
Generative Architecture for Data Imputation
in Secure Blockchain-enabled

Spatiotemporal Data Management

Song Li1, WenFen Liu1,∗, Yan Wu2 and Jie Zhao1

1School of Computer and Information Security, Guilin University of Electronic
Technology, Guilin, China
2Unit 95795 of PLA, Guilin, China
E-mail: 21031102007@mails.guet.edu.cn; liuwenfen@guet.edu.cn;
jewel.wu@163.com; 21032303181@mails.guet.edu.cn
∗Corresponding Author

Received 31 August 2023; Accepted 17 October 2023;
Publication 27 March 2024

Abstract

In the era of big data, one of the most critical challenges is ensuring secure
access, retrieval, and sharing of linked spatiotemporal data. To address this
challenge, this paper introduces a groundbreaking blockchain-enabled evolu-
tionary indirect feedback graph algorithm for the secure management of inter-
connected spatiotemporal datasets. The algorithm utilizes a generative neural
network model for data imputation, predicting and generating plausible val-
ues to improve dataset completeness and integrity. The core architecture uti-
lizes blockchain technology to optimize data retrieval efficiency and uphold
robust access control mechanisms. The algorithm incorporates indirect feed-
back mechanisms, allowing users to provide implicit feedback through
their interactions, enhancing the relevance and efficiency of data retrieval.
In addition. sophisticated graph-based techniques are used to model intri-
cate relationships between data entities, facilitating seamless data retrieval

Journal of Web Engineering, Vol. 23_1, 111–164.
doi: 10.13052/jwe1540-9589.2315
© 2024 River Publishers

112 S. Li et al.

and sharing in interwoven datasets. The algorithm’s data security approach
includes comprehensive access control mechanisms, encryption, and authen-
tication mechanisms, safeguarding data confidentiality and integrity. Exten-
sive evaluations show significant enhancements in retrieval performance and
access control precision, making the proposed model a promising solution for
the secure management of expansive interconnected spatiotemporal data.

Keywords: Indirect feedback graph algorithm, linked spatiotemporal data,
big data analysis, secure access, data retrieval, generative AI, blockchain.

1 Introduction

In the era of big data, the volume and complexity of information have grown
exponentially, presenting new challenges in managing and extracting value
from massive datasets [1]. One significant aspect of this challenge is ensur-
ing secure access, retrieval, and sharing of linked spatiotemporal data. The
interconnected nature of these datasets, combined with the sensitive nature of
their information, calls for robust solutions that address both efficiency and
security concerns [2].

The proliferation of linked spatiotemporal data sources, such as
geographical and temporal datasets, has revolutionized various domains,
including transportation, urban planning, environmental monitoring, and
healthcare. These datasets provide valuable insights by capturing dynamic
relationships and patterns over time and space. However, their enormous size
and interconnectedness pose unique challenges in managing, retrieving, and
securely sharing data [3].

Data security is of utmost importance in today’s interconnected world.
Organizations and individuals must ensure that sensitive information remains
protected from unauthorized access, data breaches, and malicious activities.
Furthermore, with linked spatiotemporal data, the challenge extends beyond
traditional security concerns, as maintaining the integrity and privacy of the
data while enabling efficient retrieval and sharing becomes paramount [4].

Existing solutions for secure data management often fall short of effec-
tively addressing the intricacies of big-linked spatiotemporal data. Traditional
access control mechanisms and retrieval algorithms struggle to handle these
datasets’ scale, complexity, and dynamic nature. Moreover, incorporating
user feedback and preferences to enhance retrieval relevance and adaptability
remains an ongoing challenge [5].

Generative Architecture for Data Imputation 113

Incomplete or missing data is a critical challenge that arises when dealing
with real-world data, particularly in the context of spatiotemporal datasets.
In many cases, due to various reasons such as sensor errors, data transmission
issues, or even limitations in data collection processes, certain data points
might lack essential information. This can lead to gaps in the dataset that
could potentially impact the quality, accuracy, and reliability of subsequent
analyses and applications.

Addressing this challenge is crucial for making informed decisions
and drawing meaningful insights from the data. Approaches such as data
imputation, which involves predicting and filling in missing values, play a
significant role in enhancing the integrity and completeness of such datasets.
By acknowledging this challenge, researchers and practitioners have focused
on developing strategies and techniques that effectively handle missing data
to ensure the validity of their findings and conclusions [6–8]. This paper
responds to this challenge by introducing a pioneering approach that not only
harnesses the potential of blockchain technology but also integrates advanced
generative neural network models to address the prevalent issue of incomplete
or missing data in such datasets [9].

This research study introduces a technique for secure management of
interconnected spatiotemporal datasets, utilizing a blockchain-enabled evo-
lutionary indirect feedback graph. The technique incorporates a generative
neural network model to enhance dataset completeness and integrity by
predicting and generating plausible values. With the integration of blockchain
technology, the design aims to improve data retrieval performance and
establish robust access control measures. The system incorporates indirect
feedback techniques, enabling users to contribute implicit input through their
interactions, thereby enhancing data retrieval efficiency and relevance. Addi-
tionally, advanced graph-based approaches describe detailed interactions
between data items, facilitating seamless data retrieval and sharing across
interconnected datasets. To ensure data security, the algorithm incorporates
extensive access control features, encryption, and authentication systems,
safeguarding data confidentiality and integrity.

2 Methodology

At its essence, the proposed method introduces a groundbreaking blockchain-
enabled evolutionary indirect feedback graph algorithm [10], meticulously
tailored for the secure management of vast interconnected spatiotemporal

114 S. Li et al.

datasets. This algorithm resides at the nexus of several innovations, each
aimed at enhancing data quality, security, and usability [11].

Central to this approach is the strategic use of a generative neural network
[12, 13] model designed explicitly for data imputation. In scenarios where
data points are marred by missing or incomplete attributes, this model steps in
to predict and generate plausible values, thereby enhancing the completeness
and integrity of the dataset. By filling in these gaps, the generative neural net-
work contributes to creating a more comprehensive and reliable foundation
for subsequent analyses [14].

Complementing this data-imputation facet is the core architecture’s uti-
lization of blockchain technology [15, 16]. This empowers the algorithm with
the capability to optimize data retrieval efficiency while concurrently uphold-
ing robust access control mechanisms. The integration of an evolutionary
nature further equips the algorithm to dynamically adapt to the fluidity of
changing data environments, thus ensuring sustained peak performance and
responsiveness.

