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Abstract

The main goal of the Web of Things (WoT) is to improve people’s quality
of life by automating tasks and simplifying human–device interactions with
ubiquitous systems. However, the management of devices still has to be
done manually, which wastes a lot of time as their number increases. Thus,
the expected benefits are not achieved. This management overhead is even
greater when users change environments, new devices are added, or exist-
ing devices are modified. All this requires time-consuming customization
of configurations and interactions. To facilitate this, learning systems help
manage automation tasks. However, these require extensive learning times
to achieve customization and cannot manage multiple environments so new
approaches are needed to manage multiple environments dynamically. This
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work focuses on knowledge distillation and teacher–student relationships to
transfer knowledge between IoT environments in a model-agnostic manner,
allowing users to share their knowledge each time they encounter a new
environment. This work allowed us to eliminate training times and achieve
an average accuracy of 94.70%, making model automation effective from the
acquisition in proactive WoT multi-environments.

Keywords: Web of Things, knowledge distillation, mobile devices,
context-aware.

1 Introduction

According to the State of IoT 2021 report [27], there are more than 12
billion connected Internet of Things (IoT) devices nowadays. Equipped with
sensors, computing, and communication capabilities, these devices can be
found everywhere working together to make our daily lives easier. Currently,
controlling IoT devices is a simple task, as they are designed to execute
simple and specific commands. However, in the near future, and due to
the growth of this field, these devices will be found in homes, workplaces,
vehicles, and so on, until everything becomes an IoT environment. People
will move through these environments, interacting with their devices while
changing their context, requirements, and behavior. This scenario demands
IoT environments to proactively react to users’ needs anytime, anywhere.
Managing so many devices to make them personalized to users will become
more complicated and time-consuming than ever, especially if the user
needs to manually interact with every device whenever the context or their
needs change, or whenever they arrive in an environment [30]. The situation
becomes more complicated when users change environments, as they have no
previous experience and customization cannot yet be established. Therefore,
these additional efforts will allow users to perceive the benefits of IoT as
insufficient, as the workload would not be reduced as much as expected.

There is a need for approaches that learn from users’ behavior and the
contextual information around them, automating routines and thus avoiding
time wasted on trivial manual actions which follow predictable patterns.
Systems that provide greater control over other devices already exist on the
market, such as the Amazon Echo, Google Nest, or Apple HomePod voice
assistants. However, these assistants do not support automated learning and
serve as yet another programmable actuator [4] (e.g. voice assistants can be
configured to automate a task, but cannot learn and assimilate changes by
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themselves). Some learning systems take advantage of the large amounts of
data generated by IoT devices to learn behaviors and provide the desired
automation. However, they often require long training times or periods of
adaptation and are focused on a single environment [12, 23]. For example,
learning systems designed for a particular smart-home or room are not usable
“as is”, in any other scenario. Given this downside, out-of-the-box automation
and personalization approaches are needed, allowing devices to be used
efficiently from the early stages, avoiding manual actions or configurations.
At the same time, the knowledge learned must be reusable, providing the
flexibility to face new situations and to always experience personalization,
even if the environment, conditions, or preferences change.

This paper presents an approach to sharing knowledge among the partic-
ipants of a federation. Thanks to this federation, the participants are able of
leveraging individually generated knowledge to generate collective benefit.
Also, it establishes as the main requirement that knowledge acquired by
learning models can be reused by other users. Knowledge sharing focuses
on enabling participants to leverage the knowledge acquired by other partic-
ipants (i.e. past experiences from similar users in similar environments) and
use them in their particular environment, therefore avoiding the need to learn
everything from scratch. Knowledge distillation [10] techniques are used to
extract specific portions of knowledge from complex models and transfer it to
new, simpler models. This proposal allows models to effectively share their
knowledge, achieving an overall accuracy of 94.70% with brief distillation
while often improving the source model performance. To this extent, users
can refine their knowledge and share it with others in the context of proactive
IoT multi-environments. Thus, reducing the need for interaction with IoT
devices.

The paper is structured as follows. Section 2 presents the background
and motivations of this work. Section 3 presents our proposal to improve
knowledge exchanges between IoT multi-environment models, and Section 4
presents a common scenario in IoT, the set-up and results. Section 6 presents
related works in the field. Finally, discussion and concluding remarks are
given in Section 8.

2 Motivation

Users demand automation and proactivity from IoT environments to fulfill
their needs and preferences while models try to avoid the most trivial manual
actions by knowing their usual behavioral patterns. However, users do not
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stay in one single place but move through different environments. The visited
environments must be able to react to users, based on their preferences and
actions performed in the past. Static nodes are not suitable for this task due to
their lack of mobility. Therefore, mobile edge nodes are proposed as learning
nodes. They serve as companion devices since they know their users better
than anyone, can orchestrate the behavior of different environments as the
main points of interaction, and their computing capabilities fit the automated
learning necessities, reducing the dependency on the cloud. Related to this
issue, different authors have proposed approaches like mobile-centric models
to provide users greater control over their data [8], or an architecture to
improve the integration of people within the IoT ecosystem [19]. To this end,
mobile devices are proposed as mobile edge nodes to rule over the generated
data. Their main role is to act as users’ representatives and to be the main
learning and decision-making nodes, interacting with IoT devices on their
behalf.

Since the main goal is personalization, dealing with multiple IoT devices,
the way users operate them, and the conditions around them, give shape to
an IoT environment. Learning models need to learn from the user’s previous
actions in other environments. The use of a common point, such as a mobile
device, simplifies this task. However, the first problem to overcome is the
lack of data. New users and new environments (i.e. mostly those consisting
of devices the user has not previously used) experience a lack of previous data
and models can not be trained. As a consequence, users need to generate data
based on devices’ usage, causing models to be inactive in their early stages
and penalizing users’ experience due to these adaptation periods [36].

