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Abstract

This paper presents a method to enhance the scientific nature of the music
curriculum model by integrating a large language model, cloud computing
and data mining technology for the analysis of the music teaching curriculum
model. To maintain the integrity of the mixing matrix while employing the
frequency hopping frequency, the paper suggests dividing the mixing matrix
into a series of sub-matrices along the vertical time axis. This approach
transforms wideband music signal processing into a narrowband processing
problem. Additionally, two hybrid matrix estimation algorithms are proposed
in this paper using underdetermined conditions. Furthermore, utilizing the
estimated mixing matrix and the detected time-frequency support domain, the
paper employs the subspace projection algorithm for underdetermined blind
separation of music signals in the time-frequency domain. This procedure,
along with the integration of the estimated direction of arrival (DoA), enables
the completion of frequency-hopping network station music signal sorting.
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Extensive simulation teaching demonstrates that the music curriculum model
proposed in this paper, based on a large language model, cloud computing
and data mining technologies, significantly enhances the quality of modern
music teaching.

Keywords: Large language model, cloud computing, data mining, music,
curriculum model.

1 Introduction

Teaching evaluations in music classrooms typically occur following stu-
dents’ singing, answering, or other activities. However, many descriptive
evaluations provided by teachers lack a clear purpose and merely serve as
encouragement for students without referring back to the learning objectives.
Consequently, this results in a loosely structured course content, poor interac-
tion between the various elements, and an inability to conduct objective and
accurate student evaluations [1].

“Expected goal determination” refers to adopting problem-solving as the
foundation of teaching and imparting purpose to the instructional process.
Music classes differ from other subjects in that they are non-semantic,
with each individual experiencing and interpreting the same piece of music
differently [2]. Hence, during course design, students’ prior knowledge
and existing abilities must be taken into account, along with the intended
understanding to be achieved in the course. By making precise judgments
and selecting suitable teaching content based on these considerations, three-
dimensional goals are identified, core content is defined, and teaching time
is allocated rationally. This enables students to perceive the main objective
of the course logically and purposefully, while focusing their attention on
crucial elements that stimulate thinking and cultivate interest [3].

To determine whether students have attained the expected course objec-
tives, standards and methods need to be developed for demonstration
purposes. For instance, students should be able to establish rhythm after
listening to music, proficiently read sheet music, and discern the under-
lying meaning behind the music. Music teachers should establish a series
of criteria and methodologies based on the backward design approach,
to evaluate the quality and effectiveness of the curriculum [4]. These
evaluations serve the purpose of ensuring the desired learning outcomes.
Therefore, the design of evaluation methods holds great significance as it
influences teachers’ objective assessment of students’ mastery and provides
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effective feedback to aid in instructional adjustments and promote student
learning.

Following the completion of the initial two steps, teachers can then
design courses and learning methods within this framework. At this stage,
music teachers should develop a clear plan encompassing the course content
structure, teaching activities, choice of instructional methods, and preparation
of teaching aids or musical instruments, aligning them with the learning
outcomes and assessment criteria [5]. A comprehensive backward design
necessitates the establishment of clear teaching goals that prompt students to
examine their motivations for acquiring the knowledge and the desired out-
comes. Students should also self-assess their learning progress and address
any potential misunderstandings. Subsequently, teachers need to ignite stu-
dents’ curiosity and stimulate their inclination to explore, facilitating both
comprehension and practical application of knowledge. Key concepts or
topics should be emphasized to foster experiential accumulation and enduring
comprehension. Ultimately, self-reflection on teaching practices becomes
crucial, encompassing the entire process and evaluating the outcomes of
students’ understanding [6].

Music teachers should approach teaching design from a comprehen-
sive perspective, making rational arrangements and ensuring a structured
operation. Consequently, the components of teaching objectives, activities,
evaluations, and situational factors become interconnected, forming an inter-
active instructional system through backward design. As a whole, these
components complement and influence one another. Each segment of singing
and dancing performances impacts the entire system, resulting in a more
compact teaching structure, clearer instructional objectives, and targeted
content [7]. When all elements of the teaching process revolve around the
instructional goals, evaluation also becomes an integral part of the entire
teaching process, facilitating effective goal implementation and optimizing
the structure of the instructional system.