Furthermore, a pivotal facet of this algorithm lies in its incorporation of
indirect feedback mechanisms, allowing users to provide implicit feedback
through their interactions [10]. This invaluable feedback loop acts as a
guiding compass, continuously refining and personalizing the data retrieval
process. As a result, the relevance and efficiency of data retrieval are pro-
foundly elevated, aligning the algorithm’s outcomes more closely with users’
preferences and intentions.

To enhance the capabilities of the algorithm, advanced graph-based tech-
niques are employed to represent complex relationships among data entities.
As a result, this enables effortless retrieval and sharing of data, particularly
within the intricate interconnections of datasets. Of utmost importance, the
algorithm demonstrates its strength through a robust approach to data secu-
rity. This involves implementing comprehensive access control mechanisms,
which empower data owners to intricately define and enforce access poli-
cies based on user roles and permissions. Such fortification guarantees the
resilience of data against breaches, ensuring that only authorized individuals
can access it.

Moreover, the algorithm bolsters its security stance by incorporating
encryption and authentication mechanisms [17]. These protective layers
safeguard the confidentiality and integrity of data during retrieval and shar-
ing endeavors, erecting additional barriers against unauthorized access and
tampering.

Generative Architecture for Data Imputation 115

The effectiveness of this innovative approach is substantiated through
empirical assessments, shedding light on its notable efficiency and effec-
tiveness when compared to advanced benchmarks. These outcomes highlight
significant improvements in retrieval performance and precision for access
control, consolidating its status as an exceptionally promising solution for
securely managing extensive interconnected spatiotemporal data.

With its dynamic evolutionary nature and a mechanism for integrating
indirect feedback, the algorithm is well-equipped not only to navigate but
also to thrive within the dynamic contours of evolving data landscapes. When
confronted with the challenges arising from the relentless growth of linked
spatiotemporal data, the algorithm emerges as a formidable contender. By
synergizing with blockchain technology’s capabilities, it establishes an inno-
vative and resilient paradigm for secure data management in the constantly
expanding realm of big data. Appendix 1 presents pseudocode 1, which
represents the algorithm based on the provided description.

This pseudocode delineates the fundamental steps and functionalities
of the proposed blockchain-enabled evolutionary indirect feedback graph
algorithm. It initiates with population initialization and fitness evaluation.
The evaluateFitness() function calculates the fitness level of each individual
within the population, expressing how proficiently they solve the given prob-
lem. Moreover, this pseudocode introduces the process of generative neural
network-based data imputation. By invoking the imputeMissingData() func-
tion, it performs the task of imputing missing data for each individual’s solu-
tion. The imputed data is then stored in the individual.imputed_data attribute.
The function imputeMissingData() manages the data imputation process by
utilizing a generative neural network. It first extracts the incomplete data
from the current individual’s solution and then trains a generative neural net-
work model (trainGenerativeModel(data)) using the available complete data.
Once trained, the generative model generates imputed values for the missing
attributes in the incomplete data (generateImputedValues(incomplete_data)).
These imputed values are subsequently merged with the incomplete data,
resulting in a complete imputed dataset (mergeImputedData(imputed_values,
incomplete_data)), which is returned.

After the evolutionary process, the best individual is selected. The algo-
rithm constructs a graph representation of the data and initializes the access
control mechanisms. Then, it enters another loop to handle user interactions.
It obtains the user query, infers indirect feedback based on user behavior
and contextual information, and fine-tunes the query using this feedback.

116 S. Li et al.

The algorithm performs graph traversal on the constructed graph to identify
relevant data entities and applies access control filtering based on user per-
missions and contextual factors. The filtered data is then displayed to the user.
Finally, the algorithm encrypts and authenticates the data to ensure secure
retrieval and sharing operations [8, 15, 16].

Overall, the proposed blockchain-enabled evolutionary indirect feedback
graph algorithm provides a comprehensive solution for secure big linked
spatiotemporal data retrieval, sharing, and access control. By combining
evolutionary computation, indirect feedback, and graph-based techniques, it
offers an efficient and adaptable approach to managing and extracting value
from interconnected datasets while maintaining stringent security measures.

2.1 Description of the Algorithm’s Components and
Mechanisms

The proposed blockchain-enabled evolutionary indirect feedback graph algo-
rithm consists of several key components and mechanisms that work together
to optimize the secure retrieval, sharing, and access control of big linked
spatiotemporal data. These components and mechanisms are designed to
enhance efficiency, relevance, and security throughout the data management
process.

It must be noted that by combining the following components and mech-
anisms, the algorithm optimizes the retrieval process, enhances relevance
through indirect feedback, enables efficient navigation of linked spatiotem-
poral data through graph-based modeling, and ensures secure access control
through fine-grained permissions, encryption, and authentication. This com-
prehensive approach contributes to the efficient and secure management of
big linked spatiotemporal data.

2.1.1 Genetic algorithm-based optimization
The algorithm utilizes a genetic algorithm or other evolutionary optimization
techniques to iteratively improve the data retrieval process. By employing
evolutionary principles such as selection, crossover, and mutation, the algo-
rithm evolves a population of search strategies over multiple generations.
This optimization process aims to find the most effective and efficient
retrieval strategies that adapt to the evolving data environment and user
preferences [17, 18].

The pseudocode 2 presents the genetic algorithm-based optimization
method. The pseudocode outlines the basic structure of a genetic algorithm
optimization process: initialization, main loop, selection of parents, offspring

Generative Architecture for Data Imputation 117

generation, evaluation, and replacement. It checks if the termination condi-
tion is met, exits the loop, or repeats the main steps. The best individual is
then obtained from the final population based on its fitness value, representing
the optimal or near-optimal solution to the problem.

During the execution of the genetic algorithm, the population evolves
over generations, with individuals being selected, recombined, and mutated to
explore the solution space. Through the iterative process, the algorithm tends
to converge towards a population of individuals with higher fitness, which
represents a near-optimal or optimal solution to the problem [19, 20].

2.1.2 Indirect feedback mechanism
The algorithm incorporates indirect feedback mechanisms, allowing users to
provide implicit feedback through their interactions with the system. Instead
of explicit feedback, the algorithm infers user preferences based on user
behavior, query patterns, and contextual information. This indirect feedback
is used to continuously refine the retrieval process, adapting it to the user’s
evolving needs and improving the relevance of the retrieved data [5, 21].

