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Abstract

Edge-cloud computing is a distributed computing infrastructure that brings
computation and data storage with low latency closer to clients. As inter-
est in edge-cloud systems grows, research on testing the systems has also
been actively studied. However, as with traditional systems, the amount of
resources for testing is always limited. Thus, we suggest a function-level just-
in-time (JIT) software defect prediction (SDP) model based on a pre-trained
model to address the limitation by prioritizing the limited testing resources
for the defect-prone functions. The pre-trained model is a transformer-based
deep learning model trained on a large corpus of code snippets, and the fine-
tuned pre-trained model can provide the defect proneness for the changed
functions at a commit level. We evaluate the performance of the three popular
pre-trained models (i.e., CodeBERT, GraphCodeBERT, UniXCoder) on edge-
cloud systems in within-project and cross-project environments. To the best
of our knowledge, it is the first attempt to analyse the performance of the three
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pre-trained model-based SDP models for edge-cloud systems. As a result, we
can confirm that UniXCoder showed the best performance among the three in
the WPDP environment. However, we also confirm that additional research
is necessary to apply the SDP models to the CPDP environment.

Keywords: Just-in-time defect prediction, pre-trained model, edge-cloud
system.

1 Introduction

An edge-cloud system is a framework that distributes computing power
closer to clients or devices in the computing environment. Since this form
of infrastructure can handle big data with low latency, it is applicable for
large-scale software systems in modern society [2]. Because of the increase
in interest in edge-cloud systems, the testing for edge-cloud systems has been
actively studied recently [5]. However, it is impractical to test the whole
edge-cloud system because of the high complexity of its complex structure
and the huge volume of its source code. Thus, software defect prediction
(SDP) techniques for edge-cloud systems have been proposed to address the
limitation.

SDP is a technique that helps software developers focus on the potentially
defective part of the module in the project in order to save efforts and effec-
tively allocate valuable resources for software quality assurance activities
[10, 22, 30]. Although it has been one of the actively studied subjects in
software engineering (SE), most studies have focused on legacy projects
written in C or JAVA language [19]. Only a few studies have utilized SDP
in edge-cloud systems. Therefore, we focus on edge-cloud projects written in
Go language, one of the most popular programming languages in edge-cloud
system developments.

We utilize pre-trained models to generate function-level just-in-time (JIT)
SDP models. A pre-trained model is a powerful deep learning bi-language
model trained on a large number of programming languages (PLs) and natural
languages (NLs) [7]. A pre-trained model can represent a pair of PL and
NL into the embedding vector having semantic meaning of them. Among
various pre-trained models, CodeBERT, GraphCodeBERT, and UniXCoder
[7–9] have been popular models and have been applied to several software
engineering (SE) tasks by fine-tuning them, such as automated code repair,
code summarization, and defect prediction [16, 18, 27, 29]. However, since
there has been no study comparing their performance in SDP, we compare
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and analyse the performance of function-level JIT SDP models based on
the three pre-trained models. A JIT SDP is one type of SDP and predicts
defect-prone commits. We implement function-level JIT SDP models, which
predict defect-prone functions in a commit, because the pre-trained models
were trained on function-level source code and the number of input tokens
for the pre-trained model is limited. This study enhances previous work [13].
We perform the experiments with two pre-trained models in addition to
CodeBERT (i.e., GraphCodeBERT and UniXCoder). Then, we compare and
analyse their performance to confirm which is best for SDP. We select two
more subject projects and analyse the prediction performance with two more
metrics considering cost and effort (i.e., file inspection reduction (FIR) and
cost inspection reduction (CIR)).

In summary, we generate function-level JIT SDP models based on pre-
trained models for edge-cloud systems written in Go language, an essential
program language for edge-cloud systems. Then we compare their prediction
performance on four edge-cloud systems in within-project defect prediction
(WPDP) and cross-project defect prediction (CPDP) environments to confirm
the best pre-trained model for SDP. To the best of our knowledge, it is the first
attempt to (1) apply SDP to projects written in Go language, and (2) compare
the performance of the pre-trained model-based SDP models in an edge-
cloud system. Experiment results show that UniXCoder is the best pre-trained
model in WPDP and has acceptable prediction performance. However, the
results show that additional research is necessary to apply the SDP models to
the CPDP environment.

