
Just-in-Time Defect Prediction
for Self-driving Software via a

Deep Learning Model

Jiwon Choi1, Taeyoung Kim2, Duksan Ryu2,∗,
Jongmoon Baik1 and Suntae Kim2

1School of Computing, Korea Advanced Institute of Science and Technology, Korea
2Department of Software Engineering, Jeonbuk National University, Korea
E-mail: jiwon.choi@kaist.ac.kr; rlaxodud1200@jbnu.ac.kr;
duksan.ryu@jbnu.ac.kr; jbaik@kaist.ac.kr; stkim@jbnu.ac.kr
∗Corresponding Author

Received 15 December 2022; Accepted 31 January 2023;
Publication 16 June 2023

Abstract

Edge computing is applied to various applications and is typically applied to
autonomous driving software. As the self-driving system becomes compli-
cated and the proportion of software increases, accidents caused by software
defects increase. Just-in-time (JIT) defect prediction is a technique that
identifies defects during the software development phase, which helps devel-
opers prioritize code inspection. Many researchers have proposed various
JIT models, but it is difficult to find a case in which JIT defect prediction
was performed on edge computing applications. In particular, due to the
characteristic of self-driving software, which is frequently updated, there is
a high risk of inducing defects into the update process. In this work, we
propose a JIT defect prediction model via deep learning for edge computing
applications called JIT4EA. Our research goal is to develop an effective
model to predict defects in edge computing applications. To do this, we
perform defect prediction on self-driving software, a representative edge

Journal of Web Engineering, Vol. 22 2, 303–326.
doi: 10.13052/jwe1540-9589.2225
© 2023 River Publishers

304 J. Choi et al.

computing application. We use pre-trained unified cross-modal pre-training
for code representation (UniXCoder) to embed commit messages and code
changes. We use bidirectional-LSTM(Bi-LSTM) for context and semantic
learning. As a result of the experiment, it was confirmed that the proposed
JIT4EA performed better than state-of-the-art methods and could reduce the
code inspection effort.

Keywords: Software defect prediction, edge computing applications, self-
driving, deep learning.

1 Introduction

Edge computing processes data with devices on the edge of the network,
enabling quicker data processing from each device than cloud computing,
where it manages data as the centralized method. It is utilized in various
IoT-based fields, such as smart factory and self-driving systems. In particular,
the self-driving system is a system in which artificial intelligence technology
is used in automobiles. The self-driving is operated by computing data
collected from traffic information and providing collected data to another
vehicle. The self-driving system applies edge computing techniques based
on the 5G network to provide an AI-based service by collecting and pro-
cessing a large amount of sensor data and handing it over to other vehicles.
Accordingly, the self-driving system has increased the software proportion
and complexity compared to traditional vehicle systems. Because of the
complexity of the self-driving system and the increased software proportion,
different types of software defect accidents are arising. As the self-driving
function is added to the traditional system, the failure rate increases. For
example, Tesla’s self-driving mode ‘autopilot’ failed to identify a big trailer
turning left and collided with the vehicle [1]. The self-driving system in the
automobile industry is used to enhance driver safety, but it also works as a
cause of accidents. Therefore, it is necessary to utilize the software defect
prediction technique to resolve the difficulty of identifying defects in the
self-driving system.

As software functions are increasingly complicated, it is difficult to iden-
tify software defects. A software defect is a malfunctioning of the function
that behaves differently from the predefined requirements and it even leads
to financial loss and critical safety accidents [2]. Software defect prediction
(SDP) is a technique that identifies entities (e.g., class and commit) causing
faults and helps to effectively allocate limited valuable testing resources such

Just-in-Time Defect Prediction for Self-driving Software 305

as human and material. SDP is categorized into file-level and commit-level.
Historical data is used to predict whether a new file or commit is defective [3].
File-level defect prediction is typically performed prior to the integration
testing phase, while commit-level defect prediction is conducted after each
file is changed during the implementation phase [4]. The contribution is also
different as they are used in different phases of the software development life
cycle (SDLC). Just-in-time (JIT) defect prediction is performed on a commit-
level and predicts defects at a finer-grained level than file-level. In general,
commits are smaller than files. So the amount of code to be examined to
identify the defect can be reduced. Also, developers can submit the modified
code to the repository and simultaneously check whether the commit is
defect-prone or not, reducing the time and effort to inspect the code to find
defects.

Many previous JIT studies have been conducted for open-source software.
However, it is difficult to find JIT defect prediction studies for self-driving
software. As self-driving software is linked to passenger safety, it is very
important to ensure its reliability by identifying and fixing defects. In this
work, we introduce a novel JIT model for self-driving software, namely JIT
for an edge computing application (JIT4EA). Our JIT4EA model processes
both commit messages (in natural language) and code changes (in program-
ming languages) using pre-trained unified cross-modal pre-training for code
presentation (UniXCoder) [5]. The UniXCoder model performs embeddings
that reflect the characteristics of each input data. Then, our proposed method
learns the context and meaning of input data using Bi-LSTM.

To evaluate the prediction performance of our JIT4EA, we conduct exper-
iments with the self-driving defect-prone data we collected from GitHub. We
also compare its performance with the performance of the traditional machine
learning classifier (i.e., random forest, gradient boosting decision tree, logis-
tic regression, and extreme gradient boosting) commonly used in JIT defect
prediction and the state-of-the-art approaches (i.e., DeepJIT [6], CC2Vec [7],
JITLine [8], and CodeBERT4JIT [9]). Then, we focus on identifying factors
(context and semantic learning, and the type of input data) that can affect the
performance of JIT4EA.

We have expanded the following from our previous work [10]:

• We propose a novel defect prediction method suitable for self-driving
software. We have previously checked the performance when existing
JIT-SDP approaches were applied to self-driving software. They have
not learned the code structure information, and we propose a new model
to train code structure information on the defect prediction model.