The following is a description of an algorithm denoted as pseudocode 3,
which incorporates an indirect feedback mechanism. This algorithm utilizes
a series of steps involving data retrieval, user interaction, query refinement,
data display, user feedback collection, retrieval process adjustment, feedback
analysis, and retrieval process finalization. It also encompasses the collec-
tion, analysis, and adjustment of user feedback to enhance the relevance
of retrieved data and cater to user requirements. The algorithm prioritizes
user-friendliness and efficiency to ensure an optimal user experience.

Moreover, the algorithm continually enhances the retrieval process by
deducing user preferences from their behavior, query patterns, and contextual
information. It then adapts the retrieval process accordingly to augment the
relevancy of the obtained data. In addition, the feedback obtained from user
interactions further refines and optimizes the retrieval process, guaranteeing
its alignment with the evolving needs of the user.

2.1.3 Graph-based modelling
The algorithm employs graph-based modeling techniques to represent the
interconnected relationships between data entities in the linked spatiotem-
poral data. By constructing a graph representation, the algorithm captures
the dependencies, similarities, and hierarchical structures present in the data.
Graph traversal algorithms, similarity measures, and clustering techniques
are used to navigate the graph, identify relevant data entities, and optimize

118 S. Li et al.

the retrieval process. This graph-based approach enhances the efficiency and
effectiveness of data retrieval and sharing [7, 12].

The pseudocode 4 represents the algorithm that employs graph-based
modeling techniques. The algorithm uses graph-based modeling techniques
to construct a graph representation of linked spatiotemporal data, capture
dependencies, similarities, and hierarchical structures between data entities.
It then uses a user interaction loop to continuously interact with the user
and obtain a query. The graph traversal is used to identify relevant data
entities, and similarity measures are calculated to assess their relevance.
Clustering techniques are performed on the data entities, grouping them based
on characteristics or attributes. The results are displayed to the user, and
clusters of relevant data entities are presented.

The algorithm employs graph traversal algorithms to navigate the graph
and identify relevant data entities. Similarity measures are calculated to assess
the similarity between different entities, aiding in determining their relevance.
Clustering techniques are then applied to group similar entities together,
enhancing the efficiency and effectiveness of data retrieval and sharing. To
further elaborate on this point, we can assume that the likeness between a user
and their nearby connections within the reliable network is determined by an
unidentified distribution function that gauges the proximity of two neighbors’
evaluative actions [22–24]. Define:

λ(G) = maxx⊥u
∥ Mx ∥
∥ x ∥

= maxx⊥u
|⟨Mx, x⟩|
⟨x, x⟩

.

λ(G): This represents the eigenvalue of a graph G.
x⊥u: This indicates that the vector x is orthogonal (perpendicular) to the
vector u.
∥Mx∥: This represents the norm (magnitude) of the matrix-vector
product Mx.
∥x∥: This represents the norm (magnitude) of vector x.
Vector norm (∥x∥): This represents the L2 norm (Euclidean norm) of
vector x.
Matrix norm (∥Mx∥): This represents the Frobenius norm of the matrix-
vector product Mx.
Inner product (⟨Mx, x⟩): This represents the inner product of vectors
Mx and x. The inner product is a general mathematical concept used to
measure the similarity between two vectors.
Absolute value (|⟨Mx, x⟩|): The absolute value is used to ensure that the
result is non-negative.

Generative Architecture for Data Imputation 119

It must be noted that in the context of finding the eigenvalue of a graph
G, these norms and inner products are used to calculate the eigenvalue by
maximizing a certain expression over all vectors x that are orthogonal (per-
pendicular) to vector u. The specific choice of norms and inner products are
dependent on the context and the properties of the matrix M and vector u that
was used in the calculation. Different choices of norms and inner products
may lead to different eigenvalues and interpretations in various applications.

The equation defines λ(G) as the maximum ratio of the magnitude of the
matrix-vector product Mx to the magnitude of x, where x is orthogonal to u.

So:

λ(G) = maxx⊥u,∥x∥=1⟨Ax, x⟩ = maxx⊥u,∥x∥=1
1

d

∑
(u,v)∈E

2xuxv

λ(G) = maxx⊥u,∥x∥=1
1

d

∑
(u,v)∈E

(x2u + x2v − (xu − xv)
2)

= maxx⊥u,∥x∥=1
1

d

 n∑
i=1

x2i d−
∑

(u,v)∈E

(xu − xv)
2


= 1−minx⊥u,∥x∥=1

∑
(u,v)∈E

(xu − xv)
2. (1)

A: This represents the adjacency matrix of the graph.
(u, v) ∈ E: This notation refers to an edge between nodes u and v in the
graph.
xu, xv: These are the components of the vector x associated with nodes
u, v.
d: This represents the degree of the nodes in the graph (number of edges
connected to a node).

This equation provides an alternative expression for calculating λ(G) in
terms of the adjacency matrix A and the nodes’ degrees.

Finally, the following simplifies the previous equation further by expand-
ing the squared terms and rearranging them:

1− λ(G) =
1

d
minx⊥u,∥x∥=1

∑
(u,v)∈E

(xu − xv)
2. (2)

120 S. Li et al.

Because G is compact for the nodes i, j we have:

|yi − yj | = |yi − yw1 + yw1 − · · · − ywa−1 + ywα−1 − yj |

≤
a−1∑
i=0

|ywi − ywi+1 |. (3)

So:
a−1∑
i=0

|ywi − ywi+1 | ≥
1√
n
. (4)

The above equation reformulates the problem as a minimization problem,
aiming to minimize the sum of differences between node values xu and xv
for connected edges (u, v) in the graph.

As consequence:

1− λ(G) =
1

d

∑
(u,v)∈E

(yu − yv)
2

≥ 1

d

a−1∑
i=0

(ywi − ywi+1)
2

≥ 1

da

(
a−1∑
i=0

|ywi − ywi+1 |

)2

. (5)

This equation expresses 1 − λ(G) in terms of the sum of squared differ-
ences between node values xu and xv for connected edges. This is used to
show a relationship between graph properties and 1− λ(G).

The initial statement mentions that the problem is reformulated as a
minimization problem aiming to minimize the sum of differences between
node values xu and xv for connected edges (u, v) in the graph.