2 Background and Related Works

2.1 Edge-cloud System and Go Language

Go is a recently developed programming language, with its first release in
2012. The Go language has lots of advantages compared to other program-
ming languages in edge-cloud systems [3, 17]. One remarkable characteristic
of the Go language is its type safety and memory safety [4]. Therefore, the Go
language is applicable for edge-cloud systems, where the distributed edges
working in different environments can have possible safety vulnerabilities.
Also, the Go language supports the concurrent primitives. This feature allows
us to put functions using concurrency in the framework easily. Overall, the
Go language is more expressive than other highly performing programming
languages in edge-cloud systems [4].
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Because of the advantages of the Go language, many companies
have adopted Go in their platforms. For example, Google, Meta, and
Microsoft used Go as the core language for some projects (e.g., Docker
and Kubernetes). In particular, many open-source framework projects for
edge-cloud systems use Go as the main language. Therefore, we focus on
edge-cloud projects written in Go in this study.

2.2 Edge-cloud System and Software Defect Prediction (SDP)

Since edge-cloud systems can be applied to a wide range of applications,
such as smart factory, smart health care systems, and smart transportation
systems, testing edge-cloud systems has been studied recently [5]. However,
testing the whole system with a limited amount of resource is time-consuming
and impractical. Thus, we suggest software defect prediction (SDP) as an
alternative solution.

SDP is a technique that helps practitioners focus on the potential defective
part of the modules (i.e., file, function, and class) in the project, in order to
save effort and effectively allocate resources for software quality assurance
[22, 30]. SDP takes a newly developed module as an input, and predicts
whether the module is defective or not. SDP is also suitable for edge-cloud
systems’ distributed environment because it can prevent defective modules
from spreading into the whole system before deployment of the module.
Among various types of SDP, JIT SDP predicts defect-prone commits based
on historical commits data. It is considered a practical version of SDP because
it provides earlier feedback for developers while design decisions are still
fresh in their minds [12, 26]. Therefore, JIT SDP is not only able to ensure
the software reliability in the implementation phase, but also is more practical
for practitioners to apply. Therefore, we focus on a JIT SDP model for
edge-cloud projects in this study.

2.3 Software Defect Prediction Using Pre-trained Models

SDP builds a defect prediction model from the historical data’s features and
corresponding label information, and it can be divided into two categories
by the type of features it uses: handcrafted features and automatically learned
features [20, 24]. First, handcrafted features are manually designed and calcu-
lated by experts from source code (e.g., Halstead metrics, McCabe metrics).
Thus, it only contains statistical information about the source code. On the
other hand, automatically learned features are directly extracted by a deep
neural network (DNN) from the source code itself. Thus, it contains syntax
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and semantic information of the source code. Various SDP studies have
compared the two types of features, and automatically learned features with
syntax and semantic information show remarkable results over traditional
handcrafted features [6, 14, 20, 29]. Thus, we focus on the automatically
learned features.

A pre-trained model is transformer-based deep learning trained on a large
number of PLs and NLs. Like BERT in natural language processing (NLP), it
works as a well-trained encoder that encodes a pair of NL and PL into a single
vector containing their semantic meaning, one type of automatically learned
feature. By using the vector representation, various SE fields utilize fine-
tuned pre-trained models for their tasks. Among various pre-trained models,
CodeBERT, GraphCodeBERT, and UniXCoder [7–9] are representative pre-
trained models trained on the CodeSearch dataset [11] containing 6.4 million
uni-model code snippets in function-level and 2.1 million bi-model code-
documentation pairs written in six PLs, including Go. They have been applied
for several SE tasks, such as automated code repair, code summarization, and
defect prediction [16, 18, 27, 29].