306 J. Choi et al.

• We added three state-of-the-art approaches (DeepJIT [6], CC2Vec [7],
and CodeBERT4JIT [9]) as baselines. We confirmed the performance
of only machine learning-based approaches in previous studies, but we
have added the deep learning-based approaches in this work.

• We added a project for the experiment. The ‘Apollo’ project which is a
self-driving software project used by industries.

• We also added two performance indicators (PCI@20%LOC, Effort@
20%Recall) considering code inspection effort. These indicators repre-
sent how much effort can be reduced through the proposed model.

The main contribution of this paper is summarized as follows:

• We propose a novel JIT defect prediction model to effectively learn the
representation of code. To confirm the performance of our proposed
method, we conduct experiments with four traditional machine learning
classifiers and four state-of-the-art JIT models.

• We collected and analyzed the defect-prone changes of self-driving
software for the first time. Due to the absence of available self-driving
software defect data, we perform labeling using the meta-change aware
SZZ (MA-SZZ) [11].

The rest of this paper is organized as follows, Section 2 represents related
work, and Section 3 introduces our proposed method. Section 4 describes
the experimental setup, Section 5 represents the experimental results and
analysis, and Section 6 discusses the threats to the validity of our work.
Finally, in Section 7, we present our conclusion and direction for future work.

2 Related Work

SDP can be divided into two categories, i.e., file-level and commit-level,
depending on which software entity is prone to defects [12]. File-level
defect prediction is applied after unit testing and before integration testing is
performed. Commit-level defect prediction is applied during the implementa-
tion phase. In particular, commit-level defect prediction can help developers
identify defects in situations where they remember the details of the code,
allowing them to correct defects unlike file-level defect prediction in a
timely way.

The proposed JIT method for open-source software used manually
designed commit-level features such as the number of modified files or the
number of added code lines. Kamei et al. [13] used the feature data at the

Just-in-Time Defect Prediction for Self-driving Software 307

commit-level as input data for the logistic regression. They also prioritized
commits that cause defects in consideration of the amount of code inspection
effort. Pornprasit and Tantithamthavorn [8] performed JIT defect prediction
using commit-level features and the word frequency in code as input data
for machine learning models. In addition, an explainable AI was used to
predict code line-level defects. However, features must be manually defined
according to the characteristic of data and programming language. There is a
limitation in that they do not represent the meaning and structure of the actual
code change [6].

Recently, JIT studies have been proposed to automatically extract features
from code change data. Hoang et al. [6] proposed an end-to-end deep learning
technique to reduce the effort to identify features. They utilized a convolu-
tional neural network (CNN) to automatically extract features from commit
messages and code changes. Experiments showed that deep learning can
extract rich representations of code changes. However, they performed word-
based embedding when embedding input data. However, contextual semantic
changes in words were not considered in defect prediction modeling.

Hoang et al. [7] have shown that a hierarchical attention network
(HAN) [14] can automatically learn the relationship between hierarchical
code changes. Previous studies [6] did not reflect the relationship information
between added and removed code, but the proposed method complements
these limitations, showing that using the two techniques together [6, 7]
improves defect prediction performance. Since the HAN model they used
was a natural language processing model optimized for document task clas-
sification, the hierarchical syntax and semantic information of the code were
not reflected.

Zhou et al. [9] presented a defect prediction model using a pre-trained
CodeBERT [15] that models natural and programming languages together.
CodeBERT is a sentence encoder that encodes source code and natural
language descriptions, creating vectors representing the context of commit
messages and code changes. CodeBERT reflects contextual changes in the
meaning of words and takes into account the relationship between com-
mit messages and code changes. But the hierarchical structure of code, a
programming linguistic characteristic has not been used in learning.

Unlike the above studies, we utilize the hierarchical and semantic infor-
mation of source code (characteristic of programming language) in terms
of input data, and we propose a novel JIT defect prediction suitable for
self-driving software.

308 J. Choi et al.

Figure 1 Data collection and labeling.

3 Proposed Approach

Our approach consists of two main phases, including data collection, and
building JIT4EA. The procedure of our approach is illustrated in Figure 1.

3.1 Data Collection and Labeling

We collect commit data from open-source self-driving software on GitHub
and use PYDRILLER [16] to collect commit messages and code changes
for the project. Then, labeling is performed using the MA-SZZ algorithm
[11, 17]. The SZZ algorithm automatically identifies code changes that
cause defects, and various SZZ algorithms have been proposed so far [18].
The MA-SZZ algorithm has added meta-changes to the existing algorithm
(Annotation Graph, AG-SZZ [19]) that include branch changes or file
attribute changes. Therefore, the data labeled by MA-SZZ showed a low
false positive rate [17] and better recall and precision performance than other
algorithms [11].

The SZZ algorithm is performed in two phases: (1) SZZ searches for bug-
fixing changes. To this end, SZZ searches for some keywords, such as bug, fix
or fail in each commit message to verify whether a commit is a defect-fixing

Just-in-Time Defect Prediction for Self-driving Software 309

Algorithm 1 Pseudo-code of JIT4EA
Input:

Commit message M
Code change C

Output: report Recall, PF, Balance, PCI@20%LOC, Effort@20%Recall, Popt

1: (1) embedding input data
2: Zr

m ← UniXCoder(W[CLS],W1, . . . ,Wm,W[SEP])

3: Zr
Ci
← UniXCoder(Ĉ[CLS], Ĉ1, . . . , Ĉi, Ĉ[SEP])

4: (2) learning context and semantics
5: semanticmessage ← Bi− LSTM(Zr

m)
6: semanticcode change ← Bi− LSTM(Zr

ci)
7: (3) evaluation
8: New train← semanticmessage

⊕
semanticcode change

9: FC← Train(New train)
10: Compute Recall , PF, Balance, PCI@20%LOC, Effort@20%LOC, Popt

End

change or not. (2) SZZ aims to identify the bug-prone commit. Firstly, SZZ
uses the git diff command of a version management system to check the
changed code line between the modified commit version and the previous
version. This identified code line is classified as causing a defect, and the git
blame command is used to find the last commit to modify and delete the code
line from the previous fix. Finally, these changes are labeled as defects, and
the other changes are labeled as non-defects.