The philosophy of backward design advocates placing evaluation design
at the forefront, prioritizing it over teaching activities. This approach entails
establishing teaching goals first, followed by pre-determining evaluation
methods and standards based on these goals, and finally designing the
instruction. This organic relationship between expected learning outcomes,
academic performance, teaching and learning behavior aims to enhance
students’ comprehension and performance [8].

Music curriculum standards serve as the primary foundation for designing
teaching goals. Music educators must thoroughly study the Music Curriculum
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Standards in relation to specific teaching scenarios and consider how to
translate these standards into adaptable teaching objectives that cater to
diverse student populations. In the process of reverse design, prioritizing
evaluation enhances the comprehensiveness and relevance of teaching objec-
tives [9]. Consequently, evaluations in music courses primarily indicate the
actions students should undertake upon accomplishing predetermined teach-
ing objectives, as well as the desired level of proficiency. Meanwhile, teachers
can employ appropriate teaching methods to aid students in fulfilling the eval-
uation criteria, thus fostering sustainability and effectiveness in evaluations.
This approach not only facilitates the attainment of teaching objectives but
also contributes to the realization of curriculum standards [10].

Reverse design necessitates the creation of practical tasks that allow
students to apply their knowledge in real-life contexts, granting them oppor-
tunities for exploration and discovery. Generally, subjects that demand deep
and enduring comprehension tend to be abstract and non-intuitive, requiring
exploration to uncover their underlying meanings [11]. Traditional teaching
often revolves around the passive transfer of knowledge from textbooks,
similar to a continuous stream of singing in a music class, where students
merely accept information without actively engaging or cultivating the desire
to explore, resulting in short-lived understanding. Consequently, the teach-
ing activities associated with reverse design provide avenues for students
to explore and discover, enabling them to develop independent learning
capabilities and a genuine interest in uncovering the deeper significance of
music [12].

The fragmentation of students’ individual knowledge acquisition and
spiritual development has resulted in the disintegration of students as a unified
whole. This disintegration, brought about by modern education, has given rise
to numerous issues in the field of education. It is imperative for education to
address and contemplate this problem from the perspective of the “whole
person.” The integrity of individual existence does not arise from a mere
accumulation of disparate knowledge across various disciplines, nor is it a
result of the reduction of rational thinking through analysis [13]. Rather,
it necessitates individuals to enrich the meaning and quality of their lives
through diverse and vibrant personal experiences, as well as individual-
ized creative expressions. Additionally, it requires dialogue and exchange.
The reform of the school music curriculum has departed from its previous
emphasis on imparting music knowledge and skills, and now considers the
integration of students’ music learning and spiritual development as one of
its overarching objectives [14].
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The learning of music knowledge and skills entails more than acquir-
ing theoretical and notational knowledge, as well as vocal abilities. It also
encompasses an understanding of music and its related culture, such as com-
prehending the social function of music based on one’s own life experiences
and acquired knowledge. This inclusive approach allows for the inclusion
of students’ individual musical experiences in the classroom [15]. Only when
the learning of music knowledge is integrated with students’ personal musical
experiences can the acquired knowledge establish a meaningful connection
with students and contribute to their personal growth. When music knowl-
edge remains external to students, merely transmitted to them without any
interaction, it fails to permeate their lives and does not foster their spiritual
growth. In such a scenario, music knowledge becomes nothing more than an
academic exercise for students [16].

The aspect of “process and method” within the course objectives also
holds significance for students’ spiritual development. Music learning is not
solely about the accumulation of music knowledge and skills; it is about
shaping students’ cognition of musical perspectives, values, and cultural
outlooks through their engagement with music. Although this process may
entail confusion, setbacks, failures, and a considerable amount of time, it
plays a crucial role in students’ learning, growth, development, and creativity.
It is through this process that knowledge becomes integrated into individuals’
own experiences, continually transforming into spiritual strength and wisdom
for life.