To overcome this limitation, the knowledge of existing users needs to be
transferred to other users and leveraged to avoid the initial training phases.
Existing models can be exploited in situations where users do not have
previous data, or when facing an environment that is different from their
usual experience. However, the second problem arises when trying to select
specific portions of knowledge. Performing an effective knowledge transfer
in situations with ever-changing conditions like IoT environments and ever-
evolving models is a challenging task due to the models’ heterogeneity.
For example, suppose a model that manages four different environments
with many devices each. Now, if a user wants the functionality of only
one environment, relationships between the subset of input features and the
subset of output labels of interest cannot be decoupled from the rest of the
network. Due to the nature of neural networks (NNs), layers can be deleted
or added [11] and their neuron weights can be modified or transferred [18,25],
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but extracting specific end-to-end relationships is still a challenge (i.e. it
cannot be known which specific set of neurons among the whole network
produces a specific output).

To solve both issues, the concept of knowledge reusability needs to be
extended to every mobile device. By reusing the knowledge assimilated
by existent models, users will take advantage of the actions performed by
previous users in situations where data is non-existent or insufficient.

If the behaviors of similar users who have previously visited a similar
environment are selected, a model capable of managing new environments
can be generated from the properties of the environment. The knowledge
distillation [6] is the main driver of this approach. It allows distillation,
extraction, and sharing of knowledge (i.e. specific fragments). In exchange
for a small training phase, a teacher model trains a student model. This
process allows the extraction of end-to-end relationships by looking at model
outcomes from a model-agnostic perspective while maintaining the original
performance. The model-agnostic perspective refers to the fact that the inter-
nal logic of the model does not need to be accessed and is based only on
the input instances and output results [35]. Complementary information from
other models is useful to generate similar and preliminary environments for
the user. Thus, environments based on similar characteristics can be generated
and can be useful for decision-making in the user’s real environments, until,
over time, the user’s model acquires information about his or her habitual
behavior. Finally, the student model acquires the processed knowledge and
will mimic its teacher. Although this technique has promising potential, it
is usually used for model reduction, which converts a complex model into
a simpler, faster, and cheaper one, that does the same tasks. However, this
process can be modified to make students mimic only specific tasks (i.e. each
specific user needs).

Recovering the previous example, this approach allows newcomers to ask
for a specific part of knowledge from a similar user. In this way, users acquire
a trained and ready-to-use model. Even if some further refinement is needed
to reach full personalization, the model will be ready from the early stages
without heavy training phases while providing acceptable performance. This
perspective avoids traditional learning necessities where time was needed to
generate data to train on later, especially for models that need to achieve
personalization.

This paper places knowledge distillation in the IoT context and extends its
traditional use to allow the selection of knowledge fragments from complex
models and create new, smaller and task-specific models. First, knowledge
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distillation techniques are applied to reduce the complexity of a larger and
intensively trained model and distill it into a simpler one. Second, available
data and the training algorithm are modified, so input features and output
labels are reduced to fit the new model and user needs. This avoids providing
an overly complex model to a user who is only interested in some specific
functionalities, such as the behavior of a single environment or a subset of
devices, and avoids long waits for users when there is a deficit of data.

3 Knowledge Distillation in WoT Environments

This paper applies knowledge distillation (KD) to complex and heavily
trained models to extract specific fragments of knowledge and transfer them
to new and simpler models which fit other users’ needs. The goal is to provide
users with a personalized and ready-to-use model whenever they discover
a new environment. The main components are as follows. (1) A complex,
trained model that takes the role of the teacher. (2) A reduced, simpler model
that takes the role of the student. (3) A distiller that implements the training
algorithm and manages the distillation from teacher to student. Finally, by
complexity we mean both the configuration and structure of the internal layers
of an NN, as well as the number of input features and output labels.

Although distillation involves much less training compared to training a
model from scratch, a small amount of data is still required. However, this
data can be provided by both the teacher (e.g. a small history of recently
performed actions) or the student (e.g. generated data from known prefer-
ences or usage data from the actual environment). They are needed to identify
the internal relationships from the teacher inputs to the outputs. For privacy
reasons, the distiller process takes place on the student’s mobile device using
its data, avoiding the risk of data exposure. As the distiller needs both models,
the teacher model is sent to the student (either compiled or as a list of neuron
weights) to complete the process. Once the creation of the student model
is done, the teacher model is discarded from the student’s device. This also
implies the student carries the distiller computation, as it will be the main
beneficiary at the end of the process.

The process starts with a dataset of information (i.e. tuples of device
usage). These tuples collect the information associated with the environments
and the states associated with them. To generate heterogeneous environments,
different elements have been considered such as the technology used, loca-
tion, devices of different types, and time. The generation of environments
has been performed for a different number of users. For each user, N
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Table 1 Characteristics considered for the environments in the datasets
Characteristic Variable Possibilities

Communication technology
BLE

AA1, ALT1, ALT2
WIFI

Location
Car

E1, E2, E3Home
Home parents

Smart devices

Plug
TV1, TV2, TV3, 18C, 20C,
70W, Antena 3, FDF,
Telecinco, ON, OFF, Pop,
Rock

Air conditioner
Speaker
TV
Bulb

Time

01:00

0, 1
02:00
. . .
23:00
00:00

environments are generated where each of them has different states for the
elements considered. In this way, the simulation is enriched with heteroge-
neous environments to consider a wide range of possibilities when training
the model and to suggest possibilities to new users. Table 1 details the
elements examined in the datasets, which are specified as follows:

• Characteristic: aspects considered in the environment. The technology
used, the location where the user is located, the devices that can be used,
and the time at which they are used are considered.