First, CodeBERT is a transformer-based neural network architecture,
which can learn general representations of both PL and NL [7], and has
shown achievement in state-of-the-art performance on natural language code
search, code documentation generation and automated program repair tasks.
Second, GraphCodeBERT additionally utilizes data-flow information, which
indicates relations of where-the-value-comes-from between variables to learn
the semantic level structure of code [8]. GraphCodeBERT showed better
performance on code search, clone detection, code translation, and code
refinement tasks than CodeBERT. Lastly, UniXCoder is a unified cross-modal
pre-trained model for PL, which leverages abstract syntax tree (AST) to focus
on the code representation [9]. With this structure, UniXCoder can more
effectively learn about code fragments than other models. UniXCoder out-
performs CodeBERT and GraphCodeBERT in clone detection, code search,
summarization, and code generation tasks.

However, since there has yet to be a study comparing the three models’
performance in the SDP, we compare and analyse the performance of them to
confirm which is the best pre-trained model for SDP.
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Figure 1 GHPR-based GitHub workflow.

3 Proposed Approach

3.1 Generating Defect-related Dataset Using a GitHub
Pull-request (GHPR)

A GHPR-based collecting method for SDP is a novel approach to collect
and label defect-related data automatically based on a pull-request (i.e., PR),
which is one of the GitHub workflows. After Xu et al., [25] proposed this
method, many SDP studies have applied the method to collect defect-related
datasets [1, 15, 23, 24]. Figure 1 shows the GHPR-based GitHub workflow.
When a defect-related issue arises, a developer makes a branch to solve the
issue. After fixing the issue, the developer sends a PR message to repository
maintainers to review the changes to solve the issue. If the maintainers accept
the PR, the change is merged into the main branch. In this workflow, a pair
of clean and defective codes can be acquired based on a defect-related issue
without labelling effort, and it is class balanced. Most of all, it can solve
the shortage of software defect data and class imbalance problems that most
datasets for SDP studies have.

We implement a Python script for generating a dataset using GHPR based
on ghprtools.1 The ghprtools only gather meta-information on PRs and the
related issues, so we utilize RESTful GitHub API2 to enhance the ghprtools
to collect defective and clean source code pairs. Figure 2 shows the flowchart
of the implemented script. It consists of three stages and generates a dataset
of a GitHub repository as a result. The dataset comprises pairs of instances
with a PR message in NL, a short description of the PR, and a defective or
non-defective source code in a PL by function level. The details of each stage
are as follows.

1https://github.com/soroushj/ghpr-tools
2https://docs.github.com/en/rest

https://github.com/soroushj/ghpr-tools
https://docs.github.com/en/rest
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Figure 2 Flowchart of generating a defect dataset using GHPR.

(1) Preparing stage: This requires a URL of a GitHub repository. Then,
it makes a list of PRs enrolled in the repository using the RESTful
GitHub API.

(2) Checking stage: This collects defect-related PRs through three checks.
First, it checks if each PR in the list is a closed state, which means
the PR is merged into a main branch. Second, it checks if the closed
PR is related to a defect. We check if the message of each PR includes
defect-related keywords (e.g., fix, solve, resolve, and bug) and excludes
non-defect-related keywords (e.g., document, typo, golint). Then, it
checks if the PR modifies ‘.go’ files through git diff result of the PR
because we only focus on Go.

(3) Processing stage: This collects the message of the PR and makes a
list of changed functions through the git diff result of the PR. Then, it
collects a pair before and after the changed function’s source code in the
list. After that, it makes two instances with a class label (i.e., 0 or 1), the
PR message in NL, and defective or non-defective source code written
in Go. Finally, the two instances are added to a dataset.

Since the three pre-trained models applied in this study were trained
on a large function-level large corpus, we generate datasets at the function
level. In addition, due to the limitations on the maximum number of input
tokens into the models and the capacity of the graphics card we used for deep
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Figure 3 Workflow of generating JIT SDPs based on pre-trained models.

learning, we collect only functions with changes within 400 tokens in the
source code.

