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Abstract

Accurate localization of nodes in a wireless sensor network (WSN) is impera-
tive for several important applications. The use of global positioning systems
(GPS) for localization is the natural approach in most domains. In WSNs,
however, the use of GPS is challenging because of the constrained nature
of deployed nodes as well as the often inaccessible sites of WSN nodes
deployment. Several approaches for localization without the use of GPS and
harnessing the capabilities of the received signal strength indicator (RSSI)
exist in literature, but each of these makes the simplifying assumption that
all the WSN nodes are within the communication range of every other node.
In this paper, we go beyond this assumption and propose a hybrid technique
for node localization in large WSN deployments. The hybrid technique
comprises a loose combination of a machine learning (ML) based approach
for localization involving random forest and a multilateration approach. This
hybrid approach takes advantage of the accuracy of ML localization and the
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iterative capabilities of multilateration. We demonstrate the efficacy of the
proposed approach through experiments on a simulated set-up and follow it
up with a feasibility demonstration through a prototypical implementation in
the real world.

Keywords: Localization, random forest, multilateration.

1 Introduction

A wireless sensor network (WSN) is an infrastructure-less, self-configured
network of sensor nodes that communicate with each other via radio signals.
Each node in a WSN is laden with sensors of various kinds and these are
often deployed in terrains that are dangerous and inaccessible for humans.
A sensor node once deployed in such terrains is on its own with limited
energy and computational resources with no means of replenishing these.
The aim, therefore, is to minimize energy expenditure and prolong the useful
life of nodes. In such circumstances, localization of sensor nodes in WSN
is an important issue. This is because the usual localization approach in
outdoor locations using global positioning systems (GPS) is unfeasible. GPS
comprises modules that are resource intensive and deploying these over WSN
nodes shortens the latter’s life significantly. In addition to this, the geograph-
ical locations in which such nodes are deployed often do not facilitate the
proper functioning of GPS modules. This is exemplified in a project of ours
wherein we are deploying a WSN in the Melghat Tiger Reserve, a thickly
forested area in Central India, to detect forest fires. Although the WSNs work
well and warn of a fire effectively, determining the location of the fire is non-
trivial. GPS modules do not work here, not just owing to their heavy nature,
but also because of the thickly wooded environment that disrupts GPS signals
and makes them ineffective.

Outdoor localization without the use of GPS is broadly classified into
range-free [1], and range-based [2] localization. Both these localization
schemes work on the premise that there are certain nodes in the network
whose correct locations are known. Such nodes are called anchor nodes and
based on these the locations of the other nodes are computed. In realistic
scenarios, like our project on forest fires, anchor nodes are usually the ones
deployed in parts of the terrain that are more accessible (for example the
periphery of the forested area in our project) where a GPS device can be
used to determine the correct location. Such anchor nodes in most cases
are few and far between and need to be utilized effectively to localize the
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majority of the remaining nodes. In range-free localization, the approach is
to utilize simple data like the ‘number of hops’ between the anchor nodes
and the node being localized, to get a rough idea on the location of the node.
The important point is that no additional hardware is utilized at any of the
nodes to facilitate range-free localization. The advantage of this approach
is its simplicity and cost-effectiveness. The downside, however, is the low
accuracy of localization. Two examples of approaches employing range-free
localization are Centroid [3] and DV-hop [4].

Range-based localization on the other hand requires additional hardware
for transmission and reception of signals at each node. In a WSN network this
hardware is already available at each node and hence range-based localization
becomes convenient. Range-based localization involves an assessment of the
signals received at unknown nodes from anchor nodes and the strength, angle,
arrival-time of such signals is utilized to assess the position of the node. The
angle of arrival [5], time of arrival [6], and received signal strength indica-
tor (RSSI) [7] are popular approaches that utilize range-based localization
techniques.

In this paper, we utilize a range-based technique, more specifically the
received signal strength indicator (RSSI) technique for localization. A high-
level depiction of the use of RSSI for localization is shown in Figure 1(a).
Anchor nodes whose locations are known in advance transmit signals that are
received by the node to be localized. The strength of the received signals from
different anchor nodes are analysed using various algorithms. Based on this,
the position of the node is determined.