λ(G) represents some property or parameter of the graph G.
d is likely a constant or a parameter related to the graph.
Σ((u,v)∈E) represents the sum over all edges (u, v) in the graph.
yu and yv are node values.
The inequality suggests that the sum of squared differences of node values

over all edges in the graph is greater than or equal to the sum of squared
differences along a specific path defined by wi nodes (from w0 to w(a−1)).

The final inequality expresses the square of the sum of absolute differ-
ences between node values along the same path defined by wi nodes.

Generative Architecture for Data Imputation 121

When a < n we have:

1− λ(G) ≥ 1

d

(
a−1∑
i=0

|ywi − ywi+1 |

)2

≥ 1

dan
≥ 1

dn2
. (6)

This equation establishes a lower bound on 1 − λ(G) by considering
the sum of absolute differences between node values for a specific path or
sequence of nodes (wi). Also, this equation shows that the derived lower
bound on 1− λ(G) implies a relationship between 1− λ(G) and the number
of nodes (n) and average degree (a) in the graph.

So, in any graph G and G2:

1− λ(G2) ≥ 1

d2n2
⇒ 1− λ(G)2 ≥ 1

d2n2
⇒ λ(G) ≤

√
1− 1

d2n2
. (7)

This equation derives a bound on λ(G2), the eigenvalue of the squared
graph G2, in terms of the eigenvalue λ(G) of the original graph G.

The variable “n” represents the number of nodes (vertices) in the original
graph G. In graph theory, “n” typically denotes the number of nodes in a
graph. So, in this context, “n” represents the order or size of graph G, which
is the number of nodes it contains. Therefore, in this equation to derive a
bound on λ(G2) in terms of λ(G), “n” refers to the number of nodes in the
original graph G, and “d” represents the average degree of the nodes in that
graph.

If i transitions to j and j is a transient state, then i is also transient.
This implies that when a system begins from an iterative state, every state
it encounters eventually becomes repetitive and communicates with the pre-
ceding states. Consequently, the iterative state i generates a closed class C of
communicating situations. This implies that over time, all states in the system
become repetitive and communicate with each other, generating a closed class
of communicating situations.

2.1.4 Fine-grained access control
To ensure secure access, the algorithm integrates fine-grained access control
mechanisms. Data owners can define access policies based on user roles,
permissions, and other contextual factors. This enables precise control over
who can access specific data entities and what actions they can perform.
The access control mechanisms enforce these policies, ensuring that only
authorized users can retrieve, share, or modify the data, thereby safeguarding
data privacy and security [6, 25, 26].

122 S. Li et al.

The following pseudocode outlines an algorithm for integrating fine-
grained access control mechanisms. The algorithm encompasses several
steps, beginning with initialization and the establishment of access policies
according to user roles and permissions. The user interaction loop persists
until the interaction concludes and a query is acquired. Access control mecha-
nisms are subsequently employed to determine authorized data entities based
on the defined access policies. Consequently, solely authorized users possess
the capability to access specific data entities and perform permitted actions.
The results are then presented to the user, thereby exhibiting the authorized
data entities. The algorithm effectively integrates fine-grained access control
mechanisms, empowering data owners to define access policies based on
user roles, permissions, and contextual factors. These policies grant precise
control over data entity accessibility, delineating which users can access
particular data entities and specifying their actions. The access control mech-
anisms diligently enforce these policies to ensure that solely authorized users
can retrieve, share, or modify data. This robust access control mechanism
serves as a safeguard for data privacy and security.

2.1.5 Encryption and authentication
To protect the confidentiality and integrity of the data during retrieval and
sharing operations, the algorithm incorporates encryption and authentication
mechanisms. Encryption techniques are employed to encrypt data in transit
and at rest, preventing unauthorized access to sensitive information. Authenti-
cation mechanisms verify the identity and permissions of users, ensuring that
only authenticated users can access the data. These security measures play a
crucial role in maintaining the integrity and privacy of the data throughout
the data management process [8, 27, 28].

The pseudocode 6 represents the algorithm that incorporates encryption
and authentication mechanisms. The algorithm combines encryption and
authentication mechanisms, with initialization and authentication steps. The
user interaction loop is used to continuously interact with the user, obtain
a query, authenticate the user, verify their identity, and then encrypt the
data. Encryption techniques are applied to protect the data in transit and
at rest, preventing unauthorized access to sensitive information. The results
of the encryption process are displayed to the user. The algorithm incor-
porates encryption techniques to protect the confidentiality and integrity of
the data during retrieval and sharing operations. It employs authentication
mechanisms to verify the identity and permissions of users, ensuring that
only authenticated users can access the data. These security measures are

Generative Architecture for Data Imputation 123

crucial for maintaining the integrity and privacy of the data throughout the
data management process.

2.1.6 Blockchain to secure data management and access
control

The integration of blockchain technology into the algorithm yields the poten-
tial to significantly enhance the secure management and control of data
in the proposed solution. Blockchain technology encompasses numerous
advantages that can enhance algorithms, such as immutable data stor-
age, decentralized access control, improved data sharing and collaboration,
data provenance and auditability, consensus mechanisms for data valida-
tion, secure peer-to-peer data exchange, privacy protection, and secure data
exchange without the need for intermediaries. By employing blockchain, a
tamper-proof ledger is established for storing spatiotemporal data, thereby
ensuring its integrity and authenticity. Decentralized access control, smart
contracts, and enhanced data sharing and collaboration enable users to
securely access and share data. Moreover, data provenance and auditabil-
ity guarantee the verifiability of data sources and history, while consensus
mechanisms ensure that solely valid and trustworthy data is incorporated
into the blockchain. The secure data exchange eliminates the risk of data
breaches or unauthorized access, while privacy-enhancing techniques like
zero-knowledge proofs and private transactions safeguard sensitive spa-
tiotemporal data, while allowing selective disclosure when necessary. Over-
all, blockchain technology provides an array of advantages for enhancing
algorithms and facilitating data sharing. The evolutionary indirect feedback
graph algorithm and the integration of blockchain illustrated in pseudocode 7
showcase this potential.

By integrating blockchain technology, the proposed algorithm can lever-
age the inherent security, transparency, and decentralization offered by
blockchain. This integration establishes a robust and trustless framework for
managing, accessing, and sharing interconnected spatiotemporal data, while
simultaneously safeguarding data integrity, privacy, and accountability.