3.2 Function Level JIT SDP Based on a Pre-trained Model

We implement function-level JIT SDP models by fine-tuning pre-trained
models (i.e., CodeBERT, GraphCodeBERT, and UniXcoder), which are
available on the HuggingFace3 website. Each model has a pre-trained model
for classification tasks (i.e., CodeSearch, and Clone Detection), and we
fine-tune the model on the defect-related dataset using GHPR to make the
JIT SDP model. The overall workflow of generating JIT SDP models based
on the pre-trained models is shown in Figure 3.

(1) Pre-processing and tokenization: Each pre-trained model has a differ-
ent input sequence, as shown in Section 2.3. After converting a pair of
PR message and source code to each model’s suitable input type, the
converted input is tokenized using each model’s tokenizer.

(2) Fine-tuning for SDP: Each pre-trained base model is fine-tuned on each
converted and tokenized input.

3https://huggingface.co/

https://huggingface.co/
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(3) Prediction: Each function in the testing dataset follows the same pre-
processing and tokenization process, depending on each model. Then,
each model predicts the defect-proneness of the function.

4 Experimental Setup

4.1 Research Questions

This study establishes three research questions, and the reasons for the
establishment are as follows. First, it is the first attempt to compare the per-
formance of the SDP models based on different pre-trained models targeting
edge-cloud systems. Thus, we establish RQ1 to confirm the most appropriate
pre-trained model in the within-project environment (i.e., WPDP) where
training and test datasets are included in a project. Second, the applicable
timing of the SDP model can be judged through the model’s prediction
performance according to the amount of training data. In other words, it is
important to check the minimum amount of training data that shows stable
prediction performance. Thus, we set RQ2 to confirm the change in the
model’s prediction performance by changing the amount of training data in
the WPDP environments. Third, the cross-project environment (i.e., CPDP),
where training and test datasets come from different projects, can solve
WPDP’s limitations from the burden of simultaneous development and data
collection for generating the SDP model. Thus, we set RQ3 to confirm the
applicability of SDP models based on the pre-trained models and the most
appropriate pre-trained model in the CPDP environments. The three research
questions are as follows.

(1) RQ1: Which pre-trained model is the most appropriate in the WPDP
environment on edge-cloud systems?

(2) RQ2: How much does the performance of SDP models based on pre-
trained models change depending on the amount of training data in the
WPDP environment?

(3) RQ3: Which pre-trained model-based SDP model is the most appropri-
ate in the CPDP environment on edge-cloud systems?

4.2 Subject Projects

Since our GHPR-based dataset generation method works on repositories
registered on GitHub, we search projects written in Go on GitHub with edge-
cloud related keywords (e.g., edge, cloud, and IoT). Among the 117 results,
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Table 1 Characteristics of subject projects
Name Starts Forks PRs Short Description
EdegeX-go(EdgeX)1 1.1K 0.4K 2.3K Open source project building a common

open framework for IoT edge computing.
Kubeedge (Kube)2 5.5K 1.4K 2.6K Open source system for extending native

containerized application to hosts at
Edge.

Openshift3 1.3K 1.2K 5.3K Application platform to manage hybrid
cloud, multi-cloud, and edge
deployments managed by Red Hat.

Traefik4 40.5K 4.4K 4.2K The Cloud Native Application Proxy
works with Docker and Kubernetes.

1https://github.com/edgexfoundry/edgex-go
2https://github.com/kubeedge/kubeedge
3https://github.com/openshift/installer
4https://github.com/traefik/traefik

Table 2 Confusion matrix
Predict as Defective Predict as Clean

Actually defective TP FN
Actually clean FP TN

we remove non-serious projects (e.g., homework assignments) with less than
1K stars and 400 forks. After that, we select four projects implemented in
Go over 90% with more than 1K closed PRs. The characteristics and short
descriptions of the projects are described in Table 1.