The algorithms used to analyse RSSI values and localize nodes are
broadly classified into those employing machine learning (ML) techniques
and those based on more conventional techniques like multilateration [8]. ML
approaches for localization using RSSI are effective but have an important

(a) Localization using RSSI (b) Realistic deployment of
nodes in a WSN

Figure 1 (a) Demonstrates the working of RSSI localization method. (b) Demonstrates the
deployment in the proposed method.
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limitation: they only work well as long as all the unknown nodes are within
the communication range of the anchor nodes.

This means that a realistic scenario, where anchor nodes are few and
there are a large number of unknown nodes far away (not within commu-
nication range) from the anchor nodes, is not catered to well. Figure 1(b)
pictorially depicts this scenario. The reason ML approaches do not work
well in situations where unknown nodes are far away is that this requires
multiple iterations of localization. Multiple iterations of localization imply a
scenario wherein the anchor nodes first localize a few unknown nodes and
the newly localized unknown nodes become the new anchor nodes which are
used for further localization. ML techniques need to be extensively trained
to perform localization. This training works well for the first iteration of
localization when training is done in advance and in an ‘off-line’ manner.
Subsequent rounds of localization require ‘on-line’ training and within the
resource constrained environments of the WSN nodes. Given the space and
computational requirements of such training, these are not possible within
WSN nodes. Hence ML algorithms cannot be used for localization in WSN
with nodes spread over large areas and far away from anchor nodes.

Algorithms based on multilateration techniques are more useful in this
regard and can be used for localizations that require multiple iterations.
Multilateration involves assessing the RSSI values of signals from multiple
anchor nodes at the unknown node. Based on these analyses, an estimation
of the location of the unknown nodes is made. Several endeavours utilize
multilateration for localization; these include [9, 10]. While multilateration
enables localization of nodes far away from anchor nodes through multiple
iterations, its major drawback is lack of accuracy.

In this paper, we overcome the issues of both ML based localization tech-
niques and multilateration based techniques by adopting a ‘hybrid’ approach
wherein the ML and multilateration techniques are combined. The idea is
to first employ a pre-trained ML algorithm to localize a large number of
unknown nodes that are within the communication range of anchor nodes.
Subsequently, these newly localized nodes, which are large in number and
precisely localized, are used to localize subsequent unknown nodes using
multilateration. The number of iterations of multilateration is reduced sig-
nificantly because of the initial localization by the ML based approach. We
try several ML approaches for the initial localization and ultimately choose
random forest [11] as this gives the best results.

The remainder of this paper is organized as follows: Section 2 includes
a comprehensive discussion on existing work related to localization in
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such environments; Section 3 is a detailed discussion of the method pro-
posed in this paper; the proposed method is validated through experiments
in Section 4; and finally Section 5 concludes the paper with pointers to
future work.

2 Related Work

There is extensive literature on localization techniques in WSNs and in other
domains that utilize RSSI as the basis for their endeavours. Several proposed
techniques directly harness RSSI for localization and appropriately optimize
and refine the results. Others employ ML techniques for more accurate
results. We discuss a few endeavours in this section.

[12] proposed a support vector machine (SVM) algorithm which regards
the localization of nodes in a WSN as a regression problem. RSS values are
used as inputs to train the model. The position prediction model is developed
in an offline manner using support vector regression (SVR).

An artificial neural network (ANN) based localization algorithm is pro-
posed in [13]. Here RSSI values between the grid sensors and anchor nodes
are used as inputs to train the neural network. The ANN develops a mapping
between the RSSI values and the locations of the node. This approach is based
on the assumption that all sensor nodes can directly communicate with all
anchor nodes.

Similarly, two groups of algorithms for localizing sensor nodes using
RSSI values of signals from anchor nodes are proposed in [14]. The first
class of algorithms uses fuzzy logic and genetic algorithms, while the second
class uses neural networks with the RSSI values.

The idea of using a lightweight SVR implementation is proposed in [15]
wherein the original problem of regression is split into 13 sub-problems.
The algorithm progresses by splitting the entire network into a series of sub-
networks, such that each regression algorithm (i.e. the sub-predictors of SVR)
needs to process a small amount of data.