2.2 Integration of Indirect Feedback and Graph-based
Techniques

The proposed blockchain-enabled evolutionary indirect feedback graph algo-
rithm seamlessly integrates indirect feedback mechanisms and graph-based
techniques to enhance the retrieval, relevance, and efficiency of big linked
spatiotemporal data management.

124 S. Li et al.

Indirect feedback mechanisms allow users to provide implicit feedback
through their interactions with the system. Instead of relying solely on
explicit feedback, such as ratings or explicit queries, the algorithm leverages
user behavior, query patterns, and other contextual information to infer user
preferences and relevance. This indirect feedback serves as valuable guid-
ance in refining the retrieval process and adapting it to the user’s evolving
needs.

The algorithm incorporates graph-based techniques to model the complex
relationships and dependencies among data entities in the linked spatiotem-
poral data. By constructing a graph representation, where nodes represent
data entities and edges represent connections or relationships, the algorithm
captures the intricate interconnections and hierarchical structures within the
data.

Graph traversal algorithms, such as breadth-first search or depth-first
search, enable efficient navigation through the graph, facilitating the dis-
covery of related data entities. These techniques exploit the interconnected
nature of the data to identify relevant data entities that might not be directly
apparent through traditional retrieval methods. By traversing the graph, the
algorithm can explore interconnected data relationships and uncover hidden
associations.

Additionally, similarity measures and clustering techniques are applied
within the graph-based framework. Similarity measures assess the similarity
between data entities based on various attributes, such as spatial proximity
or temporal patterns. This allows the algorithm to identify data entities that
exhibit similar characteristics or share common attributes.

Clustering techniques group related data entities together, enabling effi-
cient retrieval and exploration of clusters of interconnected data. This helps
in discovering relevant subsets of data that are closely linked in terms of spa-
tiotemporal attributes or other criteria. Clusters can be dynamically updated
and adjusted as the algorithm adapts to changes in the data environment or
user preferences [12, 29].

The integration of indirect feedback and graph-based techniques enables
the algorithm to refine the retrieval process based on implicit user feedback
and leverage the interconnectedness of the data to enhance relevance and
efficiency. Indirect feedback influences the algorithm’s decision-making by
adjusting search strategies, query expansion, or recommendation generation.
Graph-based techniques facilitate efficient navigation through the intercon-
nected data landscape, unveiling related data entities and providing a more
comprehensive understanding of the data structure.

Generative Architecture for Data Imputation 125

By combining these two complementary approaches, the algorithm adapts
to evolving user preferences and leverages the richness of linked spatiotempo-
ral data. This integration enhances the algorithm’s ability to retrieve relevant
data, explore interconnected relationships, and provide personalized and
efficient access to big linked spatiotemporal datasets.

2.3 Incorporation of Access Control Mechanisms

The proposed algorithm prioritizes the implementation of robust access con-
trol mechanisms to safeguard the security of big linked spatiotemporal data.
Throughout the retrieval, sharing, and management processes, the algorithm
ensures the confidentiality, integrity, and privacy of the data.

To achieve this, the algorithm integrates access control mechanisms that
offer precise control over data access and actions performed. Data owners
possess the capability to define access policies based on user roles, permis-
sions, and contextual factors. These policies determine the level of access
granted to different user groups or individuals, ensuring that only authorized
users can interact with specific data entities.

To enforce access control policies, the algorithm verifies the authentica-
tion and authorization of users before granting data access. Authentication
mechanisms are employed to verify users’ identities, thereby establishing
their claimed identities. This authentication process may involve methods
such as username and password authentication, multi-factor authentication,
or other suitable protocols based on security requirements.

Once authenticated, the algorithm checks the user’s authorization level to
ascertain the actions they are permitted to perform. This authorization process
involves verification of the user’s permissions and roles against the access
control policies defined by the data owner. Only users with the necessary
permissions can access the requested data or perform specific operations on
the data.

Furthermore, the algorithm incorporates encryption techniques to protect
data confidentiality and integrity during retrieval and sharing operations.
Encryption is applied to data both in transit and at rest, ensuring the
security of sensitive information even in the event of unauthorized access.
Encryption algorithms, such as symmetric or asymmetric encryption, are
employed to encrypt the data and resist unauthorized entities from accessing
or deciphering it.

By integrating these access control mechanisms, the algorithm provides
a robust layer of security for big linked spatiotemporal data. Data owners
possess granular control over data access and actions taken, safeguarding

126 S. Li et al.

sensitive information and enabling only authorized individuals or groups to
retrieve, share, or modify the data.

The incorporation of access control mechanisms in the algorithm
effectively addresses the critical challenge of data security, particularly in
managing large-scale interconnected datasets. Through the enforcement of
stringent access control policies, authentication and authorization verification
of users, and the utilization of encryption techniques, the algorithm estab-
lishes a secure environment for managing and interacting with big linked
spatiotemporal data.

3 System Design and Implementation

The architecture and system design of the proposed blockchain-enabled
evolutionary indirect feedback graph algorithm for secure big-linked spa-
tiotemporal data retrieval, sharing, and access control are crucial for ensuring
the algorithm’s efficiency, scalability, and effectiveness. The algorithm is
designed to operate in a distributed environment, utilizing distributed com-
puting resources to handle large-scale datasets. This architecture incorporates
multiple nodes or servers to process queries, manage data storage and
retrieval, and enforce access control mechanisms. This distributed architec-
ture enables parallel processing, efficient resource utilization, and scalability
and performance.

The modular design of the algorithm promotes reusability, maintainabil-
ity, and extensibility, with each module focusing on tasks such as query
processing, access control enforcement, graph construction and traversal, and
encryption. The query processing module handles user queries and retrieves
relevant data from the linked spatiotemporal dataset, incorporating evolution-
ary optimization techniques, indirect feedback mechanisms, and graph-based
modeling.

The access control module enforces fine-grained access control policies,
authenticating users and ensuring only authorized individuals or groups can
access specific data entities. It incorporates encryption techniques to protect
data confidentiality and integrity during retrieval and sharing operations.

The graph construction and traversal module creates a graph representa-
tion of linked spatiotemporal data, capturing relationships and dependencies
between data entities. It incorporates graph traversal algorithms, similar-
ity measures, and clustering techniques to navigate the graph and identify
relevant data entities efficiently.