• Variable: each element can take a different value. For example, WIFI
for the technology, Home for the location, Bulb for the smart device, and
17:00 for the time when the environment is stored.

• Possibilities: each variable can be associated with different devices and
take different values. For example, different WIFI points such as ALT1
and ALT2, the environment related to Home, E1, or setting the Bulb to
ON.

After the pre-processing steps, two different datasets are obtained as
input data (Figure 1]. Although representing the same information, they are
processed differently to feed the two models since the feature space and
the label space from both models are different (e.g. if a teacher manages
three environments but the student is interested in one, as Figure 2 shows,
the student’s dataset will not have any data related to other environments or
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Table 2 Environments example for a user
E
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30 0 1 0 0 1 0 0 0 0 1 0 0.0 . . . 0.000000 0.0
0 1 0 0 0 0 1 3 0 0 0 0 0.0 . . . 0.000000 0.0
22 1 0 0 1 0 0 0 1 0 1 1 0.0 . . . 0.651613 0.0
31 1 0 0 0 0 1 1 1 0 0 1 0.0 . . . 0.000000 0.0
18 1 0 1 0 0 0 0 1 1 0 0 0.0 . . . 0.000000 0.0
28 1 0 0 1 0 0 0 1 0 1 1 0.0 . . . 0.761062 0.0
. . .

Input
Data

Xt

Input
Data
Xt,Yt

Xs

Hard label Ys (Ground truth)

Input
Data
Xs,Ys

Layer 1 ... M
Config Cs

Layer 1 ... N
Config Ct

SoftMax(T=t)

SoftMax(T=t)

SoftMax(T=1)

soft labels

soft
predictions

hard
predictions

Loss Fn

Loss Fn

Teacher Model  (Pretrained)

Student Model

distilation
loss

x α

+

student
loss

Total
loss

x β

Figure 1 Distiller workflow. Input data is processed into two datasets to fit the networks’
input and output. Note that Yt is never used. Configurations Ct and Cs can be different to
make the distiller model agnostic and allow model heterogeneity.

devices, modifying the feature space and the target output labels). For each
user, a dataset is obtained from the aspects examined above. An example is
given in Table 2. This example contains the different environments generated
(Env), as well as the factors that have been produced for these environments
(BLE, WIFI, Car, 13:00, Rock,. . . ). These factors are identified as 1 if they
have occurred, and as 0 if they have not occurred yet. In this way, we can
identify how the different environments are generated for all users when
training the model. More details about inputs are given in Section 4.3.

The distiller coordinates the training. It performs the operations with
the different functions and optimizers to update the weights of the neurons
appropriately. The following process is carried out in each training step. First,
the input data Xt is used to perform a forward pass on the trained teacher to
get the soft labels from a SoftMax function and temperature (T ). The purpose
of the temperature parameter is to soften the logits and smooth the probability
distribution to reveal the internal relationships learned from the teacher. The
same process is performed with the input data Xs on the student to get soft



Sharing Knowledge to Promote Proactive Multi-environments in the WoT 335

predictions. To get the distillation loss (DL), Kullback–Leibler divergence
has been applied to minimize both teacher and student probabilistic outputs,
Equation (1).

A parallel process takes place to calculate the student loss (SL), being the
difference between student predictions and ground-truth using the softmax
function where T = 1 to get the original output, and the categorical cross
entropy (CCE) loss function, Equation (2), as it is a classification problem.
Finally, the total loss, Equation (3), is obtained by weighting the two different
losses (SL, DL) with an α value that ranges between 0 and 1. This total loss
is the one used to get the gradients and update the trainable weights of the
student NN with the optimizer.

DL = KLDivergence(Softmax (pred t/T ),Softmax (preds/T )) (1)

SL = CCE (Ys, preds) (2)

TotalLoss = α ∗ SL+ (1− α) ∗DL (3)

In our study, the most common situation involves models with different
feature spaces and label spaces. Thus, some modifications need to be made to
be able to operate with the different probabilistic outputs. The main restriction
is operations that involve logits from different models, like DL, Equation (1).
To make these operations viable, logits that are of no interest to the student
need to be discarded to fit teacher and student shapes (e.g. if a student is
interested in a specific device like smart TV, data from other devices is
meaningless). This way, specific labels can be selected and transferred from
one model to another.

In short, this process allows cumbersome and heavily trained models to
share a specific part of their knowledge with third parties. It allows knowledge
reusability and avoids intense training periods for newcomers and users when
visiting new IoT environments since they acquire immediate and adequate
device personalization from the early stages of the model.

4 Validation

The validation of this work is structured as follows. Section 4.1 introduces
the studied scenario and the source of our data. Section 4.2 describes the
implementation. Section 4.3 deals with the algorithm’s technical details and
model configurations. Finally, Section 4.4 presents our results and analyzes
the proposal performance.
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4.1 Scenario

A case study has been proposed with situations similar to the one illustrated in
Figure 2: Suppose a user (U1) that has many IoT devices (e.g. light bulbs, air
conditioners, speakers, smart TV) in different IoT environments (e.g. home,
office, car). This user can automate them with a learning model installed on
his mobile device. Somewhere, another user (U2) enters an environment with
the same settings that one specific environment from U1 while having similar
preferences. Instead of training from scratch, U2 asks for U1’s model, as it is
already trained. As U2 is interested in just one environment, the mobile device
extracts the knowledge of interest to then automate the newly discovered
environment.