Low-power wide-area network (LPWAN) technologies have lately
emerged as a viable alternative to scalable wireless connections in smart city
applications. On a training dataset collected in two different environments,
indoors and outdoors, [16] investigate the use of intelligent machine learning
techniques such as support vector machines, spline models, decision trees,
and ensemble learning for RSSI-based ‘ranging’ in LoRa networks. An
appropriate ranging model is subsequently utilized to test the accuracy of
the trilateration-based localization and tracking endeavours.
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[17] use finger-printing to train a neural network to develop a median
accuracy (of about 16 m to 100 m) model for outdoor localization using the
very little information available over pre-5G base stations with active multi-
beam antenna systems.

The localization techniques proposed in literature and briefly described
here are useful and significant contributions. The main limitation of these
techniques is that they mostly assume that all nodes are within the range of
communication of every other node. This is a rather strong assumption and
often does not hold in the real world. In this paper, we attempt to overcome
this assumption and propose a hybrid technique that utilizes the accuracy of
ML based localization and scalability of multilateration based localization
to localize nodes much beyond the communication range of known anchor
nodes.

3 Proposed Method

The method proposed in this paper is meant for localization of unknown
nodes, without the use of a GPS device, in a WSN that is spread over a large
area. ‘Large area’ here implies that most nodes in the WSN are not within
the communication range of most other nodes owing to the large size of the
area of interest. It is important to specify this as most existing localization
techniques work on the assumption that each node in the WSN is within the
communication range of every other node.

In this large area, we start with the assumption that the locations of a
few sensor nodes, called anchor nodes, are known in advance. These anchor
nodes are located at the periphery of the area of interest. This is a realistic
assumption as the sensor nodes at the periphery of the WSN are usually
accessible and within the reach and range of a GPS device. The sensor
nodes located deep within the area of interest are usually not accessible by a
GPS device because of a hostile geographical terrain and/or the presence of
disrupting structures like trees, and tall buildings. It is these nodes that need
to be localized.

This paper proposes a hybrid approach to localize such sensor nodes that
comprises a machine learning (ML) approach combined with a more conven-
tional multilateration approach. The ML algorithm harnessed here is random
forest and it localizes a large number of unknown nodes by analysing the
RSSI values of communication signals received at the unknown nodes from
one or more anchor nodes. Subsequently, these newly localized unknown
nodes now serve as the ‘new’ anchor nodes and are used to localize nodes
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Figure 2 Proposed hybrid localization approach.

deeper inside the area using multilateration. The multilateration approach
is usually harnessed for more than one iteration until all unknown nodes
are localized. Figure 2 is a high-level depiction of the steps followed for
localization.

We now discuss the proposed approach, comprising localization using
RSSI in general, analysis of RSSI using an ML algorithm (random forest),
and the use of multilateration with RSSI for localization, in more detail.

3.1 Localization Using RSSI

Localization through RSSI values comprises sending low power signals from
the transmitter at an anchor node (a node whose location is known) and
receiving the signal using a receiver at an unknown node. The strength of
the signal as received at the unknown node is assessed and analysed and
conclusions are drawn on the position of the unknown node relative to
the anchor node that sends the signal. The intensity of signals received at
the unknown node decreases with increasing distance from the transmitting
anchor node.

Equation (1) is Frii’s free space transmission equation [18] and shows
that the received signal strength decreases quadratically with distance from
the transmitter.

Pr =
PtGtGrλ2

4πd2
(1)

where Pr is the power of the signal as received at an unknown node, Pt is the
power of the signal as transmitted at the anchor node, Gt is the gain of the
transmitter at the anchor node, Gr is the gain of the receiver at the unknown
node, d is the distance between the anchor and the unknown node, and λ is
the wavelength of the signal.

The power of the signal received at the unknown node is roughly
interpreted as the received signal strength indicator (RSSI) value after incor-
porating factors specific to the communication technology in use. The RSSI
values for signals received at unknown nodes from the various anchor nodes
are collected and stored in a database. A matrix for RSSI values obtained
at each node from every other node in the region of interest is constructed
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and a −200 db value assigned where the receiving node is beyond the
communication range of the sending node.

The RSSI values so collected are subsequently analysed by an ML
algorithm (random forest in this case) and a multilateration technique for
localization.

3.2 Localization Using Machine Learning

The machine learning (ML) approach to localization involves training an
algorithm with data on a large number of sensor nodes. The data comprises
the RSSI values of signals received at each node and the relative location of
the node. The algorithm is trained in such a manner that it is able to accurately
localize a node that receives relevant signals from at least three anchor nodes
(anchor nodes, as mentioned earlier, are nodes whose locations are known).
The larger the number of anchor nodes, better the accuracy of localization.
The algorithm is trained in an ‘off-line’ manner such that it is trained before
it is put to use for localizing sensor nodes.

