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Abstract

This paper presents an empirical study on the feasibility of using Check-
point/Restore In Userspace (CRIU) for run-time application migration
between hosts, with a particular focus on edge computing and cloud infras-
tructures. The paper provides experimental support for CRIU in Docker and
offers insights into the impact of application memory usage on checkpoint
size, time, and resources. Through a series of tests, we establish that the
time to checkpoint is linearly proportional to the size of the memory allo-
cation of the container, while the restore is significantly lower. Our findings
contribute to the understanding of CRIU’s performance and its potential use
in edge computing scenarios. To obtain accurate and meaningful findings,
we monitored system telemetry while using CRIU to observe its impact on
the host machine’s CPU and RAM utilization. Although our results may not
be groundbreaking, they offer a good overview and a technical report on
the feasibility of using CRIU on edge devices, which are typically resource
constrained. This study’s findings and experimental support for CRIU in
Docker could serve as a useful reference for future research on performance
optimization and application migration using CRIU.
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1 Introduction

In recent years, there has been a significant shift in the way computing is
done. Instead of relying solely on centralized cloud-based systems, there has
been a move towards decentralized edge computing systems. Edge computing
systems bring computing resources closer to the end-users, reducing latency,
improving performance, verifiability [1] and enabling new use cases that were
previously unfeasible. However, with adopting the edge computing paradigm,
a new set of challenges are introduced, such as resource constraints, high
degree of hardware variability, and unreliable connectivity.

Checkpoint/Restore In Userspace (CRIU) is a powerful tool that allows
the migration of running applications from one host to another while preserv-
ing their states. This tool has significant potential for use in edge computing
systems, where migration of running applications is necessary due to resource
constraints and the need to move services closer to the inherently dynamic
demand. The ability to migrate running applications while preserving their
state can significantly improve the reliability, availability, and fault-tolerance
of edge computing systems. A few potential use case pertaining to the
aforementioned use case are:

1. Fault tolerance and disaster recovery: CRIU can be used to provide fault
tolerance and disaster recovery capabilities in edge computing systems.
By migrating running applications to a different host in the event of a
failure or disaster, CRIU can help ensure that critical services remain
available and reduce the impact of downtime.

2. Mobility: CRIU can be used to provide mobility capabilities in edge
computing systems. By allowing running applications to be migrated
between different hosts, CRIU can enable new use cases such as mobile
edge computing, where services follow users as they move around.

3. Dynamic scaling: CRIU can be used to enable dynamic scaling of
services in edge computing systems. By migrating running applications
between hosts based on changes in demand, CRIU can help ensure that
the system remains responsive and that resources are used efficiently.

4. Energy efficiency: CRIU can be used to enable energy-efficient com-
puting in edge computing systems. By migrating running applications
to hosts that are currently idle, CRIU can help reduce overall energy
consumption and improve the sustainability of the system.

One of the main points of interests is the advent of decentralized protocols
for autonomous container management and orchestration. Protocols such as
Caravela [6], and Nion Network [7] proposed a decentralized network of
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nodes that perform container migrations in an effort to balance resource uti-
lization across the entire network. Nion network secures the decision making
process through an efficient and scalable blockchain consensus mechanism.
Unlike typical blockchain protocols, the blocks are viewed as states denoting
the state of all the containers under management. Adding new blocks to
the chain can be considered as the state transition, while the state transition
function can be viewed as equivalent to nodes performing planed migrations
of containerized applications between peers.

Clearly, such networks are subject to Byzantine behavior and while
consensus mechanisms blockchains typically use and tolerate such faults, the
applications do not. These faults are traditionally addressed by introducing
redundancy where possible and/or backups. In this use-case, redundancy
would require more nodes to run the containerized application and serve as
readily available backups that take over in case of a fault. Evidently, this
does raise concern over the efficiency of the entire network due to additional
compute/storage resource utilization. On the other hand, backups only impose
additional storage requirements but they have to be frequent to avoid loss of
states in-between snapshots.