3.2 Just-in-time Defect Prediction for Edge Computing
Application

We build a new JIT defect prediction model based on labeled data performed
in Section 3.1. Our proposed JIT defect prediction with deep learning for
an edge computing application (JIT4EA) framework mitigates the limita-
tions of related work described in Section 2. JIT4EA consists of three
steps: (1) embedding input data, (2) learning context and semantics, and
(3) evaluation. Algorithm 1 presents the pseudo-code of JIT4EA.

The quality of the embedded data affects the performance, so it is
very important to use the appropriate embedding techniques for the data.
We use commit messages and code changes as input data. Leverage pre-
trained UniXCoder is used to embed them. UniXCoder reflects changes in
the meaning of words according to context and performs embeddings that
take into account the hierarchical structure and semantic information of the
source code, and the relationship between commit messages and codes.

310 J. Choi et al.

We first perform preprocessing of commit messages and code changes for
input data embeddings (lines 1–3). At this step, we execute tokenization using
UniXCoder, excluding punctuation characters. After this step, we obtain
input data tokens of the maximum token length of each data. It then uses
UniXCoder to embed commit messages and code changes. The commit
message m is input in [w1, w2, . . . , wm] in UniXCoder to obtain sentence
embedding as follows:

Zr
m = UniXCoder(W[CLS],W1, . . . ,Wm,W[SEP]) (1)

where r denotes an embedding dimension, CLS denotes the beginning of a
sentence, and SEP denotes the end of a sentence. Code change C potentially
contains the changed code lines of several source code files [C1, C2, . . . , Cc],
where Ci represents the changed code lines of the ith modified source code
file. To reflect the characteristic of these code changes [9], the changed code
lines in one source code file (Ci) are connected to one sentence (Ĉi) and used
as input data for UniXCoder.

Zr
Ci

= UniXCoder(Ĉ[CLS], Ĉ1, . . . , Ĉi, Ĉ[SEP]). (2)

The second step is to learn context and semantic representations from
embedding representations obtained in previous steps (lines 4–6). This step
is important because if the length of the data is long and the layers of the
deep learning model are deep, the information of the input data can be
lost. Therefore, we utilize Bi-LSTM models that are effective for context
and semantic information learning to prevent these problems. The Bi-LSTM
model is characterized in that it is possible to learn a relationship with the
previous and the subsequent data on the input data. These characteristics help
to effectively send information about embedded commit messages and code
changes to the classifier.

To evaluate our proposed model, we use a fully connected layer (FC)
to identify whether the commit is defect-prone (lines 7–10). The commit
messages and code changes derived from the previous steps are combined
into one to create new learning data that can represent changes. FC is learned
with this train data, and the loss function uses the sigmoid function.

4 Experimental Setup

In this section we discuss our research questions. We then present the details
of the datasets and the evaluation indicators used in experiments. We describe

Just-in-Time Defect Prediction for Self-driving Software 311

the baseline of four traditional classifiers and four state-of-the-art JIT defect
prediction approaches. Finally, the detailed experimental design is explained.

4.1 Research Questions

To verify the effectiveness our proposed JIT4EA, we conduct experiments
with the following two research questions (RQs):

RQ1. Can the proposed method perform better than other JIT defect
prediction models?
RQ2. What factors affect the performance of the proposed method?

RQ1 is designed to show that our proposed method is superior to base-
lines. So, we compare the performance of JIT4EA with those of related work
and traditional classifiers. Through RQ1, we also verify that JIT4EA is also
effective in terms of cost. Code inspection effort is directly related to cost and
is a metric of whether limited resources can be used effectively. RQ2 focuses
on investigating which factors contribute to performance improvement. To
this end, we perform sensitivity analysis on performance differences accord-
ing to whether context and semantic learning is applied or not, and the type
of input data.

4.2 Dataset

We collect open-source self-driving software data on GitHub. We use self-
driving and autonomous driving as the keyword to search repositories on
GitHub. Then, we sort them in descending order by most stars. In GitHub,
the number of stars indicates the popularity of the repository, and the higher
the number of stars, the more popular the repository. To choose the most
suitable projects, we set up the following criteria:

(1) Excludes tutorials and educational projects.
(2) Excludes repositories that do not display the project language.

After filtering by these criteria, we choose the top three most starred
popular project. Table 1 summarizes these projects, including programming
language (% Language ratio), Stars, the number of times the source code
file has been modified (# Change), the number of defects (# Defect), and
the ratio of defects (% DR). Apollo is a project with the ability to accelerate
the development, testing, and distribution of self-driving. Carla is a project
that simulates self-driving. Although it is not self-driving software itself, it is
included in that it is widely used for simulation. Donkeycar is a minimalist
and modular self-driving library for Python.

312 J. Choi et al.

Table 1 Summary of the project used in this work
Project % Language Ratio Stars # Change # Defect % DR
Apollo C++(83.8), Python(5)

Starlark(4.4), Shell(3.3)
20.9K 8,113 2,836 34.96

Carla C++(67.9), Python(25.6)
Batchfile(2.6), Shell(2.1)

7.2K 6,477 2,933 45.28

Donkeycar Python(85.5), JavaScript(10.3),
HTML(2.9), kvlang(2.1)

2.2K 2,359 865 36.67

4.3 Evaluation Indicators

We evaluate the performance of the proposed method using three effort-aware
metrics that consider code inspection efforts and three effort-unaware metrics.