To measure the performance of our approach many datasets are needed.
To do so, semi-synthetic data has been prepared following a specific process.
First, real data was obtained from a set of real users who regularly interact
with IoT devices. Notable differences between them were work and leisure
schedules (hours and weekdays), device type preferences, usage, environment
changes, and occasional patterns. For 3 weeks, they were provided with an
Android app to specify the device, performed action, and environment. This
first phase with real data gave us an accurate overview of how users interact
with IoT devices and how their daily circumstances affect their behavior in
environments. However, the obtained data were not large enough to train a
sufficient amount of learning models. Therefore, this real data was extended
to get substantial data for training and testing purposes. TheONE Simula-
tor [13] has been used to simulate human movement patterns. The relevant
patterns for this work are those simulating the movements of a person in his
day-to-day life through different places. Some examples are daily home-to-
work trips and vice versa and occasional trips for leisure, visits, or shopping
purposes. By modifying its core, this tool allowed us to simulate interactions

Distillation

Teacher

En
v 

1
En

v 
2

En
v 

3 Single 
behaviour

Full 
environment

Student

Select & Extract 
Knowledge

Figure 2 Situation example where a teacher manages multiple environments (monolithic
model) and a student that decides to learn a full environment or just the behavior of a single
device.
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with IoT devices in different environments. For example, human-device
interactions like turning on lights in the morning or at night, setting up alarms,
setting up the desired temperature, and choosing specific channels and radio
stations on TV and speakers. For the sake of completion, 165 user datasets
have been generated, being No-IID and unbalanced data, up to a maximum
of 1.500 tuples each.

4.2 Implementation

Next, the implementation performed is described for the use case. Firstly, the
tasks performed are indicated:

1. Encapsulate the recommender in a module: The recommender must
be located on some kind of cloud server because it needs to have
information from all the participants in the federation and act as the
main database. The main task of the recommender is to receive a search
request in the form of an environment definition, and use it as a basis
to generate a list of environments similar to that one, with the top one
being the environment that most resembles it. Subsequently, from that
list, the selected environment will become a teacher, which will train the
environment we have used as input and which will be the student.

2. Dataset selector: This is used to locate the user to which the environ-
ment (or environments) obtained from the distiller belongs. Knowing the
definition of the environment, the user to which it belongs is searched.
Then, the action dataset of this user is searched. This dataset of actions
will then be used to train the teacher.

3. Teacher trainer: This takes the teacher’s dataset and trains the teacher’s
model. In a real situation and for a new user of the federation, a veteran
user is asked to share his model, because this model is already trained
and works correctly.

4. Encapsulate the distiller in a module: The distiller is intended to be
placed on the cell phones of all users (especially new ones) and to serve
as a service that takes a teacher model (copy of the original), its dataset
(copy of the original) and the environment to be learned, and extracts the
knowledge to obtain a trained student model. Distillation is in charge
of training a student model using valid answers (also called “ground
truth”), the answers that the teacher model would give for the same
situations. A fundamental aspect is that this distillation only takes into
account the environment that the student wants to learn, ignoring all
other environments that the teacher may know. This means that, from
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the teacher’s dataset, all the rows that do not belong to the environment
to be taught are eliminated, as well as all the columns that have nothing
to do with the environment to be taught. For example, if the student does
not have any television in the environment he wants to learn, all columns
containing televisions or actions of televisions are ignored.

Secondly, we show the procedure followed. Before starting to distill, it is
necessary to clarify that to train the models we need a dataset (input data).
Since it will be the teacher who teaches the student, the data to be used are
those of the teacher. Logically, this should be the case since the teacher is the
only one who has experience with the environment that the student wants to
learn. The idea is an action history dataset or something similar. This input
data dataset, apart from the curing, cleaning, and pre-processing that is done
with any dataset, is used to generate two datasets:

• First, the dataset for the teacher. In the distillation, the teacher will only
be asked questions (inference) about the environment the student wants
to learn about; therefore, all rows of actions that are not within that
environment are removed. This provides us with an input data dataset
Xt, Yt, where:

– Xt: a set of characteristics of the teacher dataset.
– Yt: a set of labels of the teacher dataset.

• Second, the dataset for the student. In the distillation, the student must
learn the environment he has chosen; for this, its training dataset must
contain all the rows of actions of the environment to be learned, as well
as all the columns of features needed for that environment (they will be,
at most, the same as the teacher’s). This leaves us with an input data
dataset Xs, Ys, where:

– Xs: a set of characteristics of the student dataset.
– Ys: a set of labels of the student dataset.

Next, each dataset is provided to its respective model:

• Teacher: It will have N layers and a configuration Ct. For each tuple, it
infers its prediction (soft labels: probability, values from 0 to 1).

• Student: Will have M layers and Cs configuration, both can be the
same or different from the teacher’s since the distillate can handle other
models. For each tuple, it trains his model, obtaining:

– Soft predictions: predictions with probability values from 0 to 1
according to the student.

– Hard predictions: predictions with boolean values 0 or 1.
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With the predictions already made, the loss function is run to determine
how much the student model still has to learn (or how far it is from the ideal
situation). This calculation is done by weighting two different losses:

1. Difference between the teacher’s prediction (soft labels) and the stu-
dent’s prediction, giving rise to lose in the distillation process (distilla-
tion loss).

2. Difference between the student’s prediction (hard predictions) and the
absolute truth Ys (ground truth) that appeared as labels in the original
dataset. This results in student loss.