CRIU can be used to regularly snapshot applications and commit these
snapshots to other nodes. In an event of a fault on the host machine(node), the
protocol can detect it and restore the application on another node. However,
given the experimental nature of CRIU, the exact resource requirements
for creating checkpoints and restoring them needs to be well understood.
Moreover, studying the telemetry while performing such operations can give
a better understanding into the limitations of run-time migrations.

In this paper, we explore the potential benefits of using CRIU in
edge computing systems using Docker experimental features that support
CRIU [4, 8]. We present an empirical study of the performance impact of
CRIU on Docker containers and investigate the feasibility of using CRIU in
edge devices. Specifically, we examine the impact of the size of the memory
allocation of the host system on the time to checkpoint and restore, as well as
the resources consumed during the process execution.

Our results demonstrate the potential benefits of using CRIU in edge
computing systems, providing insights into the performance impact of using
this tool in these settings. We believe that this research will contribute to the
growing body of work exploring the use of checkpointing and migration in
edge computing systems and will pave the way for further research into the
practical applications of CRIU in this domain.
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2 Related Work

CRIU, which stands for “Checkpoint/Restore In Userspace,” is an open-
source software tool for performing live migrations of Linux processes. It
was first introduced in 2011 by Pavel Emelyanov as a way to checkpoint and
restore individual processes in Linux user space, with the goal of enabling
faster live migrations for cloud computing workloads. Since then, CRIU has
gained popularity in both cloud and edge computing settings, where it allows
for efficient and flexible management of distributed applications.

Since it’s inception the project has matured considerably. One of the
earliest studies analyzing the performance of checkpoint and restore was
published by Chen Yang [2]. Yang analyzed the time it took to checkpoint
and restore a process and unidentified process memory allocation to be the
most impactful factor. However, Yang’s study is very limiting as only small
processes were used, and no other telemetry such as CPU utilization was
analyzed while performing migrations.

Oh, SeungYong, and JongWon Kim experimented the use of CRIU for
live migrations of containerized applications [5]. In their study, they analyze
the performance of CRIU with a focus on latency analysis in transferring
checkpoints between hosts and were less concerned about the resources and
time needed to perform these tasks.

A similar study in which CRIU was used to improve the availability
of Docker Swarm, a cluster orchestration solution provided by Docker [3].
Their findings report that higher availability can be achieved by periodically
checkpointing the states of containers within the swarm and restoring them
to provide higher availability. Similarly to the study of Oh, SeungYong, and
JongWon Kim, their analysis is focused on the memory use and storage on
the network file system (NFS), and did not study the impact on the computing
resource utilization while performing CRIU. Moreover, their study is very
limiting with very few scenarios and container configurations analyzed.

A more recent study by Adityas et al. analyzed the resource utilization of
the host machine while performing checkpoint and restore [9]. In their study,
they report the expected memory allocation of the container to have the most
impact on the time it takes to perform checkpoint and restore. Interestingly,
their study also reports on the CPU consumption while performing these
tasks. However, instead of extensively testing various containers, the authors
chose a scenario based approach. They identified three main scenarios,
namely one way migration between two hosts one direction at a time, two way
migrations using one service, and two way migrations using three services.
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While the preliminary results reported do offer some insight, the study is
very limited to the aforementioned scenarios. The study would benefit a more
detailed analysis of multiple services with various memory allocations and a
much larger sample size.

Previous research suggests the use of CRIU is ubiquitous in edge and
micro-service architectures. However, the lack of an in-depth performance
analysis that highlights the limitations is evident. Our study aims to address
the gap and pave the way for future use of CRIU for run-time application
migrations on the edge.

3 Proposed Approach

Migrating applications between edge devices is required for latency opti-
mization in real-time communication services where minimizing the distance
between the user and the service can significantly reduce latency. By migrat-
ing containerized services closer to the edge nodes located near the end-users,
the improvement in latency can significantly improve the quality of the
service and overall user experience.