4.3.1 Effort-aware performance measures
PCI@20%LOC is an indicator of the percentage of actual defect-prone
commits that can be found given a fixed amount of effort, i.e., top 20% LOC
of the project [8]. A higher value of PCI@20%LOC means that an approach
can rank many actual defect-prone commits so developers will expend less
effort in finding actual defect-prone commits. When there are M changes and
the developer inspected m changes, this is computed as

PCI@20%LOC =
m

M
. (3)

Effort@20%Recall is the effort (LOC) required to identify 20% of the
defect-prone commit in the project. The higher the value of this indicator, the
more effort the developer needs to identify the actual defect-prone commit.
When there are N defect-prone changes and the developer finds n defect-
prone changes, it is calculated as shown in Equation (4).

Effort@20%Recall =
n

N
. (4)

Popt defines the relationship between recall and code inspection efforts
for prediction models. This requires optimal and worst models, each sorted
in descending and ascending order according to the actual defect density.
A good prediction model is expected to approach the optimal model and
calculated according to the following formula (5) for the proposed prediction
model m.

Popt =
Area(optimal)−Area(m)

Area(optimal)−Area(worst)
. (5)

Just-in-Time Defect Prediction for Self-driving Software 313

Table 2 Confusion matrix
Predicted Class

Clean Defect
Actual class Clean TP (true positive) FN (false negative)

Defect FP (false positive) TN (true negative)

4.3.2 Effort-unaware performance measures
Recall refers to the proportion of defects correctly classified among actual
defects. Equation (6) is calculated based on the confusion matrix of Table 2.

Recall =
TP

TP + FN
. (6)

The probability of false alarm (PF) refers to the percentage of commits
incorrectly classified as defective and is measured according to (7). The
formula is calculated based on the confusion matrix. In addition, the lower
the performance of PF, the better the performance.

PF =
FP

FP + TN
. (7)

Balance is an indicator that Recall and PF are considered compre-
hensively, which is widely used in defect prediction [18, 20] and is par-
ticularly suitable for class imbalance datasets. This indicator is measured
according to (8).

Balance = 1−

√
(0− PF)2 + (1− Recall)2

2
. (8)

4.3.3 Statistical analysis
In this work, we use Cohen’s d [21] to show that the difference in performance
between the proposed method and the baseline is statistically significant.
Cohen’s d is an effect-size test that numerically expresses the performance
difference between the two techniques. Cohen’s d is classified into four levels
as shown in Table 3, and each level represents the degree of the performance
difference. For example, the ‘small’ level means that the performance dif-
ference between the two techniques is statistically small. The effect size
above the ‘medium’ level means that the proposed technique has superior
performance compared to other techniques.

Cohen’s d =
M1 −M2√

δ21+δ22
2

. (9)

314 J. Choi et al.

Table 3 Effectiveness level based on Cohen’s d

Cohen’s d Level

0 ≤ |d| < 0.2 Negligible (N)

0.2 ≤ |d| < 0.5 Small (S)

0.5 ≤ |d| < 0.8 Medium (M)

|d| > 0.8 Large (L)

4.4 Baseline

To validate the performance of the proposed technique, we compare the
performance of four traditional machine learning classifiers and four state-
of-the-art JIT defect prediction approaches [6–9].

We select four traditional classifiers that are widely used in related
work [19, 22]. They use the features of commit-level as input data and
conduct experiments by applying preprocessing steps (min-max normaliza-
tion, class imbalance problem solving using synthetic minority oversampling
technique), which are commonly used in defect prediction studies [23].

4.4.1 Traditional classifiers
• Random forest (RF) is a classifier that generates multiple decision trees

for subsets and averages them to improve accuracy and returns the final
prediction.

• The gradient boosting decision tree (GBDT) works according to the
principle of combining several weak (basic) classifiers to create one
strong classifier, namely the ensemble technique. Each base classifier is
a decision tree, and all decision trees are sequentially linked to learn the
mistakes in previous decision tree models. As a result, the final model
becomes a classifier that aggregates the results of each model to reduce
errors.

• Logistic regression (LR) is a model that finds the relationship between
variable response and predictor variable. The model fits the data to the
logistic curve, and the parameters of the model are estimated based on
maximum likelihood.

• Extreme gradient boosting (XGBoost), like GBDT, operates according
to ensemble techniques, and the final model is generated by combining
all previous models with a comprehensive model with high accuracy.
It is characterized by providing fast learning of parallel processing with
high accuracy.

Just-in-Time Defect Prediction for Self-driving Software 315

4.4.2 State-of-the-art JIT approaches
• DeepJIT [6] performs word-based embeddings from commit messages

and code corrections data with end-to-end learning techniques and then
automatically extracts features using CNN models. After that, the defect
prediction performance was confirmed through the fully connected
layer.

• CC2Vec [7] used HAN networks to learn information between added
and deleted codes from code modification data and further learn
the hierarchical structure of commits. Code change vectors extracted
through the network were combined with feature data extracted from
a DeepJIT [9] model to perform defect prediction.

• JITLine [8] uses the number of code frequencies in the feature and code
change data in the commit-level as train data, and applies an oversam-
pling technique, SMOTE, to address the class imbalance problem in
the defect data. In addition, the parameters of SMOTE were optimized
with a differential evolution algorithm. Thereafter, defect prediction was
performed using a random forest model.

• CodeBERT4JIT [9] found that the DeepJIT [6] CNN model was used
as an encoder, and presented an approach to replace it with CodeBERT.
They use CodeBERT to embed commit messages and code change and
perform defect prediction through a fully connected layer.