Furthermore, the development of the “whole person” is demonstrated
through the harmonious relationship among individuals, nature, and soci-
ety [17]. This curriculum reform, utilizing a holistic approach, requires a
careful examination and construction of the relationships between individuals
and themselves, individuals and nature, and individuals and society. Con-
cerning the relationship between individuals and themselves, the curriculum
emphasizes the use of music studies to cultivate a positive and optimistic
outlook on life, as well as a yearning and pursuit of a better future. Through
an emotional connection and understanding of the mood, style, ideological
tendencies, and humanistic meanings within musical works, students develop
the ability to appreciate and evaluate music. They cultivate a healthy and ele-
vated aesthetic sensibility, allowing themselves to be nurtured by profound
sentiments present in the world of music and the art of truth, goodness, and
beauty [18].

This study combines large language model, cloud computing and data
mining technologies to analyze the music teaching curriculum model,
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addressing the limitations of traditional music instruction and aiming to
enhance the quality of modern music education.

2 Proposed Approach

2.1 Large Language Model

A large language model is a deep learning system that is advanced and
built for various natural language processing (NLP) tasks. These models use
transformer architecture and are trained on large datasets, which adds to their
large size. As a result, they can detect, translate, predict, and synthesize text
and other sorts of content.

Additionally, these models, often known as neural networks (NNs), are
computational systems that draw inspiration from the human brain. These
neural networks, like neurons, are made up of a layered network of nodes.
Large language models can be trained to perform a variety of tasks, including
recognizing protein structures and creating software code, in addition to
imparting human languages to artificial intelligence (AI) applications. These
models are pre-trained and then fine-tuned to tackle text categorization,

Figure 1 Large language model architecture.
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question answering, document summarizing, and text production difficulties.
Its problem-solving abilities are used in industries such as healthcare, bank-
ing, and entertainment, where they support numerous NLP applications such
as translation, chatbots, and AI assistants.

The number of parameters in large language models is proportional to
the model’s complexity. These models also include numerous neural network
layers, such as recurrent layers, feedforward layers, embedding layers, and
attention layers. These layers collaborate to process input text and produce
output content. The embedding layer extracts the semantic and syntactic
meaning of the input text, generating embeddings that allow the model
to grasp context. The feedforward layer is made up of several completely
connected layers that alter the embedded inputs. These layers make it easier to
extract higher-level abstractions, allowing the model to understand the user’s
purpose behind the text input. The recurrent layer examines the words in the
incoming text sequentially, generating connections between them within a
phrase.

Large language models are pre-trained during the training phase using
vast textual datasets collected from platforms such as Wikipedia, GitHub, and
others. These datasets contain a massive number of words, and the quality
of these datasets determines the language model’s performance. At this
point, the big language model does unsupervised learning, which involves
processing the provided datasets without explicit instructions. Throughout
this process, the artificial intelligence algorithm in the language model grasps
the meaning of words and comprehends the relationships that exist between
them. It also learns to differentiate between words depending on contextual
clues. For example, it learns to recognize whether “right” means “correct” or
the inverse of “left.” But fine-tuning is required to enable the huge language.

2.2 Music Signal Propagation Model

In the cloud music teaching platform, for the frequency hopping radio stations
with asynchronous networking, the parameter association and network station
sorting are carried out according to the difference between the characteristic
parameters of each frequency hopping music signal, such as arrival time,
hopping period, and hopping time. Since the above characteristic differences
do not exist between the synchronous networking frequency hopping network
stations, the sorting is difficult.

Blind source separation is a method to separate each source music sig-
nal from the mixture of multiple source music signals. At present, many
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Figure 2 Schematic diagram of frequency hopping detection scene.

scholars have applied blind source separation to the sorting and separation
of frequency hopping music signals. The network station sorting based on
blind source separation does not require, or requires little, prior information
about the source music signal, and the array error has less influence on the
algorithm. Moreover, compared with the traditional sorting method based
on the characteristic difference of the music signal, it has great advantages.
Therefore, the research on the sorting algorithm of an underdetermined fre-
quency hopping network has more practical significance. In each subsection,
the SCA algorithm in the underdetermined blind source separation theory is
used to realize the frequency hopping network station sorting. Two hybrid
matrix estimation algorithms and an underdetermined recovery algorithm
for sparse music signals based on subspace projection are mainly studied.
Furthermore, the frequency hopping network station music signal sorting is
realized, and the frequency hopping reconnaissance structure is shown in
Figure 2.