Another significant scenario is content delivery networks (CDNs) where
distributing content across a network of edge devices to deliver it more
efficiently to end-users is desired. This is especially important when content
is geographically dependent and moving content providers to edge nodes,
which are geographically close to the content greatly reduces stress on the
central servers.

In Internet of Things (IoT) deployments, migrating computation to edge
devices not only brings the compute closer to where the data is located,
avoiding central data aggregation and processing but also improves overall
usability of currently underutilized resources available on IoT devices.

Migrating containerized applications has also seen considerable interest
in mobile edge computing (MEC). MEC brings computational capabilities
closer to mobile users by deploying edge servers at base stations or access
points. Containers hosting mobile applications or services can be migrated
to MEC nodes based on user location or network conditions. This enhances
application performance, reduces network congestion, and enables new edge-
enabled services such as augmented reality or context-aware applications.

Recently, edge-based AI inference has adopted the edge paradigm where
edge devices increasingly utilize AI models for tasks like image recognition,
natural language processing, or predictive maintenance. By migrating con-
tainers containing AI inference engines or pre-trained models to edge nodes,
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you can perform inference locally, reducing latency and privacy concerns
associated with sending data to centralized servers for processing.

Nion Network is a protocol for decentralized containerized application
migration that covers all of the aforementioned use cases and the main use
case used for this research. The aim of the protocol is for the network
to balance resource utilization across the network by performing container
migrations from nodes where compute resources are heavily used to nodes
where compute is available. The protocol includes a decentralized orches-
trator akin to Kubernetes but guarantees that autonomous migrations are
secured by consensus. Nion requires container migrations to perform as
fast as possible, hence CRIU is used to extract the container’s context and
migrate it to another node. To perform migrations of containers at runtime,
two options are available. The common method provided via docker API is to
pause the container, export it to an image, transfer the image to the destination
host, and restore the container from the image. The second option, which
assumes the base image used to create the initial container is available on both
nodes, is to use CRIU to pause the running container, extract the context only,
transfer the context to the destination, create a new container from the base
image and inject the context and run it. The following Bash script assumes
CRIU and Docker are installed on the host. The first script takes care of
exporting and compressing the container or CRIU state depending on the -c
parameter denoting the use of CRIU. The second parameter is the previously
extracted payload, and the third is the base image used to create the container.

1 #!/bin /bash
2 if [ $1 == ”−c” ]; then
3 CONTAINER=$2
4 docker checkpoint create −−checkpoint−dir=’/tmp’ $CONTAINER $CONTAINER
5 tar −C /tmp −cf /tmp/${CONTAINER}.tar $CONTAINER
6 rm −R /tmp/${CONTAINER}
7 else
8 CONTAINER=$1
9 docker stop $CONTAINER

10 COMMIT=‘docker commit $CONTAINER | cut −c 8−‘
11 docker save $COMMIT > ”/tmp/${CONTAINER}.tar”
12 fi

The second script can be used to restore a container using the compressed
payload from the first script and provides the -c parameter for enabling or
disabling the use of CRIU. The second parameter is the compressed state or
container image obtained from running the first script.

1 #!/bin /bash
2 if [ $1 == ”−c” ]; then
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3 MIGRATED CONTAINER=$2
4 IMAGE=$3
5 CONTAINER=‘docker create $IMAGE 2> /dev/null | tail −n 1‘
6 tar −xf ”/tmp/${MIGRATED CONTAINER}.tar” −C \
7 ”/ var / lib /docker/ containers /${CONTAINER}/checkpoints/”
8 docker start −−checkpoint=$MIGRATED CONTAINER $CONTAINER
9 echo $CONTAINER

10 else
11 MIGRATED=$1
12 CONTAINER=‘docker load −i ”/tmp/${MIGRATED}.tar” | sed ’s/:/\n/g’ | tail −n 1‘
13 docker run −d $CONTAINER
14 fi