The total loss is a weighting of the two previous losses. This loss will be
the one used internally by the model at each iteration to make the necessary
corrections to the neuron weights. In addition, we should note that the
distillation loss represents the distance between the student’s and the teacher’s
model. Also, the student loss represents the distance between the student
model and the actual predictions found in the original dataset. Therefore, the
main idea is to keep the weight that favors learning through the teacher high,
to take advantage of the knowledge already acquired.

And thirdly, part of the implementation conducted to perform the tasks
specified through the procedure described above is specified. The first step is
to load the data. For this purpose, the previously pre-processed data and the
different environments that can be produced (Listing 1) are loaded:

1 [ . . . ]
2 # Loading d a t a
3 d e f s p r e = pd . r e a d c s v ( ’ d a t a / d e f i n i t i o n s d a t a s e t / p r e p r o c e s s e d . csv ’ )
4 d e f s r a w = pd . r e a d c s v ( ’ d a t a / d e f i n i t i o n s d a t a s e t /

e n v i r o n m e n t d e f i n i t i o n s . c sv ’ )
5 [ . . . ]

Listing 1 Data loading.

The next step is the creation of the recommender and its training to pro-
vide the model that most interests the users according to their characteristics
(Listing 2):

1 [ . . . ]
2 # X = O r i g i n a l d a t a
3 r e c x v a l s = d e f s p r e . copy ( )
4

5 # Y = T up le s i n d e x
6 r e c d a t a = d e f s p r e . r e s e t i n d e x ( )
7 r e c y v a l s = r e c d a t a [ ’ i n d e x ’ ] . copy ( )
8

9 # T r a i n / T e s t s p l i t
10 r e c x t r a i n , r e c x t e s t , r e c y t r a i n , r e c y t e s t = t r a i n t e s t s p l i t (

r e c x v a l s , r e c y v a l s , t e s t s i z e = 0 . 2 5 , r a n d o m s t a t e =42)
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11

12 # C r e a t i n g and t r a i n i n g t h e recommender
13 r e c m o d e l = N e a r e s t N e i g h b o r s ( n n e i g h b o r s =2 , a l g o r i t h m = ’ b a l l t r e e ’ ) .

f i t ( r e c x t r a i n )
14 [ . . . ]

Listing 2 Recommender training.

Next, one of the tuples belonging to the user is selected in order to find
the best possible trainer, and in this way, the training is simulated for a new
environment (Listing 3):

1 [ . . . ]
2 # S e l e c t i n g d a t a from d a t a s e t
3 new envs = r e c x t e s t [ s e l e c c i o n −1: s e l e c c i o n ]
4

5 # R e t r i e v i n g u s e r e n v i r o n m e n t
6 u s e r i d , e n v i d , env name , u s e r d a t a s e t = r e t r i e v e d e f i n i t i o n o r i g i n (

new envs , d e f s r a w )
7 [ . . . ]
8

9 # Se a r ch f o r a t e a c h e r
10 k=5 # Ne ighbor s
11 d i s t a n c e s , i n d i c e s = r e c m o d e l . k n e i g h b o r s ( new envs , k ,

r e t u r n d i s t a n c e = True )
12

13 # Get DF i n d e x
14 s i m i l a r e n v s i n d e x e s = r e c x t r a i n . i n d e x [ i n d i c e s [ 0 ] ]
15

16 # Get t u p l e s h av in g t h a t i n d e x i n t h e d f
17 s i m i l a r e n v s = r e c x t r a i n [ r e c x t r a i n . i n d e x . i s i n ( r e c x t r a i n . i n d e x [

i n d i c e s [ 0 ] ] ) ]
18 [ . . . ]

Listing 3 Selecting user environment.

In this step the models for the teacher and the student are created
(Listing 4):

1 [ . . . ]
2 # C r e a t e t h e t e a c h e r
3 # Conf ig 4 (3 c a p a s + 108 Nodos + BN + DP)
4 t e a c h e r = S e q u e n t i a l ( )
5 t e a c h e r . add ( Dense ( 5 4 , i n p u t s h a p e =( n f e a t u r e s , ) ) )
6 t e a c h e r . add ( A c t i v a t i o n ( ” r e l u ” ) )
7 t e a c h e r . add ( B a t c h N o r m a l i z a t i o n ( ) )
8 t e a c h e r . add ( Dropout ( 0 . 2 5 ) )
9

10 [ . . . ]
11

12 # I n s t a n t i a t e an o p t i m i z e r and l o s s f u n c t i o n
13 t e a c h e r o p t i m i z e r = k e r a s . o p t i m i z e r s . Adam( l e a r n i n g r a t e = 0 . 0 1 )
14 t e a c h e r l o s s f n = k e r a s . l o s s e s . C a t e g o r i c a l C r o s s e n t r o p y ( f r o m l o g i t s =

True )
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15

16 # C r e a t e t h e s t u d e n t
17 s t u d e n t = S e q u e n t i a l ( )
18 s t u d e n t . add ( Dense ( 5 4 , i n p u t s h a p e =( n f e a t u r e s , ) ) )
19 [ . . . ]

Listing 4 Defining the models for the teacher and the student.

Once the models are defined, they can be prepared for knowledge dis-
tillation. This process is shown in Listing 5. Note that, for this experiment,
after several tests, the hyperparameters alpha = 0.1, temperature = 3, and 10
epochs have been selected to train the network. Part of the training procedure
is also shown.