The algorithm employs efficient data storage and retrieval mechanisms,
such as distributed file systems, databases, and data partitioning and indexing

Generative Architecture for Data Imputation 127

techniques. Scalability and performance are ensured through distributed
computing resources, parallel processing, load-balancing techniques, perfor-
mance optimizations, and robust security and privacy measures. The architec-
ture includes encryption mechanisms, strict authentication and authorization
protocols, data anonymization techniques, and data masking to preserve
privacy when necessary.

In summary, the architecture and system design of the proposed algorithm
focus on distributed processing, modular design, efficient query processing,
access control enforcement, graph construction, traversal, scalable data stor-
age and retrieval, performance optimization, and robust security and privacy
measures. These considerations collectively ensure efficiency, effectiveness,
and security.

3.1 Implementation Details of the Algorithm and Associated
Modules

The proposed blockchain-enabled evolutionary indirect feedback graph algo-
rithm comprises multiple interconnected modules and components aimed at
achieving secured retrieval, sharing, and access control of extensive linked
spatiotemporal data. Within the algorithm, various modules are employed to
handle user queries and retrieve data from linked spatiotemporal datasets. The
query processing module addresses user queries and employs evolutionary
optimization techniques to retrieve pertinent data. Through machine learning
algorithms, the indirect feedback mechanism captures user behavior and
deduces preferences. The graph construction and traversal module efficiently
represents and navigates linked spatiotemporal data in a graph structure. For
fine-grained access control, including authentication and encryption tech-
niques, the access control module is utilized. To handle large-scale linked
spatiotemporal datasets, storage and retrieval mechanisms are employed, uti-
lizing distributed file systems such as Hadoop or Amazon S3. During transit
and at rest, sensitive information is safeguarded using encryption mechanisms
like AES or RSA.

To ensure scalability and optimize performance, distributed computing
frameworks such as Apache Spark or Hadoop enable efficient processing
of substantial datasets. Load balancing techniques and query optimization
strategies are employed to improve retrieval speed and minimize latency.
Performance benchmarks and optimizations are conducted to fine-tune the
algorithm and enhance the overall system performance.

Integral to the implementation process are the steps of integration and
testing, which guarantee the functionality, performance, and security of the

128 S. Li et al.

system. Thorough testing is carried out to verify the accuracy and depend-
ability of the implementation, encompassing unit tests, integration tests, and
system tests.

In conclusion, the implementation of the proposed algorithm involves
the development of several modules, including the query processing mod-
ule, indirect feedback mechanism, graph construction and traversal module,
access control module, data storage and retrieval mechanisms, security and
privacy measures, scalability and performance optimization techniques, and
integration and testing procedures.

The implementation process requires the selection of appropriate tech-
nologies, frameworks, and libraries based on the specific requirements of
the algorithm. The choice of programming languages, such as Python, Java,
or Scala, depends on factors like ease of development, performance, and
compatibility with the selected modules. Additionally, the implementation
considers factors like data volume, data distribution, system architecture, and
hardware infrastructure to ensure efficient and scalable processing.

Throughout the implementation process, rigorous testing is conducted
to validate the functionality, performance, and security of the algorithm.
This includes unit testing to verify the correctness of individual modules,
integration testing to ensure seamless interoperability, and system testing to
assess the algorithm’s performance and behavior under realistic scenarios.
Performance benchmarks are used to measure the algorithm’s efficiency,
scalability, and responsiveness.

The implementation phase involves iterative development and continu-
ous refinement to address any identified issues or optimizations. Feedback
from stakeholders and users may be incorporated to further improve the
algorithm’s effectiveness and usability. Documentation of the implementation
details, including architecture diagrams, data flow diagrams, and code docu-
mentation, ensures the understandability and maintainability of the developed
system.

Overall, the implementation of the blockchain-enabled evolutionary indi-
rect feedback graph algorithm requires a systematic and thorough approach
to ensure the successful realization of secure big linked spatiotemporal data
retrieval, sharing, and access control.

3.2 Integration of Encryption and Authentication Mechanisms

The integration of encryption and authentication mechanisms plays a cru-
cial role in ensuring the security and privacy of the data in the pro-
posed blockchain-enabled algorithm. By combining these two essential

Generative Architecture for Data Imputation 129

components, the algorithm establishes a robust and secure framework for
accessing and managing big-linked spatiotemporal data. The integration of
encryption and authentication mechanisms involves two main steps: verifying
user identity through authentication mechanisms, such as username and pass-
word, multi-factor, or biometric authentication, and protecting data confiden-
tiality and integrity through encryption mechanisms. Encryption algorithms,
such as AES or RSA, encrypt sensitive information at different levels within
the algorithm, ensuring data privacy and preventing unauthorized access.

Ensuring seamless cooperation within the algorithm, encryption ensures
that data accessed or transmitted by the user remains protected. This is
achieved through data retrieval or sharing operations, where encryption
secures communication channels and prevents unauthorized access. Encryp-
tion is also utilized in data storage, ensuring data at rest remains secure and
uninaccessible even if physical storage media is compromised.

Lastly, encryption and authentication mechanisms are integrated into
access control enforcement, ensuring that data accessed or modified by the
user remains protected throughout the process. Access control policies are
enforced only after the user’s identity is verified through authentication,
and once authorized, users can access specific data entities based on their
permissions and roles defined in the access control policies.

The algorithm establishes a secure environment for managing and inter-
acting with big-linked spatiotemporal data by integrating encryption and
authentication mechanisms. This integration enhances the overall security
posture of the algorithm, safeguarding the confidentiality, integrity, and pri-
vacy of the data throughout its lifecycle. It ensures that only authorized users
with valid credentials can access the data, which remains protected through
encryption techniques.

4 Experimental Evaluation

The experimental setup and dataset used to evaluate the proposed algorithm
for secure big-linked spatiotemporal data retrieval, sharing, and access con-
trol are essential to validate its effectiveness and performance. Specifically,
the following hardware and software configurations include:

1. Hardware configuration:

a. CPU: Intel Xeon E5-2690 v4 (2.6 GHz, 14 cores)
b. RAM: 128 GB DDR4
c. Storage: 1 TB SSD.

130 S. Li et al.

2. Software configuration:

a. Operating system: Linux (Ubuntu 20.04 LTS)
b. Programming language: Python 3.9
c. Dependencies and libraries: NumPy, Pandas, scikit-learn, Tensor-

Flow, PyTorch
d. Distributed computing framework: Apache Spark
e. Graph processing library: NetworkX
f. Encryption library: PyCryptodome.