Figure 1 shows the migrations on the decentralized edge network built
using Nion protocol over a span of 3 hours. Nodes in the network were
running the decentralized orchestrator and performed migrations every block.
The block time was set to 10 seconds, and limited to one migration per block
(not a protocol level limitation). The containers were running a Rust appli-
cation, which periodically reported their liveliness status to a web service
to verify that the migration successfully restored the state of the container.
The memory allocation of each node was limited to 128 MB with 1 CPU to

Container IDs
bce0
c6d3
4089
f095
bf58
4dda
0bb2
7a67
01eb
678b
12e4

Edge network container migrations

Figure 1 Real-time container migrations on a P2P edge network of nodes. Containers
were tracked by their network-wide Id (hash), and migrated between nodes with the goal
of balancing workload across the network.
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Table 1
Phase Min(s) Median(s) Mean(s) Max(s)
Resume 1.79 2.13 2.242 9.57
Save 1.41 1.73 1.771 3.93
Transfer 0.032 0.058 0.05787 0.275

mimic typical resource constraints of edge devices, while the CRIU snapshot
size was 16M. Average migration times varied significantly due to other
network operations such as voting, signature verification, consensus protocol
execution, blockchain validation, and maintaining the P2P network executing
the Nion protocol. Table 1 offers some insight into the performance of CRIU
on edge devices. We observe that transferring snapshots between nodes to be
the least impactful, which is expected given the simulation was run on a HPC
cluster running docker swarm with 1 Gbps Ethernet links between nodes. We
reported no failed checkpoints or restores, which reinforces the premise of
CRIU being robust.

4 Experimental Results

When CRIU is used to checkpoint a running application, it performs the
following steps:

1. Image creation: CRIU creates an image of the process that needs
to be checkpointed. This image contains information about the pro-
cess’s memory, open files, network connections, and other relevant
information. The image is created in a checkpoint file.

2. Freezing: Once the image is created, CRIU freezes the process. Freezing
is the process of pausing the execution of the process so that its state does
not change while the checkpoint is being created.

3. Image dumping: CRIU dumps the image of the process into the check-
point file. This process involves saving the state of the process’s memory,
CPU registers, file descriptors, network connections, and other relevant
information.

4. Thawing: After the image has been dumped, CRIU unfreezes the process
and allows it to resume execution.

The checkpoint file created by CRIU contains all the information neces-
sary to restore the process’s state at a later time. When the process needs to
be restored, CRIU reads the checkpoint file and recreates the process from
the saved state. This process involves creating a new process, restoring the
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Figure 2 CRIU checkpoint and restore timings relative to the amount of memory used by
the Docker container.

process’s memory, CPU registers, file descriptors, network connections, and
other relevant information, and then resuming the process’s execution.

The ability to store and restore the state of a running application is
possible due to the design of the Linux kernel. Linux uses a virtual memory
system to manage memory, which allows processes to have their own virtual
address space. This means that each process has its own view of memory,
and the kernel can manage the physical memory separately for each process.
When a process is checkpointed, its virtual memory state is saved, including
the contents of the process’s memory and its CPU registers. This allows the
process to be restored to the same state later, even if it is running on a different
host or at a different time.

Memory is obviously the main factor that impacts the performance of
CRIU. To get a better understanding of the relationship between the size
of virtual memory applications require and CRIU performance, a program
written in Rust was deployed as a Docker container, the program allocates a
given amount of memory and runs using the Ubuntu 20.04 as the base image.
After the initial allocation, an external process checkpoints the container and
restores it after while measuring the timings for individual tasks. Figure 2
illustrates the timings (checkpoint and restore) observed for various memory
allocation sizes.