There are a large number of ML algorithms that can be employed
for the task of localization. We assessed several algorithms and, based on
experiments, chose to use random forest in our work as it gave the best
localization accuracy. A comparison of the localization accuracies of the ML
algorithms that we experimented with is shown in Section 4 which discusses
the experiments conducted.

Random forest [19] is an ensemble technique that can perform both
regression and classification tasks [20]. A random forest comprises several
decision trees which are tree-like structures that divide a dataset on the basis
of decisions taken at each node. The decision point or split value at a node is
determined as one that provides the maximum information gain. A detailed
discussion on forming a decision tree is beyond the scope of this paper. The
interested reader is pointed to [21]. Once trained, a decision tree is able to
provide an appropriate value to a new datapoint. The random forest comprises
several such decision trees and an average of the value assigned by each
decision tree is assigned to the new point.

3.2.1 Data for the random forest
The first step in localization using the random forest algorithm is collection
of data for training the model. The training entails teaching the model to
correctly map RSSI values of signals received at a node with the 2D coordi-
nates expressing the location of the node. The 2D coordinates of the nodes
constitute the output of the random forest model. The input data consists of
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the RSSI values at the unknown nodes from various anchor nodes. At each
unknown node Ni, we represent the RSSI value of the signal received from
anchor node Aj as RSSIij .

In the RSSI matrix, the input data RSSInk corresponds to the RSSI
value of the signal received at the nth sensor node from the kth anchor
node; whereas an output matrix of (xn, yn) represents the coordinates of the
nth sensor node. The output data comprises the coordinates of each of the
unknown nodes. The training part involves the creation of a random forest
and this requires labelled data for a large number of unknown nodes and
corresponding anchor nodes. Depending on availability, this training data
is procured from: actual deployments; from standard datasets comprising
mapped RSSI values and 2D coordinates; or the data is artificially generated
using Frii’s free space transmission equation [18] shown in Equation (1). In
our experiments, we use artificially generated data for lack of access to an
extensive deployment and the unavailability of standard datasets.

3.2.2 Data preprocessing
Prior to creation of the random forest, the data collected goes through a quick
step of preprocessing. Here a new parameter called γ is considered for each
unknown node. The γ parameter indicates the number of anchor nodes for
which the RSSI value at the node is not −200 db. For the creation of the
random forest Only datapoints whose γ ≥ 3 are considered. This is because,
at least three legitimate RSSI values are required for accurate localization
with random forest.

3.2.3 Creation of the random forest
To create a random forest, small bootstrap samples from the input data with
γ ≥ 3 are taken and a decision tree is developed with each sample. A small
subset of the RSSI values at a node is considered for each tree. From this
small subset of RSSI values, one RSSI value is randomly selected for the
root node of the decision tree. A split point of this RSSI value is so selected
that it gives the best improvement in terms of variance. For brevity, we do not
dwell into the procedure for variance calculation and the interested reader is
pointed to the following resource [21].

Based on the ‘best’ split point of the feature, the data is divided into two
or more parts and these form the child nodes of the root. At each child node
again a feature value (in this case RSSI value) is randomly chosen from the
small sample and the best split point for this feature value further divides the
data. This is continued until a certain number of iterations or until the data is
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exhausted, whichever comes first. The decision tree so created is combined
with a larger random forest that comprises all such decision trees created.

The number of decision trees created in the random forest, called an
n-estimator is an important parameter and impacts the performance of the
model. We experimented with using n-estimator values of 1000, 2000, and
3000. We got the best results with 2000 decision trees and used this value for
further computations.

3.2.4 Testing phase
Of the legitimate RSSI data with values of γ ≥ 3, 90% was allocated for
training the model whereas 10% was kept aside for testing the efficacy.

To test the model as well as use it with our real world implementation, the
test point is made to go through each of the 2000 decision trees in the random
forest. As the test data point moves through each tree and converges at a node
in the tree, the x–y coordinates of the datapoint at the node are allocated as
the coordinates of the test point.