4.5 Experimental Setting

We use a stratified k-fold cross-validation method to measure the generalized
performance of the proposed technique and related work. This is a method
that is widely used in defect prediction work [6, 23], and in this study, an
experiment is conducted by setting k to 10. In addition, the experimental
environments conducted in this work used Python 3.6 and 3.8 in Windows
10. Python 3.6 was used to implement the comparison techniques (machine
learning classifier, DeepJIT [6], CC2Vec [7], and JITLine [8]), and Python
3.8 was used to implement the proposed method, and CodeBERT4JIT [9].

We use the 14 commit-level features in RQ2. These features are divided
into five dimensions: diffusion, size, purpose, history, and experience [13].
The diffusion feature quantifies the distribution within the change, and
the size feature measures the size of the change such as lines of code
added. The purpose feature characterizes whether to fix bugs, and the his-
tory feature indicates how developers modify the files within the change.
The experience feature quantifies the change experience of developers who

316 J. Choi et al.

perform change based on the number of changes previously submitted by the
developer.

5 Experimental Results

5.1 RQ1. Can the Proposed Method Perform Better than Other
JIT Defect Prediction Models?

In this research question, we compare the performance of machine learn-
ing models and state-of-the-art approaches to validate the performance of
the JIT4EA. Table 4 reports the performance of the indicators that do not
consider the code inspection efforts. The bold text in the table means the
best performance in the indicator, and the ‘Bal’ column means the Balance
performance indicator.

From Table 4, the proposed method for all three projects shows superior
performance in all performance indicators. We find that JIT4EA achieves the
highest Recall value, which means that the proposed method well identifies
defects compared to the baseline. In particular, we can observe that JIT4EA
and CodeBERT4JIT outperform other baselines. From these results, we can
confirm two things: (1) the contextual semantic information is important;
(2) the relationship between commit messages and code changes is important
(this is the difference between other baselines [6–8] and two approaches
(CodeBERT4JIT [9] and JIT4EA)). Our proposed JIT4EA has better perfor-
mance than CodeBERT4JIT. The main difference between UniXCoder and
CodeBERT is the hierarchical structure of the code and whether semantic
information is learned. Our experimental results confirm that the hierarchical

Table 4 Results of evaluation indicators without considering code inspection effort

Donkeycar Carla Apollo

Evaluation Recall PF Bal Recall PF Bal Recall PF Bal

RF 0.703 0.301 0.681 0.599 0.444 0.550 0.245 0.205 0.422

GBDT 0.714 0.316 0.687 0.522 0.387 0.545 0.287 0.316 0.421

XGBoost 0.697 0.297 0.686 0.489 0.359 0.549 0.268 0.295 0.412

LR 0.800 0.390 0.680 0.765 0.510 0.572 0.806 0.539 0.572

DeelJIT 0.685 0.331 0.677 0.727 0.402 0.652 0.724 0.405 0.652

CC2Vec 0.737 0.685 0.525 0.767 0.716 0.467 0.768 0.677 0.421

JITLine 0.752 0.251 0.750 0.793 0.301 0.745 0.542 0.127 0.707

CodeBERT4JIT 0.813 0.212 0.772 0.861 0.140 0.852 0.889 0.111 0.885

JIT4EA 0.912 0.092 0.909 0.938 0.060 0.938 0.912 0.106 0.895

Just-in-Time Defect Prediction for Self-driving Software 317

Table 5 Results of evaluation indicators with considering code inspection effort
Donkeycar Carla Apollo

Evaluation PCI Effort Popt PCI Effort Popt PCI Effort Popt

RF 0.355 0.107 0.792 0.236 0.180 0.611 0.198 0.248 0.439
GBDT 0.358 0.107 0.795 0.253 0.162 0.624 0.198 0.219 0.518
XGBoost 0.348 0.108 0.791 0.239 0.176 0.584 0.184 0.235 0.499
LR 0.338 0.124 0.777 0.277 0.142 0.707 0.324 0.118 0.710
DeelJIT 0.313 0.119 0.751 0.297 0.128 0.731 0.374 0.090 0.733
CC2Vec 0.234 0.167 0.556 0.226 0.176 0.555 0.284 0.136 0.624
JITLine 0.388 0.097 0.834 0.334 0.116 0.826 0.422 0.089 0.802
CodeBERT4JIT 0.344 0.114 0.870 0.24 0.114 0.922 0.546 0.068 0.951
JIT4EA 0.367 0.106 0.974 0.345 0.113 0.982 0.553 0.068 0.964

structure and semantic information of the code are important for JIT defect
prediction.

Table 5 reports the experimental results of the performance indicator
considering the code inspection effort, and the bold text in the table means
that the performance is the best. The column ‘PCI’ means PCI@20%LOC
evaluation indicator, and the column ‘Effort’ indicates Effort@20%Recall.
The proposed method obtains superior performance, which means that the
proposed method can reduce the code inspection effort. The result of the
PCI@20%LOC performance indicates that the proposed method can identify
many actual defect-prone commits given limited effort compared to the
baselines. In addition, Effort@20%Recall performance is better than the
baselines in the two projects except for the Donkeycar project, which means
that the developers need less effort to identify actual defects. In the Donkeycar
project, the proposed method ranks number two; less effort is required for
developers to identify actual defects. Popt shows that the proposed method is
an effective model that can identify many defect-introducing commits with
less code inspection effort.

Effect size analysis using Cohen’s d is conducted to verify whether the
difference in performance between our proposed method and the baseline
was statistically significant. From Table 6, we can observe that there is a
significant performance difference between JIT4EA and baselines in indica-
tors that do not consider the code inspection effort. In terms of effort-aware
indicators, JIT4EA can produce a large effect size compared to the perfor-
mance of traditional classifiers, DeepJIT, and CC2Vec. In Effort@20%Recall,
the performance difference between JITLine and the proposed method is
small, which means that the performance difference between the two methods

318 J. Choi et al.

Table 6 Effect size analysis results
JIT4EA vs.