We can observe that the time it takes to perform a checkpoint is propor-
tional to the amount of memory the container had allocated. While this is not
surprising, it does set some boundaries on how checkpointing can be used.
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Figure 3 Comparison between CRIU and Docker commit and restore times.

It’s important to note that Docker provides a way to migrate a running
container. However, these migrations are not quite the same since the program
state will not be fully restored. Migrating a Docker container can be done by
pausing the running container followed by a commit, which will save the
changes in the file system into an image. The image can then be restored
on any host without the runtime context. Regardless of its limitation it is
still useful to compare the two methods since one is a subset of the other.
Figure 3 shows the comparison between CRIU and Docker commit on both
creating the checkpoint and restoring it. We observe that without the ability
to checkpoint working memory and processes, the commit, and restore from
Docker are constant regardless of container size, while CRIU scales have
already been observed in Figure 2.

Moreover, the analysis shows that CPU utilization does not seem to
scale with the size of virtual memory allocated during the checkpoint and
restore phases. This suggests that CPU utilization may not be a limiting
factor in checkpointing applications, and the trade-off between checkpointing
and performance may be acceptable for stateless applications with limited
resources available on edge devices.



Run-time Application Migration using Checkpoint/Restore In Userspace 745

15

20

25

30

800 MiB 1 000 MiB 1 200 MiB 1 400 MiB
Size (MiB)

U
til

iz
at

io
n 

(%
) Metric

System Avg

System Max

User Avg

User Max

Metrics by maximum and average CPU utilization for user and system
Telemetry of Checkpoint

Figure 4 CRIU checkpoint and restore timings relative to the amount of memory used by
the Docker container.

Note that the container has to be paused in order to dump the pages
of virtual memory and maintain consistency. Checkpoints of applications,
which require high availability and constant up-time (i.e. servers) do not seem
feasible. However, micro-services and stateless applications seem reasonable.
The absence of a global state in applications greatly reduces the memory
used, making CRIU a viable approach for scalability and fault tolerance.

However, edge computing solutions have to consider limited resources
available on edge devices. While the time it takes to perform a checkpoint
and restore may be a trade-off worth taking for stateless applications, the
CPU utilization on the host device may be a limiting factor.

To gain some insight into the CPU utilization of the host dockerd service
and CRIU we monitor system telemetry when performing checkpoint and
restore tasks. Figure 4 illustrates the CPU utilization in per cent both of the
user running the checkpoint as well as the overall system. We can observe
that while the memory allocation of the application directly impact the time
to perform these tasks, the CPU utilization does not seem to scale with the
size of the virtual memory allocated. Moreover, the same can be concluded
for the restore phase observed in Figure 5.

Overall, the analysis highlights the potential benefits and limitations of
using CRIU for checkpointing applications and provides insights into the
trade-offs between performance, memory usage, and fault tolerance.
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Figure 5 CRIU checkpoint and restore timings relative to the amount of memory used by
the Docker container.

5 Conclusion

In conclusion, we have investigated the capabilities and limitations of the
CRIU tool for checkpointing and restoring containers in the context of edge
computing. Our findings demonstrate that CRIU, albeit experimental, is
reliable in migrating docker containers, provided the base image is available
on the destination host. However, the size of the virtual memory allocated
by the application greatly impacts the time required to perform checkpoint
and restore operations. Thus, edge computing solutions should consider
the trade-off between checkpointing frequency and application performance.
Additionally, while the CPU utilization does not seem to scale with the size of
the virtual memory allocated, it remains a limiting factor in the deployment
of checkpointing on edge devices with limited resources.

Future work can explore techniques to reduce the memory footprint
of the container, enabling more frequent checkpoints without affecting the
application’s performance. Furthermore, it would be interesting to investigate
the use of CRIU for more complex statefull applications and the integration of
CRIU with other container orchestration tools. Overall, our study contributes
to the understanding of the capabilities and limitations of CRIU in the context
of edge computing and provides insights for the deployment of checkpointing
solutions in resource-constrained environments.
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