4.3 Fine-tuning Settings for Pre-trained Models

We generate SDP models by fine-tuning the pre-trained models and utilize
same fine-tuning settings as the settings of each original paper [7–9], except
for the batch size and max sequence length due to the memory limitation.
We set the max sequence length as 450 (i.e., 50 tokens for PR message, 400
tokens for source code), and batch size as 8. We use the Adam optimizer to
update the parameters.

4.4 Evaluation Metrics

We adopt two types of performance metrics. First, we calculate two com-
monly used metrics (i.e., AUC and F-measure) in SDP studies, to confirm the
conventional prediction performance of the model. Second, we adopt FIR

https://github.com/edgexfoundry/edgex-go
https://github.com/kubeedge/kubeedge
https://github.com/openshift/installer
https://github.com/traefik/traefik
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(file inspection reduction) and CIR (cost inspection reduction) to confirm
each model’s cost and effort effectiveness. All four metrics can be calculated
based on Table 2. In addition, except for CIR, three other metrics need to be
maximized. The definitions and equations for each metric are as follows.

(1) AUC (area under the receiver operating characteristic curve): This
is an area under the curve between the true-positive and false-positive
rate, and it is independent of the cut-off value. The performance of the
model is categorized into five classes according to the AUC; Excellent
(0.9–1.0), Good (0.8–0.9), Normal (0.7–0.8), Poor (0.6–0.7), and Fail
(0.5–0.6). In addition, 0.5 AUC means that the model’s the prediction
performance is the same as random selection model.

(2) F-measure: This is the harmonic mean of precision (prec = TP
TP+FP )

and recall (recall = TP
TP+TN ). Precision focuses on where actual defec-

tive functions are predicted as defective functions, and recall focuses
on where actual defective functions are predicted as non-defective
functions. F-measure seeks a balance of them.

F-measure =
2 Prec×Recall

Prec+Recall
.

(3) FIR (file inspection reduction): Shin et al. (2010) [21] propose this
metric to calculate reduced effort according to the prediction results. It is
the ratio of the reduced number of functions to inspect using a prediction
model compared to a random selection to obtain the same precision.
When FI (file inspection) is FI = TP+FP

TP+TN+FP+FN , FIR is defined as
follows.

FIR =
PD − FI

PD
.

(4) CIR (cost inspection reduction): Zhang and Cheung (2013) [28] pro-
posed this metric to calculate the cost of defect prediction. CIR is the
ratio of the cost to inspect using a prediction model compared to the
cost to inspect all function. Assuming the average inspection cost for the
defective module is Ci, the average cost of missing a defective module
Cfn, and Ci/Cfn = 1/3. The CIR is defined as follows.

CIR =
Ci × (TP + FP ) + Cfn × FN

Ci × (TP + FP + FN + TN)
.
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Table 3 Performance of three SDP models in four projects in the WPDP environment
CodeBERT GraphCodeBERT UniXCoder

1. AUC
EdgeX 0.764 0.676 0.811
Kube 0.502 0.841 0.889
Openshift 0.923 0.909 0.917
Traefik 0.513 0.545 0.434

2. F-measure
EdgeX 0.669 0.688 0.702
Kube 0.667 0.790 0.782
Openshift 0.821 0.823 0.831
Traefik 0.670 0.600 0.667

3. FIR
EdgeX 0.200 0.104 0.288
Kube 0.003 0.243 0.326
Openshift 0.310 0.318 0.325
Traefik 0.008 0.002 0.003

4. CIR
EdgeX 0.995 0.957 0.952
Kube 1.002 0.768 0.818
Openshift 0.760 0.732 0.719
Traefik 1.003 1.119 1.002

5 Experimental Results

5.1 RQ1: Which Pre-trained Model is the Most Appropriate in
WPDP Environment on Edge-cloud Systems?

Approach: We randomly divide each dataset into training and test data with a
ratio of 7:3. Then, for making the validation dataset, we re-divide the training
dataset into a training and validation dataset with a ratio of 7:3. Lastly, we
fine-tuned each pre-trained model to generate an SDP model using the same
training dataset. For testing, we feed all test datasets to the best-performing
model on the validation dataset among eight epochs.