Recall PF Balance PCI Effort Popt

RF 2.91 (L) 3.26 (L) 4.78 (L) 1.95 (L) 1.93 (L) 3.51 (L)
GBDT 3.33 (L) 9.31 (L) 4.67 (L) 1.88 (L) 1.9 (L) 4.05 (L)
XGBoost 3.5 (L) 9.28 (L) 4.55 (L) 2.01 (L) 1.98 (L) 4.00 (L)
LR 8.4 (L) 8.27 (L) 8.04 (L) 1.59 (L) 2.09 (L) 10.39 (L)
DeepJIT 13.05 (L) 10.53 (L) 16.99 (L) 1.34 (L) 0.93 (L) 28.88 (L)
CC2Vec 12.28 (L) 33.62 (L) 13.58 (L) 2.55 (L) 3.49 (L) 16.9 (L)
JITLine 2.88 (L) 2.61 (L) 9.07 (L) 0.57 (M) 0.31 (S) 13.99 (L)
CodeBERT4JIT 2.8 (L) 2.05 (L) 2.15 (L) 0.4 (S) 0.16 (N) 2.45 (L)

is small. It also implies that there is little difference in Effort@20%Recall
performance between CodeBERT4JIT and the proposed method.

The proposed method obtains improvement in performance indicators
that do not consider code inspection efforts, and most of the performance
indicators considering code inspection efforts showed performance differ-
ences of a small level or higher.

5.2 RQ2. What Factors Affect the Performance of the Proposed
Method?

We conduct a sensitivity analysis from two perspectives to identify factors
affecting the performance of the JIT4EA model in this research question.
First, we check the performance difference according to the input data.
We use commit messages and code change data together. So we compare the
performance in four cases: (1) when using only commit messages, (2) when
using only code changes, (3) when both data are put together, and (4) when
using existing commit-level feature data with commit message and code
change data.

Table 7 shows the experimental results for this, where the ‘w/o code’
line in the table used only commit messages, the ‘w/o meg’ line used
only code changes, and ‘JIT4EA’ used a combination of commit messages
and code changes. In addition, the ‘Bal’ column means a Balance perfor-
mance indicator, ‘PCI’ indicates a PCI@20%LOC, and ‘Effort’ means an
Effort@20%Recall. As can be seen in Table 7, when the characteristic of
the commit-level was used together, superior performance was shown in
the evaluation indicator considering the code inspection effort. However, the
evaluation inspection considering the code inspection effort showed excellent
performance when the commit message and code change data were used

Just-in-Time Defect Prediction for Self-driving Software 319

Table 7 Performance differences based on factors affecting the performance of JIT4EA
Project Sensitivity Recall PF Bal PCI Effort Popt

Donkeycar JIT4EA 0.9124 0.0929 0.9097 0.3679 0.106 0.9744
w/o code 0.9118 0.0994 0.902 0.3593 0.1091 0.9582
w/o meg 0.9146 0.099 0.9046 0.3671 0.1066 0.9696

Add Feature 0.9238 0.0946 0.9105 0.3666 0.1065 0.9732
w/o Bi-LSTM 0.9094 0.1001 0.9046 0.3665 0.1066 0.9689

Carla JIT4EA 0.9385 0.0603 0.9381 0.3457 0.1131 0.9823
w/o code 0.8942 0.0678 0.9104 0.3401 0.1148 0.9568
w/o meg 0.9119 0.0847 0.9135 0.3449 0.1132 0.9702

Add Feature 0.926 0.054 0.9327 0.3446 0.1136 0.9803
w/o Bi-LSTM 0.9006 0.1115 0.8903 0.342 0.1141 0.9549

Apollo JIT4EA 0.9602 0.0462 0.9557 0.5728 0.0673 0.9905
w/o code 0.9433 0.1278 0.8903 0.5544 0.0691 0.9612
w/o meg 0.903 0.1068 0.8971 0.5538 0.0686 0.9651

Add Feature 0.968 0.0754 0.9413 0.562 0.0693 0.9824
w/o Bi-LSTM 0.9125 0.1062 0.8956 0.5531 0.0686 0.9647

Table 8 Analyze the effect size of the factors affecting performance
JIT4EA vs.

Input Data Sensitivity Factor
w/o code w/o meg Add feature w/o Bi-LSTM

Recall 1.03 (L) 1.9 (L) 0.11 (N) 2.17 (L)
PF 1.43 (L) 1.98 (L) 0.45 (S) 2.77 (L)
Balance 2.29 (L) 2.07 (L) 0.38 (S) 2.68 (L)
PCI 0.1 (N) 0.07 (N) 0.04 (N) 0.036 (N)
Effort 0.1 (N) 0.03 (N) 0.05 (N) 0.04 (N)
Popt 4.9 (L) 2.86 (L) 0.69 (M) 3.14 (L)

together. This means that when commit messages and code change data are
used, more defects can be identified in limited testing resources and less effort
is required to identify actual defects.

In Table 8, the ‘input’ column is a result of performing an effect
size test according to input data. JIT4EA shows significant performance
improvements over only commit messages and when only code changes in
indicators without considering code inspection efforts. In addition, when
comparing the performance of JIT4EA (with commit messages and code
changes) and commit-level feature data together, we can be confirmed that
the performance difference is statistically small or negligible. Among the
indicators considering the code inspection effort, the Popt shows that there

320 J. Choi et al.

is a performance difference of more than medium-level when both of them
are used together compared to when only commit messages and only code
change are used. On the other hand, it can be seen that there is little difference
in performance according to input data in indicators excluding Popt.

Second, the effort of context and semantic learning steps on perfor-
mance was confirmed. To this end, we compared the case with and without
Bi-LSTM, and Table 7 shows the experimental results for this. As a result, it
was shown that there was a slight improvement in performance in all projects
when Bi-LSTM was used. In particular, we show that the Balance is improved
in Carla and Apollo projects, and the performance indicators considering the
code inspection effort show that the performance is slightly improved through
context and semantic information learning through all projects.