This is repeated for all 2000 decision trees and finally an average of all
the 2000 x and y coordinates is computed and is allocated to the test point.

3.3 Localization Through Multilateration

Multilateration [22] is a localization technique popularly used to localize
vehicles in a GPS system. Multilateration depends on the relation between
the distance of nodes and their relative location coordinates. To localize one
node using multilateration, at least three nodes with known locations (anchor
nodes in our case) within the communication range of the unknown node are
required. The distance between an anchor node and the unknown is calculated
using Frii’s free space transmission equation [18] shown in Equation (1)
that relates the received signal strength value at the unknown node with the
distance from the anchor node from which the signal was sent. This distance
(which is not the exact distance but a computed approximate distance) is
calculated between all the anchor nodes within the communication range of
the unknown node and the unknown node. The calculated distance along with
the 2D coordinates of the anchor nodes are together employed in the least
squares method [23]. Figure 3(a) is a high level depiction of the localization
process in multilateration.

Equation (2) shows the expression that needs to be minimized to compute
the location of the unknown node. d̃i is the distance between the unknown
node and the ith anchor node as computed. The bar above d indicates that the
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(a) High level depiction of
multilateration

(b) Hybrid localization comprising ML
and multilateration

Figure 3 (a) Demonstrates the working of multilateration method. (b) Demonstrates the
localization using proposed hybrid method, different colours shows the node localizations in
different rounds using machine learning based localization (random forest in our case) and in
multilateration approach.

value of the distance is not necessarily exact and is diluted by channel noise,
obstacles, and other shadowing effects.

Minimize ε =|
M∑
i=1

√
(xi − x)2 + (yi − y)2 − di

2
. (2)

M denotes the number of anchor nodes within the communication range
of the unknown node. M needs to be at least 3 for proper localization.

3.4 The Hybrid Approach to Localization

We take a hybrid approach to localization owing to limitations in the ML
approach as well as the multilateration approach. The ML approach is effec-
tive in accurately localizing a large number of sensor nodes harnessing the
locations of just a few anchor nodes. The limitation of the ML approach,
however, is that it needs to be trained in advance and can only be employed
for one iteration. It cannot be easily trained with the locations of the newly
localized nodes and thus cannot be used for further iterations. The ML
approach, therefore, is useful when all the unknown nodes are within the
communication range of at least 3 anchor nodes. This is usually possible in
an indoor setting and is seldom the case with large outdoor locations.

The multilateration approach to localization on the other hand can be
readily employed for multiple iterations. Multiple iterations imply that the
unknown nodes localized in an iteration become the new anchor nodes for
subsequent iterations. The iterations continue until the entire area is covered.
This is useful but has the drawback that localizations through multilateration
are not very precise and this imprecision increases at every iteration. A very
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large number of iterations of multilateration localization is therefore not
advised.

The hybrid approach proposed in this paper takes the best of both
approaches. One iteration of ML localization is first conducted. This results
in significant number of unknown nodes getting accurately localized. These
newly localized nodes become the new anchor nodes for subsequent local-
izations using multilateration. A combination of the two approaches enables
the coverage of most of the outdoor region of interest. Figure 3(b) picto-
rially depicts the hybrid approach proposed in this paper. Algorithm 1 is a
systematic description of the approach.

Algorithm 1 Hybrid localization
Preconditions:
1: Anchor nodes: A
2: Unlocalized Sensor nodes: S
3: function LOCALIZATION(A, S)
4: RANDOM FOREST Localization
5: SRF ← nodes localized by random forest
6: S ← S − SRF

7: A← A ∪ SRF

8: while num(S) ≥ 0 do
9: MULTILATERATION Localization
10: SM ← nodes localized by Multilateration
11: S ← S − SM

12: A← A ∪ SM

13: end while
14: end function

4 Evaluation

In this section we experimentally assess the working of the random for-
est algorithm, the multilateration approach to localization separately first,
and subsequently as a hybrid combination. We first create a simulated
environment to comprehensively validate the approach; and subsequently
demonstrate its efficacy on a real-world set-up.

4.1 Dataset and Simulated Environment

To demonstrate the effectiveness of the proposed localization approach, we
create a simulated environment and a synthetic dataset. We need to synthesize
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the data as standard datasets for localization over large areas do not exist.
Also, we do not have access to real world deployments of this scale.