1 [ . . . ]
2 # D i s t i l l a t i o n Hyper−p a r a m e t e r s
3 a l p h a = 0 . 1
4 t e m p e r a t u r e = 3
5 epochs = 10
6

7 # T r a i n loop
8 f o r epoch i n r a n g e ( epochs ) :
9 p r i n t ( ”\ n S t a r t o f epoch %d ” % ( epoch , ) )

10

11 # I t e r a t e ove r t h e b a t c h e s o f bo th d a t a s e t s a t t h e same t ime
12 f o r s t e p , ( ( x b a t c h t r a i n t , y b a t c h t r a i n t ) , ( x b a t c h t r a i n s ,

y b a t c h t r a i n s ) ) i n enumera t e ( z i p ( s t u d e n t t r a i n d a t a s e t ,
s t u d e n t t r a i n d a t a s e t ) ) :

13

14 # Forward p a s s o f t e a c h e r
15 t e a c h e r p r e d i c t i o n s = t e a c h e r ( x b a t c h t r a i n t , t r a i n i n g = F a l s e

)
16

17 wi th t f . G r a d i e n t T a p e ( ) a s t a p e :
18 # Forward p a s s o f s t u d e n t
19 s t u d e n t p r e d i c t i o n s = s t u d e n t ( x b a t c h t r a i n s , t r a i n i n g =

True )
20

21 # Compute l o s s e s
22 s t u d e n t l o s s = s t u d e n t . l o s s ( y b a t c h t r a i n s ,

s t u d e n t p r e d i c t i o n s )
23 d i s t i l l a t i o n l o s s = d i s t i l l a t i o n l o s s f n (
24 t f . nn . so f tmax ( t e a c h e r p r e d i c t i o n s / t e m p e r a t u r e , a x i s

=1) ,
25 t f . nn . so f tmax ( s t u d e n t p r e d i c t i o n s / t e m p e r a t u r e , a x i s

=1) ,
26 )
27 l o s s = a l p h a * s t u d e n t l o s s + (1 − a l p h a ) *

d i s t i l l a t i o n l o s s
28 # Compute g r a d i e n t s
29 t r a i n a b l e v a r s = s t u d e n t . t r a i n a b l e v a r i a b l e s
30 g r a d i e n t s = t a p e . g r a d i e n t ( l o s s , t r a i n a b l e v a r s )
31
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32 # Update w e i g h t s
33 s t u d e n t . o p t i m i z e r . a p p l y g r a d i e n t s ( z i p ( g r a d i e n t s ,

t r a i n a b l e v a r s ) )
34 [ . . ]

Listing 5 Training the model to select the appropriated knowledge.

From this we obtain the loss produced and the model reduction achieved.
In addition, it has also been tested to train the trainee from scratch. This is
shown in Listing 6.

1 [ . . . ]
2 s t u d e n t s c r a t c h . compi l e (
3 o p t i m i z e r = k e r a s . o p t i m i z e r s . Adam( l e a r n i n g r a t e = 0 . 0 1 ) ,
4 l o s s = k e r a s . l o s s e s . C a t e g o r i c a l C r o s s e n t r o p y ( f r o m l o g i t s = True ) ,
5 m e t r i c s =[ k e r a s . m e t r i c s . C a t e g o r i c a l A c c u r a c y ( ) ] ,
6 )
7

8 # T r a i n and e v a l u a t e s t u d e n t −s c r a t c h on d a t a .
9 h i s t s t u d e n t s c r a t c h = s t u d e n t s c r a t c h . f i t ( s t u d e n t x t r a i n ,

s t u d e n t y t r a i n , epochs = epochs )
10 [ . . . ]

Listing 6 Training the student from scratch.

Using the same hyperparameters, the accuracy of the student model varies
from 56.76% from epoch 2 to 97.84% at epoch 10. This is a relevant accuracy
gain for the model used.

Finally, in the last step, we evaluate the accuracy of the generated models
(Listing 7).

1 [ . . . ]
2 # Teache r a c c u r a c y
3 e v a t = t e a c h e r . e v a l u a t e ( t e a c h e r x t e s t , t e a c h e r y t e s t )
4

5 # D i s t i l l e d s t u d e n t a c c u r a c y
6 e v a s = s t u d e n t . e v a l u a t e ( s t u d e n t x t e s t , s t u d e n t y t e s t )
7

8 # S t u d e n t from s c r a t c h a c c u r a c y
9 e v a s s = s t u d e n t s c r a t c h . e v a l u a t e ( s t u d e n t x t e s t , s t u d e n t y t e s t )

10 [ . . . ]

Listing 7 Accuracy obtained after the process.

The results obtained are shown in Table 3. It is observed how the teacher
model obtains an accuracy of 96.20%, the distilled student 94.74%, and
the student from scratch 84.21%. Thus, a gain of 10.53% is obtained when
distilled knowledge is used.
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Table 3 Final results after training and select the teacher and the student
Loss Accuracy Accuracy (%)

Teacher 0.0919 0.9620 96.20%
Student distilled 0.5275 0.9474 94.74%
Student from scratch 0.6457 0.8421 84.21%

4.3 Set-up

After exhaustive data processing, each dataset has a maximum of 64 columns,
generated from the source data by One-Hot Encoding, 54 of which will
be taken as input features for NNs. Since we are dealing with a classi-
fication problem, the output data are 10 at the most. To set up students’
datasets (Xs, Ys), the unused columns and tuples are removed and only the
environment of interest for the student remains in the dataset. Teachers’
configurations vary from just a couple of layers to cumbersome models
according to the user needs and their development over time.

For starters (i.e. students), in a previous work [24] we identified that
the best performance relies on simple models with 2 hidden layers with
54 nodes each and an ADAM optimizer, which are capable of managing
single environments of any kind. In summary, to find the best configuration
for our models, different tests were performed on a high heterogeneity
federation. This heterogeneity is generated thanks to the multiple elements
that are considered when simulating the environments and explained above,
such as the number and type of devices, number of users, spatio-temporal
properties, etc.

