the
sentiment of a word. The results prove that as we go deeper into the neural
network, the accuracy and the weighted F1 score fall, although there is a spike
for the third hierarchical weighted layer. A possible reason for the higher
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Table 5 Diagnostic classifier results for aspect relations
Layer Accuracy (%) F1 (%) Number of neurons
Embedding 73.06 78.03 700
Hidden state 82.38 84.04 900
Hierarchical weighted state 1 80.85 82.79 500
Hierarchical weighted state 2 81.89 83.53 1100
Hierarchical weighted state 3 80.66 82.58 900

Table 6 Diagnostic classifier results for word sentiment
Layer Accuracy (%) F1 (%) Number of neurons
Embedding 77.03 80.81 900
Hidden state 67.84 73.69 900
Hierarchical weighted state 1 66.82 72.95 700
Hierarchical weighted state 2 63.13 70.27 1100
Hierarchical weighted state 3 66.00 72.01 900

performance of the BERT embedding layer is probably due to the nature of
word embeddings that can hold information about their context, alleviating
the problem of sentiment detection. Overall, we see that information about
the word sentiments is lost as we move deeper into the network. This could
be justified due to type-2 sentiment mentions [28] causing some words to
not be important for determining the sentiment towards the target as they
are not related to that aspect. [19] does find a similar downward trend
initially, although at a much higher accuracy. [19] observes that following
the downward trend, the accuracy stabilizes for the weighted layers, however
this is not the case for this study as we observe another increase in the final
layer. The optimal number of neurons for each classifier is given in Table 6.

5.3.5 Target-related sentiment classification
Table 7 shows the results for the diagnostic classification of the target-
related sentiment classification task, which has to check if the neural network
can predict the sentiment of the words specifically related to the target.
Table 7 shows that the accuracy is highest in the hidden state layer and
falls as we move deeper into the neural network, before rising again in
the final layer. However, the accuracy never increases past the hidden
state layer. The weighted F1 score follows a similar pattern, although it
is much less pronounced for the spike in the final layer. As the target-
related sentiment hypothesis is a combination of two other hypotheses, its
trend can be explained through them. We observe that the aspect relation
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Table 7 Diagnostic classifier results for target-related word sentiment
Layer Accuracy (%) F1 (%) Number of neurons
Embedding 76.88 85.27 500
Hidden state 78.05 87.22 700
Hierarchical weighted state 1 76.05 85.58 700
Hierarchical weighted state 2 75.38 85.10 1100
Hierarchical weighted state 3 77.28 85.61 500

accuracy increases and then stabilizes, but for the word sentiment hypothesis
it decreases before a spike in accuracy at the end. The increase in accuracy for
the hidden state layer is possibly due to the increase in the layers’ ability to
identify words related to the target being greater than the fall in its ability
to identify the sentiment. Furthermore, as the accuracy for sspect relations
stabilizes, but the accuracy for the word sentiment hypothesis continues
to fall, we observe a downward trend for the layers following the hidden
state. However, the final spike can be explained by the spike in accuracy
for the word sentiment hypothesis, while the accuracy of the aspect relation
hypothesis remains approximately the same. We observe that the neural
network places more importance on identifying the sentiment of the words
related to the aspect, as we observe a relatively good accuracy for target-
related sentiment classification in the final layer, which is within expectations
as that is an important task for ABSC. The optimal number of neurons for
each classifier is given in Table 7.

5.4 Findings with respect to hypotheses

Figures 5a and 5b show the accuracy and F1 scores, respectively, for the
different hypotheses in a single graph. We can see in Figure 5b that the
model is successful at learning about aspect relations, word sentiments, and
the sentiment of the word if it is related to the target (target-related word
sentiment). This is a good sign as these tasks are extremely important for
ABSC. A major difference between Figures 5a and 5b is that the mention
tagging hypothesis performs the worst when compared using the weighted
F1 score but good when comparing based on the accuracy. A reason for this
disparity in results could be due to the data imbalance and the fact that the
mention tagging dataset is much smaller compared to the other hypotheses
datasets due to the limited coverage of the ontology. The performance for
POS tagging and mention tagging is low, based on the weighted F1 score,
which suggests that the model is not able to encode information about the
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(a) Accuracy.

(b) F1 score.
Figure 5 Overview of the accuracy and F1 score for the different hypotheses.

structure of the sentence and which aspect mention a word is related to.
These results are to be expected as these tasks are not important for ABSC,
as identifying the sentiment supersedes POS tagging and the aspect mentions
are usually already identified.

From these results, we can conclude that while the LCR-Rot-hop++
model learns about the word sentiment and structure of the sentence in the
starting layers, the more complex details such as which words are related to
the target and the sentiment of those words are learnt deeper into the model.
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6 Conclusion

This study aims to gain insight into the inner working of the LCR-Rot-
hop++ model and to understand whether it can capture sentiment-related
information. Our findings are listed below:

• POS tagging: We noticed that the BERT embeddings were the best
at classifying POS tags, while the other layers had significantly lower
accuracy and F1 scores. This implied that deeper into the model, infor-
mation about the POS tags is not encoded. According to the weighted F1
score, the LCR-Rot-hop++ model does not capture information about
the structure of the sentence.

• Mention tagging: We found that the accuracy and weighted F1 score
significantly fell as we go deeper into the model. This implied that the
neural network did not encode information about the aspect mention
related to the word. The best accuracy for mention tagging was found in
the embedding layer. This also suggested that the model did not find this
information important as we lose this information as we proceed deeper
into the network.

• Aspect relation: The neural network was able to encode information
regarding which words are related to the target. We found relatively
high accuracy and weighted F1 score. The weighted F1 score and the
accuracy rose into deeper layers of the network and stabilized at the
hierarchical weighted layers. This means that the network was able to
learn information about which words are related to the targets.

• Word sentiment: The ability to identify the sentiment of a word fell as
we went deeper into the neural network. The best accuracy and weighted
F1 score were found for the embedding layer. The relatively high accu-
racy and weighted F1 score for the embedding layer could be due to
the contextualization. Overall, the LCR-Rot-hop++ showed moderate
success in encoding information regarding the word sentiments.

• Target-related word sentiment: We found that the hidden state layer had
the highest accuracy for the ability to identify words that are related to
the target and then their sentiment. As we moved deeper to the network
it fell for a bit before once again rising. Overall, we found that the
neural network is able to encode information regarding the sentiments
of the words related to the target the best, which was expected as this
information is highly relevant for ABSC.

In the future, this research should be repeated for different neural net-
works designed for ABSC, as that might give insight into what kind of neural
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networks work best for certain hypotheses. Furthermore, for the mention
tagging hypothesis, a multi-class, multi-label diagnostic classifier could be
trained to account for one word being related to multiple aspect mentions. In
addition, as imbalanced datasets are present in the real world, we should look
to combine the model with more advanced re-sampling techniques, such as
condensed nearest neighbor [21]. It is to be noted that this procedure must
be done carefully, as certain oversampling techniques, such as SMOTE [6]
and its variants, generate synthetic data and adding synthetic data is counter-
intuitive as we want to investigate if the hypothesis is encoded in the layers
originally. Another suggestion would be to explore how and where the neural
network learns other concepts represented in the ontology besides the aspect
mention (e.g., sentiment expressions). Last, we would like to refine the word
sentiment by first defining a word sense disambiguation procedure and then
looking after the corresponding sentiment in the ontology SentiWordNet.
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