We consider a 130 × 130 m2 region. A dataset comprising anchor nodes
(nodes whose locations are known in advance) and sensor nodes (unknown
nodes that need to be localized) deployed within this region was synthesized.
A total of 12, 321 sensor nodes were created whose positions are along a
1 × 1 m2 grid starting from a position of 10 m from the periphery of the
region of interest and extending to a distance of 110 m. This is done along
both the horizontal and vertical axes. Eight anchor nodes, whose locations
are known, are placed at the periphery of the region of interest. This is a
realistic scenario as nodes along the peripheries of real world regions of
interest are accessible and their locations can be determined. The locations
of the anchor nodes are as follows: (0,0), (60,0), (130,0), (0,60), (0,130),
(60,130), (130,60), and (130,130). Each anchor node has a defined range over
which it can communicate with other sensor nodes.

Out of a total of 12,321 randomly deployed sensor nodes, 3914, 4666,
3622, and 199 sensor nodes are in the communication range of precisely 3,
2, 1 and 0 anchor nodes, respectively. Based on their respective locations
and distance from the anchor nodes, each sensor node has an RSSI value
associated with it.

4.2 Machine Learning (Random Forest) Localization

We choose random forest as the ML algorithm for the first iteration of local-
ization. Of the total of 3914 sensor nodes that are within the communication
range of three anchor nodes (you may recall that for localization, a node needs
to be receiving signals from at least three anchor nodes), 90% of the nodes or
3523 nodes are set aside for training of the random forest and 10% or 391 is
used for testing.

4.2.1 Localization accuracy
Figure 4 shows an overlap between the actual locations of the 391 test sensor
nodes that are localized, where red triangles denote the actual location of
the nodes, and the blue squares denote the predicted location. The figure
is an indication of the precision of the random forest localization as almost
all the blue squares are hidden behind red triangles implying almost perfect
localization.

The random forest algorithm localizes 10 of the 390 sensor nodes with
an average localization error of 0.20 m. Table 1 shows the localization results
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Figure 4 Overlap of predicted and actual locations of sensor nodes.

Table 1 X–Y coordinates, actual vs. predicted by random forest
Xpred Ypred Xactual Yactual Deviation (m)

22.97 16.13 23.0 16.0 0.13
108.99 19.93 109.0 20.0 0.07
13.85 34.11 14.0 34.0 0.18
86.88 23.99 87.0 24.0 0.17
34.15 93.00 34.0 93.0 0.15
102.75 97.84 103.0 98.0 0.29
109.76 98.82 110.0 99.0 0.30
15.79 35.01 16.0 35.0 0.21
16.02 31.90 16.0 32.0 0.10
28.73 85.33 29.0 85.0 0.42

of the random forest algorithm for 10 randomly selected datapoints. In this
table (Xactual, Yactual) are the actual coordinates of the datapoints; (Xpred,
Ypred) are the predicted coordinates using random forest localization; and
Deviation indicates the distance between the actual and predicted locations.
The random forest algorithm localizes sensor nodes (in Table 1) with an
average, minimum and maximum localization error of 0.20 m, 0.07 m and
0.42 m, respectively.

4.2.2 Varying size of ‘region of interest’
We study the variation of the localization accuracy of the random forest model
by changing the size of the simulated area in Figure 5(a). It is seen that as the
size of the simulated area increases, keeping the number of anchor nodes and
the range of communication between the anchor nodes and the sensor nodes is
fixed, the localization accuracy declines sharply. This is along expected lines
and shows the impact that the size of the region, within which localization is
done, has on localization accuracy. As the size of the region increases, it is
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imperative to increase the number of anchor nodes to maintain an acceptable
level of localization accuracy. This is vindicated in the following subsection
where we experiment with increasing the number of anchor nodes.

4.2.3 Varying number of anchor nodes
In Figure 5(b) we study the result of changing the number of anchor nodes
in a fixed size simulated area. An increase in the number of anchor nodes,
with the range of communication between the anchor and the sensor nodes
and the size of the simulated area (region of interest) fixed, results in a steady
improvement in localization accuracy. The number of anchor nodes becomes
especially important for good localization accuracy as we deal with larger
regions of interest.

4.2.4 Comparison with other ML algorithms
We compare the localization performance of random forest with other known
machine learning algorithms on our simulated dataset.