Finding: Table 3 shows the performance measurement results of four metrics
of each SDP model based on a pre-trained model. The bold fonts are the
highest performance among the three SDP models on a project. As shown
in Table 3, UniXcoder achieves the best performance in 10 cases among
16 cases (i.e., 4 metrics × 4 subject projects). It indicates that UniXcoder
achieves better performance than other models. We assume that the reason
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for the outperformance of UniXcoder is that the converted AST information
from the source code, which is the input data format of UniXcoder, is more
effective in identifying defects than a sequence of source code tokens, which
is the input data format of CodeBERT and GraphCodeBERT.

In the case of AUC, UniXcoder achieves good and excellent prediction
performance except for Traefik. In addition, it achieves above 0.7 F-measure
scores on three projects (i.e., EdgeX, Kube, and Openshift), which is a
relatively acceptable performance, although F-measure does not have a per-
formance criterion like AUC. In the case of FIR, UniXcoder achieves 28% to
32% of those of others on three projects (i.e., EdgeX, Kube, and Openshift).
It indicates that UniXcoder is more effort-effective than others. Similarly, in
the case of CIR, UniXcoder achieves 5% to 28% of those of others on three
projects (i.e., EdgeX, Kube, and Openshift). It also indicates that UniXcoder
is more cost-effective than the others.

In addition, the collected dataset through GHPR is class-balanced (i.e.,
clean code:defective code = 1:1), and it is favourable to the random selection
model. As shown in Table 3, UniXcoder shows better performed than the
random selection model (i.e., AUC > 0.5, FIR > 0, and CIR < 1). Thus,
we can indirectly confirm that the UniXcoder-based model can recognize the
source code’s defect pattern and effectively determine a function’s defective-
ness in terms of cost and effort. In conclusion, we can confirm UniXCoder
has better performance than other models, and its performance is applicable
in the within-project environment.

However, in the case of the Traefik project, the three models show the
performance similar to (i.e., AUC = 0.5, FIR = 0, and CIR = 1) or worse
than (i.e., AUC < 0.5, FIR < 0, and CIR > 1) that of the random selection
model. We assume the reason for the poor performance is that the Traefik
dataset is not sufficiently collected, so each model cannot learn about defects
in the project, and the detailed analysis is in Section 6.

5.2 RQ2: How Much Does the Performance of the SDP Models
Based on Pre-trained Models Change Depending on the
Amount of Training Data in WPDP Environment?

Approach: We randomly generate a training dataset by changing from 30%
to 70% of a subject dataset. Then, from the remained dataset, we randomly
select by the number of 30% of the subject dataset as the test dataset. Lastly,
we fine-tuned each pre-trained model for generating SDP model using the
same training dataset with various ratios. Finally, for testing, we feed all test
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(a) EdgeX (b) Kubeedge 

(c) Openshift  (d) Traefik 

Figure 4 AUC changes according to the amount of training data.

(a) EdgeX (b) Kubeedge 

(c) Openshift  (d) Traefik 

Figure 5 F-measure changes according to the amount of training data.

datasets to the best-performing model on the validation dataset among eight
epochs.

Finding: Figures 4, 5, 6 and 7 show the performance changes according to
the amount of training data for AUC, F-measure, FIR, and CIR, respectively.
The higher AUC, F-measure, and FIR mean better performance, and closer to
the top of the graph indicates better performance. Conversely, in the case of
CIR, a lower value means better performance, so the closer to the bottom of
the graph, the better the performance.
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(a) EdgeX (b) Kubeedge 

(c) Openshift  (d) Traefik 

Figure 6 FIR changes according to the amount of training data.

(a) EdgeX (b) Kubeedge 

(c) Openshift  (d) Traefik 

Figure 7 CIR changes according to the amount of training data.