We assume that there are N frequency hopping music signals s1(t), s2(t),
. . . , sN (t) located in the far field (which can be regarded as parallel inci-
dence) and radiate to M array sensors from different θ1, θ2, . . . , θN directions
respectively.

Then, the steering vector of the array is expressed as:

1a(θ) =
[
1, e−

j2π
sin θ , . . . , e−

j2π(M−1)
sin θ

]T
. (1)

In the actual environment, the source is usually located in the far field,
then the analytical expression of the nth source music signal sn(t) is:

sn(t) = an(t)e
∫
[wn(t)t+φn(t)]. (2)
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Figure 3 Schematic diagram of M-element array distribution.

Due to the different positions of the array elements, the time for the same
source music signal sn(t) to arrive at each array element is different. It can
be found from Figure 3 that the receiving delay τmn of the mth array element
to the source music signal sn(t) is:

τmn =
1

c
(m− 1)d sin θn(m = 1, 2, . . . ,M ;n = 1, 2, . . . N). (3)

The observed music signal of array element m to sn(t) is:

xmn(t) = sn(t− τmn) + n(t)

= an(t− τmn)e
j[wn(t−τmm)(t−τmm)+φn(t−τmn)] + n(t). (4)

Within the receiving delay τmn of the array element, the modulation
information of the source music signal and the carrier frequency of the music
signal remain unchanged, and we can obtain:

a(t− τmn) ≈ a(t)

φ(t− τmn) ≈ φ(t)

w(t− τmn) ≈ w(t)

. (5)

Then, formula (4) can be simplified as:

xmn(t) ≈ an(t)e
j[wn(t)t+φn(t)] + n(t)

= an(t)e
j[wn(t)t+φn(t)] · e−jwn(t)τmn + n(t)

= sn(t) · e−jwn(t)τmn + n(t). (6)
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The matrix form represents the music signal observed by M array
elements at time t as:

x1(t)

x2(t)

...

xM (t)

 =


1 1 · · · 1

e−jw1(t)τ21 e−jw2(t)τ22 · · · e−jwM (t)τ21

...
...

. . .
...

e−jw1(t)τM/1 e−jw2(t)τM/2 · · · e−jwN (t)τ1/N



·


s1(t)

s2(t)

...

sN (t)

+


n1(t)

n2(t)

...

nM (t)

 . (7)

That is:

X(t) = A(t)S(t) + V (t) =
∨∑

n=1

an(t) · sn(t) + V (t). (8)

However, for the frequency-hopping communication music signal studied
in this paper, the frequency hopping of the carrier frequency of the frequency-
hopping music signal occurs every certain time. Only when the frequency
range of the music signal is relatively narrow and Br = ∆f/f0 ≤ 10%
satisfies the relative bandwidth (∆f represents the frequency hopping band-
width, and f0 represents the center frequency of the frequency hopping
music signal), it can be considered that the mixing matrix basically remains
unchanged. The blind source separation of multi-frequency hopping music
signals is to separate the intertwined frequency hopping music signals on the
basis of checking the existence of frequency hopping music signals in the
mixed music signal. The actual frequency range of frequency hopping com-
munication is generally very large, so when using the SCA blind separation
algorithm, it is necessary to pay attention to the time-varying of the mixing
matrix.

2.3 Joint Estimation of Source Number and Mixture Matrix
Based on a Clustering Algorithm

The frequency-hopping music signal is a typical broadband non-stationary
music signal. Different from the blind separation and DOA estimation of the
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narrowband array music signal, the manifold matrix Aθ = {a(θ)|θ ∈ Θ}
in the wideband array model changes with the frequency, which cannot be
equivalent to the complex instantaneous mixture model of blind separation.
The algorithm proposed in this section cuts the time-frequency matrix along
the vertical time axis to obtain a series of sub-time-frequency matrices
according to the hopping moment of the frequency music signal. They keep
the hopping frequency constant in each sub-matrix, which can be treated as a
narrowband music signal.