The tests consisted of an exhaustive comparison of different NN defini-
tions, changing the depth, complexity, number of layers, nodes, and use of
techniques like Batch Normalization or Dropout. The four most relevant con-
figurations were selected and studied in detail before choosing the best one.
Additionally, to improve the models’ quality, a custom filter was designed for
teachers, limiting their ability to teach on low-performance stages. Finally,
after the distillation is complete, the students were tested with new data
unrelated to teachers and generated in the users’ particular environment to
check the performance of the reused knowledge under the conditions of new
users. For completeness, 50 teachers were selected, which taught one of their
environments to 50 students in a 1:1 ratio.
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4.4 Results

The teacher models have been evaluated for their ability to transfer knowl-
edge to other models. First, models that were still in the early stages of their
development (i.e. less than 85% accuracy on their environments) were dis-
carded by the quality filter and are therefore not eligible for teaching. Second,
the models selected as teachers achieved an average accuracy of 94.04%, and
therefore well placed to share their knowledge effectively. Figure 3 shows
the fast progress of models when teaching. Also, it is important to note that
brief training is needed to achieve good learning. Although it is represented
in steps, these data have been obtained in roughly five epochs.

New students, taught from scratch by their respective teachers, obtained
an average accuracy of 94.70%. This demonstrates that, overall, all of the
resulting models were able not only to maintain the accuracy of their teachers
but also to improve it, as seen in Figure 4. However, since both environments
and users are heterogeneous, there are models that improve the accuracy of
their teachers by more than 6%, while some cannot keep up with the teacher
and their accuracy worsens by a similar amount in the worst case. Although
this last case has rarely occurred in the study, the worst student had a perfor-
mance of 88%, always comfortably meeting the minimum requirements of
the established quality filter. It is an expected outcome, as not every user will
ever perfectly match the needs and preferences of another user. At that point,
the brief personalization period to fine-tune the model in its entirety would
start from this solid base.

The results obtained are quite promising from the point of view of the
training time required and the accuracy achieved by the model. Given these

Figure 3 Example of total loss obtained from a random subset of students. The average loss
of all models is shown by the bold red line. For readability, each step represents five actual
train steps in the algorithm (i.e. 200 steps in total).
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Figure 4 Teachers and students final accuracy (%) comparison. White boxes represent 50%
of the models. The inner line is the central value (median).

results, there are several aspects to be considered when using KD. In the
following section, we discuss the main concerns to be considered when using
KD in multi-device WoT environments.

5 Knowledge Distillation in Practice

Knowledge distillation provides many benefits. However, there are quite a
few concerns surrounding the use of this technology. In this section, we
review these concerns and also analyze some work similar to this proposal.

In [32], the authors conducted an extensive review on knowledge distil-
lation and student-teacher learning, where different aspects to be taken into
account are evaluated. Some of these concerns are:

• Size of the models: Logic invites us to think that as the teacher’s model
grows, it will be more robust and will have more information to provide
to the student. According to the works analyzed in [32], this is not always
true, as there are times when the student cannot follow the teacher in the
learning model, or even if the student is able to follow the teacher, the
student can not absorb useful knowledge.

• Teacher training: An over-trained teacher will make it difficult for the
learner to learn. In this case, it is also advisable that training can be done
by pairs of students to encourage cooperation and enrich their models
while relieving the teacher of this responsibility.

• Multiple teachers: The student can combine learning from multiple
teachers to establish his own version of knowledge. This method collects
individual predictions and aggregates them providing a more robust
method for the learner.
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Table 4 Comparatison with other works

Reference

Reduction Improvement
Utilized Teacher Student in Accuracy in Accuracy

Data Accuracy Accuracy Compared Compared to
to Teacher to Baseline

Li et al. (2019) [15] UIUC-Sports 94.20% 74.60% 7.43% 16.89%
Lopes, Fenu and
Starner (2017) [16] MNIST 95.70% 91.24% 4.80%

5.70%
(decrease)

Gao et al. (2018) [5] CIFAR-100 90.36% 91.09% 2.89% 7.81%

This work
Gathered

from users
for this work

94.04% 94.70% 6.04% 0.66%

• Data-free distillation: One of the concerns picked up in our proposal is
the need to provide an initial model for the learner. This is also consid-
ered in [32] when obtaining relevant learning models. Although there are
works that advocate getting preliminary results without a consistent data
source, they tend to be models that are based on simple classification and
environments, so data can be considered necessary to generate a first
approximation of the learner model.

• The network: importance of students and teachers being within the
same network to perform knowledge distillation has also been demon-
strated. The transfer of information between different networks has
hindered this process, which in some cases has not been directly possible
to achieve.

Regarding the technical aspect, in [2] a study on KD techniques applied to
deep learning models is carried out. Among the most relevant techniques, we
find the use of weak labels and the use of feature maps with or without label-
ing. Both possibilities can be carried out both offline and online, depending
on the requirements of the problem. Taking as a reference the works analyzed
in [2], we can make a comparison between teacher and student learning
models. Table 4 shows this comparison, where the works most similar to ours
have been selected for the type of architecture used and the type of distillation
performed:

The table shows how the selected proposals have a performance similar
to ours. This means that, on the one hand, the teacher–student model is one
of the most widely used techniques in knowledge distillation and, on the
other hand, that it offers more than acceptable results to generate smaller
knowledge networks with similar or even better performance than the source
network from which the knowledge is extracted.
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In addition, the authors propose a metric for distillation to compare
different models and select the most appropriate one depending on the type
of problem to be addressed. This metric is based on the ratio between the
size of the teacher’s model, the learner’s model, and the score ratio between
both models. In addition, the metric allows assigning a weight to indicate the
importance of each model.