In Table 7, the ‘Sensitivity factor’ column is the result of analyzing
the effect size according to the context and semantic learning stage, and
indicators that do not consider the code inspection effort show that there
is a performance difference as large-level in all evaluation indicators. This
means that the context and semantic learning steps contribute to performing
defect prediction well. In the performance indicator considering the code
inspection effort, it was confirmed that the context and semantic learning
stage did not affect the code inspection effort excluding Popt. The Popt has
shown that context and semantic learning steps can reduce code inspection
efforts. Therefore, it can be confirmed that the context and semantic learning
steps are important in the proposed JIT4EA.

6 Threat to Validity

6.1 External Validity

We choose the top three most star projects (Donkeycar, Carla, and Apollo)
on Github. The project has attracted the attention of many developers in the
version management system GitHub, and in the case of the Apollo project,
it is the industry’s open-source self-driving software. We plan to collect
more self-driving software projects to verify the performance of the proposed
method.

6.2 Internal Validity

In this work, performance comparisons are performed with state-of-the-art
JIT defect prediction to verify the performance of the proposed method.

Just-in-Time Defect Prediction for Self-driving Software 321

In this process, there is a threat that the performance written in the paper of the
related work may not have been equally reflected in the process of conducting
this study. To mitigate this threat, the related research implementation was
conducted by referring to the code shared with the paper of the related
research, and the process of verifying the related research implementation
code was performed.

7 Conclusion

JIT defect prediction helps developers reduce code inspection and testing
efforts, helping to improve the quality of the software under development.
Many researchers have proposed various JIT defect prediction approaches,
but there are no JIT defect prediction models for self-driving software with
edge computing applications. So we proposed a JIT defect prediction model
for self-driving software.

In this study, self-driving software data were collected and labeled to
perform JIT defect prediction of self-driving software. We then applied our
proposed method, and our method performs defect prediction by embedding
hierarchical structure and semantic information. This is different from the
existing JIT defect prediction method, and it is experimentally confirmed
that the hierarchical structure and semantic information of the code con-
tribute to the improvement of defect prediction performance. The proposed
method outperforms traditional machine learning models and state-of-the-
art approaches, and in particular, it has been able to reduce code inspection
efforts.

We analyzed the difference in performance according to the components
of the proposed method and the input data used to identify factors affecting
the defect prediction performance of the proposed technique in this study.
As a result, the combination of commit messages and code changes reduced
the code inspection effort, and the combination of commit-level features
showed excellent performance in evaluation indicators without consider-
ing the code inspection effort. In addition, sensitivity analysis was performed
to emphasize the importance of the context and semantic learning steps of the
proposed method in this work, and as a result, the context and semantic learn-
ing steps slightly improved the performance of defect prediction. Therefore,
the method proposed is expected to identify defects in self-driving soft-
ware from the development stage and consequently contribute to improving
software quality.

322 J. Choi et al.

References

[1] Watch: “Tesla Model 3 on Autopilot hit by a semi-truck and pushed for
half mile”, HT auto, Updated on 18 Oct 2021, https://auto.hindustanti
mes.com/auto/cars/watch-tesla-model-3-on-autopilot-hit-by-a-semi-t
ruck-and-pushed-for-half-mile-41634546063019.html

[2] L. Jiang, S. Jiang, L. Gong, Y. Dong, Q. Yu, “Which process metrics
are significantly important to change of defects in evolving projects: An
empirical study,” IEEE Access, vol. 8, pp. 93705–93722, 2020.

[3] S. Wang, T. Liu, J. Nam, L. Tan, “Deep semantic feature learning for
software defect prediction,” IEEE Transactions on Software Engineer-
ing, vol. 46, no. 12, pp. 1267–1293, 2018.

[4] L. Šikić, A. S. Kurdija, K. Vladimir, M. Šilić, Graph neural network for
source code defect prediction,” IEEE Access, vol. 10, pp. 10402–10415,
2022.

[5] D. Guo, S. Lu, N. Duan, Y. Wang, M. Zhou, J. Yin, “UniXcoder: Uni-
fied cross-modal pre-training for code representation,” arXiv preprint
arXiv:2203.03850, 2022.

[6] T. Hoang, H. K. Dam, Y. Kamei, D. Lo, N. Ubayashi, “DeepJIT: an
end-to-end deep learning framework for just-in-time defect prediction,”
in 2019 IEEE/ACM 16th International Conference on Mining Software
Repositories (MSR), 2019, pp. 34–45.

[7] T. Hoang, H. J. Kang, D. Lo, J. Lawall, “Cc2vec: Distributed repre-
sentations of code changes,” in Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering, 2020, pp. 518–529.

[8] C. Pornprasit and C. K. Tantithamthavorn, “Jitline: A simpler, better,
faster, finer-grained just-in-time defect prediction,” in 2021 IEEE/ACM
18th International Conference on Mining Software Repositories (MSR),
2021, pp. 369–379.

[9] X. Zhou, D. Han, D. Lo, “Assessing generalizability of CodeBERT,”
in 2021 IEEE International Conference on Software Maintenance and
Evolution (ICSME), 2021, pp. 425–436.

[10] C. Jiwon, S. Manikandan, R. Duksan, B. Jongmoon, “An empirical anal-
ysis on just-in-time defect prediction models for self-driving software
systems,” 2nd International Workshop on Big Data-driven Edge Cloud
Services (BECS), 2022.