In order to complete the estimation of the number and mixture of
frequency-hopping music signals, the sparse characteristics of frequency-
hopping music signals in the time-frequency domain are used. Usually,
formula (9) is used to calculate the normalized kurtosis of music signal, and
kurl is the normalized kurtosis function. The larger the function value, the
better the sparsity of the music signal.

kurt(s) =
E{s4}

(E{s4})2
− 3. (9)

The frequency-hopping music signal does not have the sparse charac-
teristic in the time domain, but it is sparse in the time-frequency domain.
Therefore, the observed music signal is transformed into the time-frequency
sparse domain through the STFT time-frequency transform. When the source
music signal is a sparse music signal, generally only one source music signal
has a larger value at the same time, and the other source music signals have a
relatively small value or zero, then the music signal can be considered to be
sufficiently sparse at this time. We assume that only s1(t) acts alone at time t,
that is:

x(t) = As(t) = a1s1(t) + v(t). (10)

When the influence of noise is ignored, the real and imaginary parts of
the observed music signal x(t) = a1s1(t) are gathered on two straight lines
passing through the origin in the m-dimensional music signal space, and the
direction of the straight lines corresponds to the column vector a1.

X(t, f) = AS(t, f) =
N∑
i=1

aisi(t, f). (11)

The music signal in the time-frequency domain is sparse, and the spatial
sampling data of the mixed music signal in the time-frequency domain are
distributed near several straight lines. Therefore, in this paper, the mixture
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matrix estimation and DOA estimation are completed by estimating the
clustering line direction of the observed music signal. In this paper, STFT
transform is performed on the mixed music signal observed by each array
element, and the music signal is transformed into the time-frequency sparse
domain. Moreover, this paper takes the real part and imaginary part of each
time-frequency value of the time-frequency matrix obtained by the first three
array elements. According to the principle of the same position, the three
real parts are formed into a three-dimensional coordinate (x, y, z), where
x = Re(X1(ti, ft)), y = Re(X2(ti, ft)), z = Re(X3(ti, fi)), and the real
part coordinate data set XR is obtained, and the imaginary part data set X1 is
constructed according to the same method.

Re{X(ti, fi)} = aiRe{S(ti, fi)}

Im{X(t1, fi)} = a, Im{S(ti, fi)}. (12)

The complex time-frequency representation of the music signal is used.
Specifically, the real part (Re) and imaginary part (Im) of each time-frequency
value are considered separately.

First, the coordinate dataset X is projected onto the unit hypersphere by
formula (13).

X(t) = sign(X(t)) ·X(t)/∥X(t)∥. (13)

The data set to be clustered is X = {xi|xi ∈ RM , i = 1, 2, . . . n}, and
the radius r of the data neighborhood is defined as:

r =
1

n

n
∑

(d(xi,xi))∑
i=1

min (14)


Br(xi) =

∑
u(r − d(xi, xj))

u(x) =

{
1 x = 0

0 x < 0
i, j = 1, . . . , n

. (15)

Firstly, the projection to the unit hypersphere dataset X is screened,
and the low-energy points with less information are removed. That is, for
any time-frequency point Pl(tl, fl), if ∥Pl(tl, fl)∥2 ≥ εa is satisfied, it is
retained, otherwise, it is deleted. Then, for the remaining points, the neigh-
borhood radius r of each data point in the dataset is calculated according
to formula (14), and then r is arranged in descending order. By setting the
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Figure 4 Data point classification.

threshold µr of r, the data points whose neighborhood radius is greater than
µr are all deleted, and the data points smaller than µr are retained. Finally,
the density value of each data is calculated according to formula (15), and the
low-density points in the data set are removed according to the density value,
and the high-density data set is obtained.

Compared with the traditional clustering algorithm K-means, FCM, etc.,
the density-based spatial clustering (DBSCAN) of application with noise
algorithm does not need to set the number of classifications in advance, and
can automatically determine the number of classifications according to the
data set. However, most of the traditional clustering algorithms cluster the
circularly distributed data into one category, and the clustering effect is partic-
ularly poor for the linearly distributed data. Since the real and imaginary data
sets of time-frequency values in this paper are mainly linearly distributed, the
DBSCAN algorithm is selected. First, some basic concepts in the algorithm
are defined as follows. The schematic diagram of the classification is shown
in Figure 4.