6 Related Works

Although not focused on the IoT field, there are many works dealing with the
concept of knowledge reusability, focusing their efforts on making cheaper
and faster models capable of maintaining the performance of the original
models. In the natural language processing field, Sanh et al. [26] applied dis-
tillation to the large-scale model BERT and improved the overall performance
in a lighter model called DistilBERT. Aguinaldo et al. [1] studied model com-
pression and its possibilities on generative adversarial networks through KD.
Proposed two novel methods and validated them on popular datasets such
as MNIST, CIFAR-10, and Celeb-A. In the image processing field, works
like Yu et al. [34] studied how to efficiently compute image embeddings
with small networks. Xiang [33] revisited the KD fundamentals and also
proposed a new framework called evolutionary embedding learning for open-
set problems, which deepens on the model acceleration problem avoiding
the trade-off in model accuracy. In Tang et al. [29], KD is first introduced
into the recommender systems. Their proposal focuses on learning compact
ranking models and is called ranking distillation because the recommendation
is expressed as a ranking problem. Polino et al. [21] studied the impact of
combining distillation and quantization when compressing deep NNs and
demonstrates how students can reach similar accuracy levels to state-of-the-
art full-precision teacher models. Finally, Guo et al. [9] focused their study on
collaborative learning, dropping the traditional teacher–student scheme and
treating all models as students. It enables parallel computation, fast models,
and interesting generalization ability.

For the specific field of IoT environments, there are very different
approaches. In previous works [24], the authors of this paper focused on
federations, leveraging individually generated knowledge to generate a col-
lective benefit. However, as it relies on federated learning (FL), federation
models’ structures and internal details are limited to the one imposed by the
server and do not allow the extraction of fragments of knowledge. Incurring
situations where a user ends up with an unnecessarily complex model to
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solve simple situations and vice versa. For example, Savazzi et al. [28] uses
FL [18] to collaboratively train a global model that generalizes a federation
behavior, and applies it to massive IoT networks to leverage the mutual
cooperation of devices. Transfer learning can also be used to learn some or
all parameters in the global model and re-learn them in local models [31],
but those models cannot be re-trained for too long to avoid knowledge
forgetting. Nascimiento et al. [20] also proposed an architecture that uses
an ML model to analyze a dataset or interact with an environment and also
monitors changes in the context. Sangsu et al. [14] propose an approach
where mobile devices are also the main learning nodes. It extends FL as an
egocentric collaboration in opportunistic networks where devices learn new
information from encounters with other devices. Nevertheless, this approach
is tied to opportunistic encounters that may or may not occur. Kabir et al. [12]
propose an architecture that provides services according to users’ choices
using machine learning. However, there is no discussion about detecting other
environments automatically and the multi-environment concept is kept inside
the same home. Bahirat et al. [3] present a data-driven approach to improve
privacy. By applying machine learning techniques, default smart profiles are
generated and then recommended to other users. Zipperle et al. [37] propose a
framework to describe task-based IoT services and their settings in a semanti-
cal manner and decouple them from their physical environments. However, it
still has limitations like the increasing complexity and deteriorating accuracy
over time. Finally, recommender systems are a widely used option. Although
presenting limitations of mobility between environments and usually focused
on a single environment, they take the concept of IoT and smart-home to a
higher level such as smart-cities [22].

7 Discussion

Throughout this paper it has been seen how KD pursues, on the one hand, to
extract expert knowledge from the teacher and, on the other hand, to provide
this knowledge to the student in a simplified form to serve as a guide in
their learning process. This has been used to provide a methodology to take
advantage of the benefits of knowledge distillation within WoT environments.
However, within this process, it is necessary to take into account the methods
used and the quality of the knowledge, two of the main concerns also
commented on in this paper.

In [7], the authors reviewed some of the most relevant works on knowl-
edge distillation. The authors concluded that current KD techniques focus
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mainly on new types of knowledge, leaving aside somewhat the design of
teacher–student architectures, such as the simplification of data structures,
or the design of communication networks between them. This may neg-
atively influence the performance of distillation algorithms because these
architectures mainly consider the teacher–student relationship when extract-
ing knowledge. Therefore, further progress in refining existing architectures
remains an open challenge in KD.

Also, some of the related work most relevant to this proposal has been
discussed in Section 6. However, existing review works claim that research
in KD is still insufficient from the point of view of theoretical explanations
of models and model evaluation [17, 32]. This causes one of the open tech-
nical challenges to perform a reflection on KD to measure its quality and
applicability from the currently proposed architectures.

8 Conclusions

During the development of this work, the following limitations have been
identified: (1) As seen, smart environments can be very different and hetero-
geneous, same as the needs of the users who frequent them. This fact makes
the teacher–student matching a challenging task in some cases. (2) Although
KD is a popular technique, it is necessary to make sure that teachers do
not train students for too long. Otherwise, the students’ performance will
be negatively affected. (3) The distillation process can be also carried out by
teachers. However, this would have disastrous scalability within a federation,
since many students can request knowledge from the same teacher, saturating
it. In addition, teachers are not rewarded for training students, so it is fairer
for the student to make the effort.

Currently, we are improving the association and clustering of similar
users and environments to ensure that students can take full advantage of the
knowledge gained from teachers. In future works, we will apply the proposed
approach in social environments, where many users need to be considered in
the same environment, and conflicts of interest must be addressed.
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