The OpenStreetMap (OSM) dataset is a widely-used real-world dataset
that represents linked spatiotemporal data with varying attributes, relation-
ships, and complexities. The dataset is used to evaluate the algorithm’s
performance and effectiveness, and the experimental design involves defining
evaluation metrics, scenarios, and performance benchmarks to assess the
algorithm’s effectiveness, efficiency, and scalability. Multiple experimental
scenarios are defined to evaluate the algorithm’s performance under different
conditions, allowing for a comprehensive evaluation of its capabilities across
different use cases. Performance benchmarks are established to measure the
algorithm’s efficiency in sophisticated scenarios.

The experimental setup and dataset are defined, and the algorithm is
implemented and executed on the selected hardware and software configura-
tion. The results are recorded and analyzed, and the algorithm is tested under
different workload conditions. Statistical analysis techniques are employed
to determine the significance of the results and validate the algorithm’s
performance against the defined benchmarks.

Result analysis is performed to draw meaningful conclusions about the
algorithm’s performance, assessing its effectiveness, efficiency, scalability,
and robustness. The results are analyzed and interpreted to draw meaningful
conclusions about the algorithm’s performance. The results are compared in
different scenarios to establish the algorithm’s novelty and contribution to the
field.

To ensure reproducibility and facilitate future research, detailed docu-
mentation of the experimental setup, dataset description, and procedures is
provided, including sharing the dataset, code and implementation details, and
explaining specific configurations and parameter settings. Other researchers
can validate and build upon the findings by making the experimental setup
and dataset available.

In conclusion, the experimental setup and dataset used in evaluating the
proposed algorithm are carefully designed to assess its performance and

Generative Architecture for Data Imputation 131

validate its effectiveness. The proper configuration of hardware and software,
the selection and preprocessing of representative datasets, the execution of
experiments, and the thorough analysis and interpretation of results con-
tribute to the comprehensive evaluation and understanding of the algorithm’s
capabilities in securing big linked spatiotemporal data retrieval, sharing, and
access control.

4.1 Performance Metrics and Evaluation Criteria

The evaluation of the proposed algorithm, known as the blockchain-enabled
evolutionary indirect feedback graph algorithm, for secure retrieval, sharing,
and access control of big-linked spatiotemporal data entails the utilization
of various performance metrics and evaluation criteria. These metrics serve
as quantitative measures to assess the effectiveness, efficiency, scalability,
and robustness of the algorithm. Key aspects of the algorithm’s performance
metrics and evaluation criteria encompass retrieval accuracy, query response
time, scalability, throughput, access control enforcement, resource utilization,
security and privacy measures, as well as comparative evaluation.

Retrieval accuracy signifies the algorithm’s capability to retrieve perti-
nent spatiotemporal data based on user queries, while query response time
gauges the algorithm’s efficiency in processing and handling data. Scala-
bility evaluates the algorithm’s performance as the size of the dataset or
workload increases, whereas throughput measures the algorithm’s ability to
process and handle data requests at a given rate. Access control enforcement
appraises the algorithm’s proficiency in enforcing fine-grained access control
policies and mechanisms, guaranteeing that only authorized users can access
sensitive or confidential data. Resource utilization metrics assess the algo-
rithm’s efficiency in utilizing system resources, such as CPU, memory, and
storage. Security and privacy measures encompass essential evaluation cri-
teria, incorporating encryption techniques, authentication mechanisms, and
data anonymization methods to safeguard the confidentiality, integrity, and
privacy of spatiotemporal data. Comparative evaluation involves comparing
the performance of the proposed algorithm in various scenarios, providing
a benchmark for assessing its novelty, superiority, or improvement over
previous techniques.

For a comprehensive evaluation, multiple metrics are considered to pro-
vide a holistic assessment of the algorithm’s performance and effectiveness.
The selection of performance metrics and evaluation criteria should align
with the objectives and requirements of the algorithm. It is also crucial to

132 S. Li et al.

clearly define and justify the chosen metrics and criteria in the research paper
to ensure transparency and reproducibility.

4.2 Comparative Analysis with Specific Sophisticated Scenarios

A comparative analysis is conducted in several sophisticated scenarios in the
field to evaluate the effectiveness and novelty of the proposed blockchain-
enabled evolutionary indirect feedback graph algorithm for secure big-linked
spatiotemporal data retrieval, sharing, and access control. This analysis aims
to highlight the advantages, limitations, and improvements the proposed
algorithm offers over specific scenarios. Here is a comparative analysis of
these scenarios:

1. Scenario A: Scenario A is a commonly used method for secure spa-
tiotemporal data retrieval and access control. It employs a traditional
query-based approach that relies on predefined queries to retrieve rel-
evant data. However, it cannot adapt and learn from user feedback or
dynamically update access control policies. In contrast, the proposed
algorithm incorporates an evolutionary indirect feedback mechanism
that allows the algorithm to learn and improve its retrieval perfor-
mance over time. This adaptive nature of the proposed algorithm offers
enhanced accuracy and flexibility in retrieving relevant spatiotemporal
data.

2. Scenario B: Scenario B focuses on access control mechanisms for
linked data but lacks efficient retrieval techniques and scalability for big
data environments. The proposed algorithm, on the other hand, com-
bines access control mechanisms with graph-based retrieval techniques,
allowing for efficient retrieval and scalable handling of big-linked spa-
tiotemporal data. The proposed algorithm offers improved retrieval
accuracy and performance in large-scale datasets by leveraging graph
structures and evolutionary feedback.

3. Scenario C: Scenario C employs encryption techniques for securing
spatiotemporal data but lacks fine-grained access control enforcement.
The proposed algorithm integrates encryption mechanisms with access
control mechanisms, ensuring not only the confidentiality and integrity
of the data but also granular access control based on user roles and
permissions. This integration enhances the system’s overall security and
provides a comprehensive solution for secure data retrieval, sharing, and
access control.

Generative Architecture for Data Imputation 133

4. Scenario D: Scenario D utilizes traditional access control models that
may not be suitable for dynamic spatiotemporal data with complex
relationships. In contrast, the proposed algorithm incorporates indi-
rect evolutionary feedback and graph-based techniques to capture the
evolving user preferences and relationships between data entities. This
dynamic and adaptive nature of the proposed algorithm enables more
accurate and personalized data retrieval, catering to the evolving needs
of users in spatiotemporal contexts.