(1) ε neighborhood: For xj ∈ X , its ε neighborhood is the sample set in
the sample set X whose distance from xj is not greater than ε, so the
ε neighborhood is a set, and this set is recorded as Nε(x1), Nε(x1) =
{x1 ∈ X|distance(xi, x1) ≤ ε}.

(2) Core object: For sample xj ∈ X , the number of data points in Nε(xi) is
counted. If |Nε(xj)| ≥ Minpts, then xj is the core point;

(3) Direct density reachable: If q ⊂ Nε(p) is satisfied and p is the core
object, then point q is said to be directly density reachable from point p;

(4) Density reachable: In dataset D, there are data columns p1, p2, . . . , pi
(i ∈ [1, n]) and p1 = p, pn = q. If it is assumed that pi+1 to pi is
directly density reachable, then data points q to p are density reachable.
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Figure 4 (left) shows the distribution of core points, boundary points, and
noise points when MinPts = 3. In the right figure, MinPts = 4, point A and
other red points are core points. Because their ε neighborhoods (red circles
in the figure) contain at least four points (including themselves), and they
are mutually reachable, they form a cluster. Point B and point C are not core
points, but they can be reached by A through other core points, so A, B, and
C belong to the same class. Point N is neither the core point nor reachable by
other points, so it is recorded as a noise point.

At the detected frequency hopping moment, the time-frequency matrix
of the observed music signal transformed by STFT is divided into a series
of sub-matrices according to the hopping moment. Each sub-matrix is
constructed with a sample data set X = (x1, x2, . . . , xm), and the neigh-
borhood parameter (ε,MinPts) is set, and then the number of frequency-
hopping music signals and the estimation of the mixing matrix are completed
according to the following steps.

Step 1: For the sample data set, the algorithm first sets the neighborhood
radius ε and the minimum number of neighborhood data points MinPts;

Step 2: First, the algorithm randomly selects a point p from the data set X .
After that, the algorithm judges whether p is a core object according to defini-
tion 2. If it is, then all directly density-reachable points in the f neighborhood
of the search p are classified into one class. On the contrary, p is not a core
object, it is temporarily marked as an interference point, and the next data
point is searched until all data are judged.

Step 3: For all the directly density-reachable points in the neighborhood of all
core objects ε, the algorithm finds the data set connected with the maximum
density, and merges some density-reachable data points.

Step 4: Until all the d neighborhoods of all core objects are traversed, the
algorithm obtains the number of clusters and the center of each cluster. The
number of clusters is the estimated value of the number of frequency hopping
network stations, and the cluster center is the estimated value of the real
part/imaginary part of the mixture matrix.

According to formula (16), the mixing matrix ÂE of the sub-time-
frequency matrix can be estimated.

ÂE =

[
1 1 · · · 1

eiE1 eiE2 · · · eiEn

]
. (16)
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If it is assumed that different radio stations have different azimuths, the
incoming wave direction θn of the nth source music signal can be obtained
according to formula (7).

θn = arcsin

(
−angle(ejEn)c

wnd

)
. (17)

Among them, wn = 2πfn, d is the distance between the array elements.
According to formula (17), the carrier frequency and the mixing matrix
elements are needed to determine the value of DOA together, and how to
associate the music signal carrier frequency value with the estimated mixing
matrix elements one-to-one. It can be seen from formula (11) that if the point
(tp, fq) has only s1(t) alone, then:

X2(tp, fq)

X1(tp, fq)
=

a21S1(tp, fq)

S1(tp, fq)
= a21. (18)

According to formula (18), the estimated value of the mixture matrix can
be obtained as:

A =



1 1 1 1

X2(tp, fq)

X1(tp, fq)

X2(t
′
p, f

′
q)

X1(t′p, f
′
q)

X2(t
′′
p, f

′′
q )

X1(t′′p, f
′′
q )

X2(t
′′
p, f

′′
q )

X1(t′p, f
′′
q )

X3(tp, fq)

X1(tp, fq)

X3(t
′
p, f

′
q)

X1(t′p, f
′
q)

X3(t
′
p, f

′′
qq)

X1(t′′p, f
′′
q )

X3(t
′′
p, f

′′
q )

X1(t′′p, f
′′
q )


. (19)

Comparing the estimated eiEn in this paper with the elements in for-
mula (19), according to the degree of proximity, the corresponding fn is
determined and θn is estimated.