[11] G. Rosa, L. Pascarella, S. Scalabrino, R. Tufano, G. Bavota, M.
Lanza, R. Oliveto, “Evaluating SZZ implementations through a

https://auto.hindustantimes.com/auto/cars/watch-tesla-model-3-on-autopilot-hit-by-a-semi-truck-and-pushed-for-half-mile-41634546063019.html
https://auto.hindustantimes.com/auto/cars/watch-tesla-model-3-on-autopilot-hit-by-a-semi-truck-and-pushed-for-half-mile-41634546063019.html
https://auto.hindustantimes.com/auto/cars/watch-tesla-model-3-on-autopilot-hit-by-a-semi-truck-and-pushed-for-half-mile-41634546063019.html

Just-in-Time Defect Prediction for Self-driving Software 323

developer-informed oracle,” in 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE), 2021, pp. 436–447.

[12] L. Šikić, A. S. Kurdija, K. Vladimir, M. Šilić, “Graph neural network for
source code defect prediction,” IEEE Access, vol. 10, pp. 10402–10415,
2022.

[13] Y. Kamei, E. Shihab, B. Adams, A. E. Hassan, A. Mockus, A. Sinha,
N. Ubayashi, “A large-scale empirical study of just-in-time quality
assurance,” IEEE Transactions on Software Engineering, vol. 39, no. 6,
pp. 757–773, 2012.

[14] Z. Yang, D. Yang, C. Dyer, X. He, A. Smola, E. Hovy, “Hierarchi-
cal attention networks for document classification,” in Proceedings of
the 2016 Conference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language Technologies,
pp. 1480–1489, 2016.

[15] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, et al., “Codebert:
A pre-trained model for programming and natural languages,” arXiv
preprint arXiv:2002.08155, 2020.

[16] D. Spadini, M. Aniche, A. Bacchelli, “Pydriller: Python framework
for mining software repositories,” in Proceedings of the 2018 26th
ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, 2018,
pp. 908–911.

[17] Y. Fan, X. Xia, D. A. Da Costa, D. Lo, A. E. Hassan, S. Li, “The impact
of mislabeled changes by SZZ on just-in-time defect prediction,” IEEE
Transactions on Software Engineering, vol. 47, no. 8, pp. 1559–1586,
2019.

[18] D. Ryu and J. Baik, “Effective multi-objective naı̈ve Bayes learning
for cross-project defect prediction,” Applied Soft Computing, vol. 49,
pp. 1062–1077, 2016.

[19] G. Esteves, E. Figueiredo, A. Veloso, M. Viggiato, N. Ziviani, “Under-
standing machine learning software defect predictions,” Automated
Software Engineering, vol. 27, no. 3, pp. 369–392, 2020.

[20] K. E. Bennin, J. W. Keung, A. Monden, “On the relative value of
data resampling approaches for software defect prediction,” Empirical
Software Engineering, vol. 24, no. 2, pp. 602–636, 2019.

[21] G. Esteves, E. Figueiredo, A. Veloso, M. Viggiato, N. Ziviani, “Under-
standing machine learning software defect predictions,” Automated
Software Engineering, vol. 27, no. 3, pp. 369–392, 2020.

324 J. Choi et al.

[22] Y. Kamei, E. Shihab, B. Adams, A. E. Hassan, A. Mockus, A. Sinha,
N. Ubayashi, “A large-scale empirical study of just-in-time quality
assurance,” IEEE Transactions on Software Engineering, vol. 39, no. 6,
pp. 757–773, 2012.

[23] J. Lee, J. Choi, D. Ryu, S. Kim, “Holistic parameter optimization for
software defect prediction,” IEEE Access, vol. 10, pp. 106781–106797,
2022.

Biographies

Jiwon Choi received her B.S. degree and M.S. degree in Software Engi-
neering from Jeonbuk National University in 2020 and 2022 respectively.
Currently, she is a contract research scientist in the school of computing at
Korea Advanced Institute of Science and Technology (KAIST). Her research
areas include software defect prediction, deep learning, edge computing QoS
prediction, and software reliability engineering.

Taeyoung Kim is a Ph.D. student of the Department of Software Engineer-
ing at Jeonbuk National University. His research areas include Blockchain,
software engineering and artificial intelligence.

Just-in-Time Defect Prediction for Self-driving Software 325

Duksan Ryu earned a bachelor’s degree in computer science from Hanyang
University in 1999 and a Master’s dual degree in software engineering from
KAIST and Carnegie Mellon University in 2012. He received his Ph.D.
degree from the school of computing, KAIST in 2016. His research areas
include software analytics based on AI, software defect prediction, mining
software repositories, and software reliability engineering. He is currently
an associate professor in the software engineering department at Jeonbuk
National University.

Jongmoon Baik received his B.S. degree in computer science and statistics
from Chosun University in 1993. He received his M.S. degree and Ph.D.
degree in computer science from University of Southern California in 1996
and 2000 respectively. He worked as a principal research scientist at Software
and Systems Engineering Research Laboratory, Motorola Labs, where he
was responsible for leading many software quality improvement initiatives.
His research activity and interest are focused on software six sigma, software
reliability and safety, and software process improvement. Currently, he is an
associate professor in the school of computing at Korea Advanced Institute
of Science and Technology (KAIST). He is a member of the IEEE.

326 J. Choi et al.

Suntae Kim is a professor of the Department of Software Engineering at
Chonbuk National University. He received his Ph.D. degree in Computer
Science & Engineering from Sogang University in 2010. His research areas
include Blockchain, software engineering and artificial intelligence.

	Introduction
	Related Work
	Proposed Approach
	Data Collection and Labeling
	Just-in-time Defect Prediction for Edge Computing Application

	Experimental Setup
	Research Questions
	Dataset
	Evaluation Indicators
	Effort-aware performance measures
	Effort-unaware performance measures
	Statistical analysis

	Baseline
	Traditional classifiers
	State-of-the-art JIT approaches

	Experimental Setting

	Experimental Results
	RQ1. Can the Proposed Method Perform Better than Other JIT Defect Prediction Models?
	RQ2. What Factors Affect the Performance of the Proposed Method?

	Threat to Validity
	External Validity
	Internal Validity

	Conclusion