First, as shown in Figures 4 and 6, except for Traefik, AUC and FIR
of UniXcoder are closer to the top of the graph than other models. This
indicates that UniXcoder has better prediction performance and is more
effort-effective than other models over various numbers of training data. In
addition, the performance variation over the various numbers of training data
is also smaller than others. It shows that UniXcoder can learn defect-related
information more efficiently using smaller training data than other models.

Second, as shown in Figures 5 and 7, the best model for CIR and
F-measure differs depending on the subject project and the amount of
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training data. However, GraphCodeBERT and UniXcoder mainly show better
prediction performance and are more cost-effective than CodeBERT, except
Traefik. Similarly, in terms of performance variation over the various numbers
of training data, the performance variation of GraphCodeBERT and UniX-
coder is smaller than CodeBERT. It also indicates that GraphCodeBERT and
UniXcoder can learn more efficiently using smaller training data than Code-
BERT. In summary, UniXcoder is the most suitable pre-trained model among
others in the WPDP environment because it has similar or better performance
and less performance variation than other models according to the amount of
training data. In conclusion, we can confirm that the UniXcoder-based SDP
model can be used in the WPDP environment at early timing compared to
other models.

However, the same as RQ1, the three models’ performances are similar to,
or worse than, the random selection model over various numbers of training
data in the case of Traefik. We re-confirm that the Traefik dataset is not
sufficiently collected, so each model cannot learn about defects in the project,
and the detailed analysis is in Section 6.

5.3 RQ3 Which Pre-trained Model-based SDP Model is the Most
Appropriate in CPDP Environment on Edge-cloud Systems?

Approach: To implement CPDP environment, among the four subject
projects, we choose a project as the source project and pick another project as
the target project. Then, we choose the best performance model based on the
source project in RQ1. After that, we re-evaluate the model’s performance
using the test data of the target project used in RQ1. We exclude Traefik
as a source project that does not show better performance than the random
selection model.

Finding: Table 4 shows the performance of each model on different com-
binations of source and target project. As shown in Table 4, no source or
target project combination performs better than the random selection model.
We assume the reason for the poor performance of all CPDP models is that
source and target projects differ in the styles and details of the source code
between source and target projects, although the source and target projects
are both related to the edge-cloud system. Thus, we confirm the necessity
of pre-processing techniques that minimize the different properties of the
two projects and emphasize the similar properties for CPDP. In addition,
UniXcoder, which shows better performance than other models in RQ1 and
RQ2, shows worse performance than others. We assume that UniXcoder is
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overfitted in a source project, so it is not efficient in predicting defects in other
projects. Thus, we confirm the necessity of a method to prevent a model from
being overfitted for a project for CPDP.

In conclusion, we can confirm that additional research is needed to apply
our model in cross-project environment.

6 Discussion

The three models’ prediction performance on Traefik is significantly lower
than other subject projects. We assume that the reason for the poor per-
formance is that the collection of data was not sufficient to learn defects.
Accordingly, we analyse each dataset on the number of PR, modified files,
functions, and words in PR message.

Table 5 shows the result of analysing each dataset. ‘# of PRs’ indicates
the total number of defect-related PRs in the dataset, ‘# of modified files’
indicates the total number of modified files to resolve defects in the dataset,
‘# of modified functions’ indicate the total number of modified functions to
resolve defects, and ‘# of words in PR messages’ indicate the total number