3 Music Curriculum Model Based on Cloud Computing
and Data Mining Technology

Education Cloud is an in-depth application of cloud computing in the field of
education. Through the service mode of providing on-demand services and
dynamic deployment, it provides the required application services such as
information-based teaching management for education providers and recip-
ients of educational institutions. This paper combines cloud computing and
mining technology to build a music curriculum teaching model, as shown in
Figure 5.
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Figure 5 Scheme diagram of music teaching mode on cloud platform.

 
Figure 6 The understanding diagram of the smart education cloud platform architecture.

Based on the support of the second part of the algorithm, the intelligent
education cloud platform framework is constructed, as shown in Figure 6.

This paper proposes that the intelligent push module is based on the
principle of on-demand push. It mainly pushes five aspects of content. The
first is to push resources on demand, that is, push resources according
to users’ learning preferences and learning needs. The second is to push
activities on demand, that is, push learning activities according to the user’s
existing foundation, learning preferences and learning purposes. The third is
an on-demand push service, that is, a learning service is pushed according to
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Figure 7 The understanding diagram of the teaching application and implementation of the
smart education cloud platform.

the user’s current learning status and needs. The fourth is on-demand push
tools, that is, according to the user’s learning process records, adaptively
push various cognitive tools, The fifth is to push interpersonal resources on
demand, that is, push interpersonal resources such as schoolmates, teachers,
and subject experts according to the user’s interests, preferences, and learning
content. The above push can not only help teachers carry out precise teaching,
but also help students master and consolidate the knowledge points that are
not mastered in classroom teaching. The smart education cloud platform is
mainly composed of three functional areas, as shown in Figure 7.

The distance music education platform based on the public cloud is based
on service-oriented architecture (SOA), and the main features of the platform
architecture are proposed to provide theoretical support for platform design
and implementation, as shown in Figure 8.

The effect of the music course model under the cloud computing and
data mining technology proposed in this paper is verified, and the quality
improvement effect of modern music course teaching is verified by statistics,
and the results shown in Figure 9 are obtained.
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Figure 8 The structure of the distance music education platform.
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Figure 9 Verification of the effect of music course mode based on cloud computing and data
mining technology.

Figure 9 represents the verification of the effect of the music course model
based on cloud computing and data mining technology, where the x-axis
represents different data points (different scenarios and conditions), and the
y-axis represents the quality of music teaching.

The bars in the graph indicate the quality of music teaching for each
corresponding data point on the x-axis. The height of each bar represents
the measured quality, with taller bars indicating higher quality and shorter
bars indicating lower quality.
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4 Scenario: Improving Music Curriculum with Extensive
Simulation Teaching

Here is a scenario that demonstrates how extensive simulation teaching can
be used to evaluate the effectiveness of the music curriculum model proposed
in this research paper, leveraging a large language model (LLM).

A group of music educators and researchers has developed a novel music
curriculum model that leverages the capabilities of an LLM, such as GPT-3, to
enhance the teaching and learning of music. This model integrates AI-driven
content generation, personalized learning paths, and real-time feedback.
The researchers want to assess its impact on music education quality. The
researchers begin by designing a music curriculum that incorporates the
LLM-based model. They create lessons, assignments, and learning objec-
tives, making use of the LLM’s text generation abilities to provide rich and
dynamic learning materials. To evaluate the curriculum model’s effectiveness,
the researchers set up a simulated learning environment. This environment
includes a virtual classroom with a diverse group of students. Students in
the virtual classroom engage with the LLM-powered curriculum. As they
progress through the lessons and assignments, the system collects various
data points:

1. Student interaction with course materials.
2. Responses to AI-generated content.
3. Progress in achieving learning objectives.
4. Time spent on different topics.
5. Frequency of interaction with the LLM-powered virtual instructor.