Table 2 shows the localization accuracy of the algorithm. The error mar-
gin, α, in the table provides an indication of the margin of error in localization

(a) Localization accuracy vs
size of ‘region of interest’

(b) Localization accuracy vs number
of anchor nodes

Figure 5 (a) Accuracy while varying the size of field. (b) Accuracy while varying the number
of anchor nodes.

Table 2 Localization accuracies of various ML algorithms
Algorithms Error Margin (α = 0.05) α = 0.03 α = 0.01

Neural network 29.9% 14.0% 10.2%

SVR 15.0% 10.2% 8.1%

Decision tree 80.3% 63.1% 24.5%

Random forest 96.9% 92% 80.0%

XGBoost 97.18% 92% 63.9%
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in the following manner: a datapoint (Xactual, Xactual) is considered to be
correctly predicted with an error margin α if for the point both the following
are true:

Xactual ∗ α > |(Xpred −Xactual)| (3)

Yactual ∗ α > |(Ypred −Yactual)|. (4)

If both Equations (3) and (4) are true, then we consider that point to be a
close point. For example 391 data points were considered as test points out
of 3914 and α is set to be 0.05 for which we got 379 close points out of 391
data points.
The results clearly indicate the superiority of random forest in accurate
localization and vindicates our choice. XGBoost [24] does perform a little
better when the margin of error permitted is large. However, the performance
of XGBoost rapidly deteriorates with smaller permitted margins of error.

4.3 Multilateration Localization

The other major localization approach employed in this paper is multilat-
eration, as discussed earlier. Multilateration utilizes the least squares error
technique to accurately localize nodes with distances computed from RSSI
values. The advantage of the multilateration approach, in contrast to the ML
localization, is that it can be used for multiple iterations. This entails starting
with a set of initial anchor nodes; using these to localize unknown sensor
nodes in the first iteration; the newly localized sensor nodes now become the
new anchor nodes for the next iteration; localizing further unknown nodes
with this new set of anchor nodes; continuing this for multiple iterations. In
this way, localization is done over large ‘regions of interest’.

The downside of localization with multilateration, however, is the inferior
localization accuracy as the iterations progress. The first iteration usually
returns acceptable accuracy results. This deteriorates because the error in
localization at earlier iteration propagates through subsequent iterations.

4.3.1 Localization over iterations
We conducted experiments to understand the extent of deterioration in local-
ization accuracy as the iterations of localization with multilateration progress.
To conduct this experiment, we use a 50 × 50 m2 sized simulation environ-
ment with eight anchor nodes positioned respectively at (0,0), (25,0), (50,0),
(25,50), (50,50), (0,25), (0,50), and (50,25). The sensor nodes localized in
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Table 3 Deviation while localization in different iterations
Deviation (m)

Iteration Minimum Average Maximum

Iteration 1 0.08 0.85 1.10
Iteration 2 0.82 1.424 2.57
Iteration 3 0.62 1.478 3.00

Table 4 Comparison of localization by random forest and multilateration
Deviation (m)

Algorithm Minimum Average Maximum

Random forest 0.02 0.2987 1.00
Multilateration 0.12 0.8224 3.0643
Hybrid 0.12 0.8224 3.0643

the first iteration become the new anchor nodes for the next iteration and
localize more sensor nodes. In this way, the nodes over the entire region of
interest are localized in three iterations. Table 3 shows the minimum, average,
and maximum deviation for different iterations. The deviation values in the
three tables indicate a trend towards deteriorating localization accuracy as the
iterations progress.

4.3.2 Comparison of multilateration and random forest
As stated earlier, localization with multilateration has an advantage over
random forest and other ML algorithms in terms of ease for conducting mul-
tiple iterations. The accuracy of localization with multilateration, however,
is inferior to that of random forest. We compare the localization accuracy of
multilateration and random forest in Table 4. The results are computed on
100 sensor nodes within an area of 100 × 100 m2, with eight anchor nodes.
The superiority of random forest in terms of localization is clear from these
results.