Table 4 Performance of three SDP models in the CPDP environment
(Source → Target) CodeBERT GraphCodeBERT UniXCoder
1. AUC
EdgeX → Kube 0.494 0.516 0.482
EdgeX → Openshift 0.507 0.488 0.502
EdgeX → Traefik 0.520 0.491 0.498
Openshift → EdgeX 0.510 0.483 0.508
Openshift → Kube 0.514 0.455 0.509
Openshift → Traefik 0.510 0.501 0.485
Kube → EdgeX 0.548 0.526 0.525
Kube → Openshift 0.537 0.494 0.507
Kube → Traefik 0.506 0.510 0.478
2. F-measure
EdgeX → Kube 0.468 0.655 0.655
EdgeX → Openshift 0.614 0.653 0.571
EdgeX → Traefik 0.616 0.637 0.529
Openshift → EdgeX 0.568 0.638 0.649
Openshift → Kube 0.613 0.657 0.668
Openshift → Traefik 0.585 0.644 0.643
Kube → EdgeX 0.667 0.662 0.599
Kube → Openshift 0.666 0.666 0.650
Kube → Traefik 0.667 0.665 0.623
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Table 5 Analysing results on four datasets
EdgeX Kube Openshift Traefik

# of PRs 312 256 320 419
# of modified files 1664 1535 5804 1911
# of modified functions 3828 4640 18,476 3600
# of words in PR messages 33,408 33,448 297,734 20,902
# of functions Per PR 12.269 18.125 57.737 8.591
# of functions Per file 2.300 3.022 3.183 1.883
#of words Per function 8.727 7.208 6.114 5.806

of words of PR messages, which are the short description of the PR. The
last three rows indicate the number of functions and words per PR, file, and
function. As shown in Table 5, in the case of the number of functions per file,
Traefik has 70% of EdgeX, which have the fewest number of functions and
14% of Openshift, which has the highest number of functions. In addition,
in the case of the number of functions per a file, Traefik only has 81% of
EdgeX and 59% of Openshift. In summary, Traefik has a smaller number of
functions per PR and file; in other words, the amount of training data for a
model to learn a defect is less than others. Thus, we assume that the prediction
performance is degraded because the number of functions in a PR and file
is insufficient, so each model cannot learn defects in the PR. In addition,
the number of words per function is also small compared to other projects.
In other words, the description of a PR is less specific than others. Thus, we
assume that it also affects the poor performance.

In conclusion, we confirm that the amount of collected data and its
analysis are absolutely necessary when creating a WPDP defect prediction
model using a pre-trained model.

7 Threats to Validity

7.1 Internal Validity

We utilize the same fine-tuning parameter as the original papers [7–9], and
changed the maximum number of tokens to input, so the performance can
be changed depending on the settings. In addition, we generate datasets
through GHPR on actively under development projects, so the instances of
the datasets can be changed according to the execution time of crawling.
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7.2 External Validity

We study four subject projects that are publicly opened on GitHub. Generally
speaking, only four projects are not enough to show the generalizability of
our findings. We tried to find as many collectible projects as possible, and we
will generate more datasets and apply them to our models in future work to
alleviate this validity.

7.3 Construct Validity

We only evaluated our model on the dataset collected through GHPR.
However, since the dataset collected through GHPR (i.e., class-balanced) is
different from the data collected in the actual development environment (i.e.,
class-imbalanced), there may be differences from the measured performance
in this study when applied to an actual ongoing project. Thus, in future work,
we will check our model’s performance according to the actual development
scenario.

8 Conclusion

An edge-cloud system is a framework that distributes computing power closer
to clients or devices in the computing environment. However, as in traditional
systems, the amount of resource for testing the system is always limited. We
propose a function-level JIT SDP model based on pre-trained model for the
edge-cloud systems. In this study, we compare and analyse the prediction per-
formance of the SDP models based on the three popular pre-trained models
(i.e., CodeBERT, GraphCodeBERT, and UniXCoder) on the four open source
edge-cloud systems in the WPDP and CPDP environment. As a result, we can
confirm UniXcoder is the most suitable pre-trained model among them in the
WPDP environment. In addition, we can confirm that additional research is
needed to apply the SDP models based on the pre-trained models in the CPDP
environment.

In future work, we will analyse the performance change according to
the quality and amount of collected data to give developers guidelines to
apply our model. In order to apply our model to the CPDP environment, we
will apply transfer learning and few-shot learning that alleviates differences
between source and target projects.
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