The LLM continuously analyzes student data to personalize the learning
experience. It adapts the curriculum based on each student’s strengths, weak-
nesses, and learning pace. For example, if a student struggles with music
theory, the LLM generates tailored explanations and exercises. The simu-
lated learning environment includes assessments and quizzes, with questions
generated by the LLM. The system provides instant feedback to students,
pointing out areas for improvement and suggesting further study materials or
practice. Researchers closely monitor student progress through the simula-
tion. They examine how effectively the LLM’s content generation and person-
alization features support student learning and mastery of musical concepts.
After a predefined period of extensive simulation teaching, the researchers
evaluate the students’ performance. They analyze factors such as:

1. Learning outcomes.
2. Retention of musical knowledge.
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3. Engagement and motivation levels.
4. Satisfaction with the LLM-powered curriculum.

Utilizing the data collected throughout the simulation, the researchers
perform an in-depth data analysis. They assess whether the LLM-powered
music curriculum model has led to significant improvements in learning
outcomes, engagement, and overall quality of music education. Based on
the extensive simulation teaching, the researchers discover that the music
curriculum model, enriched by the capabilities of the LLM, has indeed shown
a significant improvement in music education quality. Learning outcomes are
more positive, engagement is higher, and students report greater satisfaction
with the personalized learning experience. However, the researchers acknowl-
edge that further real-world validation and long-term studies are needed to
fully understand the model’s impact on music education. Future research
could also explore how this model can be adapted for various musical genres,
levels of expertise, and cultural contexts.

5 Conclusion

In the traditional approach to music curriculum design, educators often
prioritize textbooks, their own expertise, and established teaching methods.
This approach has led to a disconnect between teaching objectives and the
actual content and activities in music education. Teaching goals are often
treated as a mere formality, included in lesson plans without a profound
impact on instructional design. Consequently, the focus tends to shift towards
diversifying teaching content and incorporating flashy classroom activities.
This disconnect has significant implications for students who find themselves
navigating a curriculum without a clear sense of purpose or direction. Con-
sequently, they struggle to comprehend and master the intended learning
outcomes.

The primary objective of this study is to address the shortcomings of
traditional music curriculum design and enhance the quality of modern
music teaching through the integration of cloud computing and data mining
technology. This study pioneers an innovative approach by emphasizing the
alignment of curriculum content and teaching activities with well-defined
teaching objectives and standards. By bridging this gap, educators can ensure
that every element of their curriculum serves a purpose and contributes to the
students’ understanding and mastery of the learning content.
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Moreover, by incorporating cloud computing and data mining technology,
this research introduces a data-driven dimension to music curriculum design.
This allows for the systematic analysis of student progress, learning patterns,
and areas of improvement. Educators can make informed decisions and
tailor their teaching methods to address specific student needs, ultimately
enhancing the overall quality of music education.

The integration of cloud computing and data mining technology enables
the creation of personalized learning experiences for students. This individu-
alized approach empowers students to set clear learning goals and track their
progress, resulting in improved learning outcomes and a deeper appreciation
of music.

Furthermore, through rigorous simulation teaching, this study provides
concrete evidence of the effectiveness of the proposed music curriculum
model. The empirical results demonstrate that the use of cloud computing
and data mining technology can lead to a tangible improvement in the quality
of modern music teaching.

While this study represents a significant step towards modernizing music
education, several avenues for future research are worth exploring. These
include investigating the long-term effects of the proposed curriculum model
on students’ musical proficiency and their continued engagement with music.
Additionally, exploring the potential of cloud computing and data min-
ing in enhancing interdisciplinary approaches to music education, such as
music technology, composition, and ethnomusicology. Also, examining how
technology-enhanced music education can be made more inclusive and acces-
sible to a diverse range of students, including those with disabilities. Lastly,
considering the adaptation of this approach to music education in different
cultural and geographical contexts, taking into account regional musical
traditions and preferences.
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