4.4 The Hybrid Localization Approach

In this paper, we combine the localization potential of random forest localiza-
tion and multilateration localization seeking to harness the strengths of both.
Random forest is utilized in the first iteration and it localizes a large number
of sensor nodes with a high degree of accuracy. These newly localized sensor
nodes serve as the anchor nodes for the subsequent iterations of localization
which is done using multilateration. As discussed earlier, it is difficult to
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Table 5 X–Y coordinates, actual vs. predicted by the hybrid approach
Xpred Ypred Xactual Yactual Deviation (m)

86.01 47.70 86 48 0.30
68.02 31.26 68 32 0.74
75.06 98.07 75 98 0.09
95.40 73.73 95 74 0.48
77.80 69.20 78 70 0.82
39.90 71.40 39 72 1.08
49.00 75.26 48 76 1.24
56.94 78.91 57 79 0.10
63.81 19.54 64 20 0.49
109.80 47.60 110 48 0.44

harness random forest for more than one iteration as it needs to be trained
in advance in an ‘offline’ manner. The effect of the random forest algorithm
is that in just one iteration it makes subsequent multilateration iterations very
effective by creating large number of anchor nodes.

Table 5 shows the localization results for 10 random sensor nodes in
terms of the predicted coordinates (Xpred, Ypred) and actual coordinates
(Xactual, Yactual). The Deviation column shows the distance between the
actual locations of the nodes and the locations predicted by the hybrid
approach. The results indicate acceptable localization with small deviations
from actual locations owing to the initial boost provided to multilateration
in terms of a large number of anchor nodes provided by random forest. The
hybrid approach, therefore, is seen to be quite useful for localization of nodes
in large outdoor spaces.

4.5 Real World Prototypical Implementation

To assess the feasibility of the proposed approach to localization, we put
together a prototypical implementation outdoor in the premises of our
institute. We developed crude sensor nodes comprising an Arduino Uno
microcontroller [25] and the ESP8266 wifi module [26] for communication
as shown in Figure 6(a).

We deployed the nodes over a 10×10 m2 area. The deployment comprised
4 anchor nodes that were placed at the four corners of the area and 12 sensor
nodes deployed randomly within the area. A picture of the deployment can
be seen in Figure 6(b).

We first employed the random forest algorithm to localize 6 of the 12
nodes in the first iteration. These 6 newly localized nodes became the new
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(a) Sensor node
prototype

(b) Prototypical implementation of
WSN deployment

Figure 6 (a) Device used for prototypical implementation. (b) Deployment of devices on
our college premises.

Figure 7 Deviation of predicted locations from actual values.

anchor nodes and the larger number of anchor nodes were utilized to drive
the multilateration iteration. The results of localization in the real setting
show the average, minimum and maximum deviation of 1.130 m, 0.20 m,
and 2.262 m. A visual depiction of the deviation of the predicted locations
from the actual values is included in Figure 7.

It is important to note that the intent of the real-world implementation
done by us is not to assess the efficacy of the system in terms of localization
accuracy. The accuracy achieved is expected to be relatively inferior given the
crude equipment and deployment. The idea was to demonstrate the feasibility
of the proposed system to work in the real world.

5 Conclusion

In this paper, we proposed a hybrid technique for localization of nodes
in a wireless sensor network (WSN) without the use of GPS. The major
contribution of our approach is that it overcomes the simplifying assumption
that every node in the WSN deployment is within the communication range
of every other node. Our hybrid approach combines the capability of random
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forest, a machine learning (ML) algorithm, with a more conventional multi-
lateration algorithm. The random forest algorithm is trained in advance and
is able to accurately localize a large number of unknown nodes using just a
small number of anchor nodes (nodes whose locations are known in advance).
It is difficult to train random forest ‘on the go’ and hence it cannot be used
for subsequent iterations. The nodes localized by random forest, however, are
utilized as new anchor nodes and employed for localization of the remaining
nodes by the multilateration approach. Multilateration is not as accurate as
ML algorithms but can be repeated several times and hence is effective in
covering large deployments. In spite of being a little compromised in terms
of accuracy of localization, multilateration does a fairly decent job within the
hybrid set-up owing to the initial boost provided by random forest wherein a
large number of anchor nodes are created.

We validated the efficacy of the proposed technique using a simulated
set-up and with synthetic data. This is because standard data sets for WSN
deployments are not available and we were unable to get access to a
WSN deployment large enough to validate the idea proposed. The results
of localization on the simulated set-up clearly demonstrate the efficacy
of the proposed idea. We further put together a real world prototypical
implementation of the technique and demonstrated its feasibility in the real
world.
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