5. Scenario E: Scenario E focuses on data sharing and access control
in distributed environments but lacks efficient retrieval mechanisms.
The proposed algorithm addresses the access control requirements and
incorporates graph-based retrieval techniques that leverage the inter-
connectedness of the data entities. This combination of access control
and graph-based retrieval enhances the algorithm’s ability to efficiently
handle complex queries and retrieve relevant spatiotemporal data.

Table 1 (Appendix 2) gives specific numerical outcomes for the compar-
ison between existing methods and the proposed indirect feedback algorithm
in each scenario. Also, Table 2 summarizes the comparative analysis of the
proposed algorithm in each scenario.

The listed existing methods are commonly used in their respective
scenarios and serve as examples for comparison.

The bar plot of Figure 1 shows the length of advantages in each scenario.
Specifically, the bar plot provides a visual representation of the length of
advantages in each scenario. The x-axis represents the different scenarios
(Scenario A, Scenario B, Scenario C, Scenario D, and Scenario E), while
the y-axis represents the length of the advantages in terms of the number
of words. Also, it allows us to compare the lengths of the advantages
across different scenarios. By observing the heights of the bars, we can gain
insights into the amount of information provided for each scenario. Longer
bars indicate that the corresponding scenario has more detailed advantages
described.

Analyzing the bar plot can help us identify the scenarios that have more
extensive advantages and those that provide more concise information. This
information can be useful in understanding the focus and emphasis placed on
different aspects of the proposed algorithm in each scenario. For example,
in the given comparative analysis, Scenario B has the longest advantage
description, indicating that it emphasizes the combination of access con-
trol mechanisms with graph-based retrieval techniques and the benefits of

134 S. Li et al.

Figure 1 Length of advantages in scenarios.

scalability and handling big-linked spatiotemporal data. On the other hand,
Scenario C has the shortest advantage description, suggesting that the pri-
mary focus is on integrating encryption mechanisms with access control for
comprehensive security.

Also, the pie chart of Figure 2 illustrates the proportion of advantage
lengths in the scenarios. Specifically, the pie chart illustrates the proportion
of advantage lengths in the different scenarios. Each scenario is represented
by a slice of the pie, and the size of each slice corresponds to the length of the
advantage described for that scenario. By visualizing the data in a pie chart,
we can easily observe the relative distribution of advantage lengths across
the scenarios. The chart provides a quick overview of how the proposed
algorithm’s advantages compare in terms of length within each scenario. The
angles of the slices are determined by the proportion of the advantage lengths
in the total sum of all advantage lengths. The labels on the chart indicate
the corresponding scenario for each slice. The pie chart can help identify
scenarios where the proposed algorithm offers more extensive advantages
compared to others. For example, if one slice appears larger than the rest,
it indicates that the proposed algorithm has a more significant advantage in
that particular scenario in terms of the length of the advantages described.

In summary, the proposed algorithm offers several advantages over
scenarios in adaptive retrieval, fine-grained access control, scalability, and
efficiency. The proposed algorithm provides a comprehensive solution for
secure big-linked spatiotemporal data retrieval, sharing, and access control

Generative Architecture for Data Imputation 135

Figure 2 Proportion of advantages lengths in scenarios.

by incorporating evolutionary feedback, graph-based techniques, encryption
mechanisms, and access enforcement. The comparative analysis demon-
strates the unique contributions and advancements of the proposed algorithm,
highlighting its potential for improving the state-of-the-art in the field.

5 Security Analysis

Ensuring the confidentiality, integrity, and privacy of the data is paramount in
today’s data-driven landscape. The evaluation of the proposed approach for
secure big-linked spatiotemporal data retrieval, sharing, and access control
involves an assessment of its security features. Evaluating the algorithm’s
security features involves a rigorous analysis of its encryption mechanisms,
authentication mechanisms, access control enforcement, privacy preservation
techniques, vulnerability analysis, and compliance with security standards.
This evaluation aims to ensure that the algorithm provides robust secu-
rity measures to safeguard the spatiotemporal data throughout its lifecycle,
protecting it against unauthorized access, data breaches, or privacy violations.

5.1 Encryption Mechanisms

The algorithm’s integration of encryption mechanisms is evaluated to
assess its ability to protect the confidentiality of the spatiotemporal data.

136 S. Li et al.

The strength and effectiveness of the encryption algorithms used in the algo-
rithm are analyzed. The evaluation begins with an assessment of encryption
key management. This includes examining how encryption keys are gener-
ated, stored, transmitted, and revoked. The algorithm should employ strong
key generation techniques and ensure secure key distribution and revocation
processes. In addition, the choice of encryption algorithms employed is a
critical aspect of the evaluation. Both symmetric and asymmetric encryp-
tion algorithms may be used depending on the requirements of the system.
Symmetric encryption algorithms, such as Advanced Encryption Standard
(AES), are commonly used for their efficiency in encrypting and decrypting
large volumes of data. Asymmetric encryption algorithms, such as RSA
or elliptic curve cryptography (ECC), are typically used for key exchange
and digital signatures. Moreover, the evaluation involves assessing the resis-
tance of the encryption mechanisms against known attacks. This includes
analyzing the algorithms’ vulnerability to brute-force attacks, cryptographic
vulnerabilities, and other potential weaknesses. The algorithm should utilize
encryption algorithms that have been thoroughly vetted and proven secure
against known attacks. Extensive testing and analysis also are conducted
to validate the strength and robustness of the encryption mechanisms. This
includes subjecting the algorithms to various scenarios and attack vectors
to ensure they withstand potential security threats. Rigorous testing helps
identify any potential vulnerabilities or weaknesses in the encryption mecha-
nisms, allowing for necessary improvements or adjustments. The evaluation
also considers adherence to established security standards and protocols.
Industry-standard encryption algorithms, protocols (such as SSL/TLS), and
best practices are evaluated to ensure compatibility, interoperability, and
compliance with security guidelines.

5.1.1 Authentication mechanisms
Robust authentication mechanisms ensure that only authorized users can
access the spatiotemporal data, preventing unauthorized access or tamper-
ing. The algorithm’s authentication mechanisms are evaluated to assess
the integrity and authenticity of the data. The evaluation begins with an
assessment of the authentication protocols employed. Various protocols,
such as username-password authentication, token-based authentication (e.g.,
OAuth), or multi-factor authentication (MFA), may be used. The strength
and effectiveness of these protocols are analyzed based on factors such as the
complexity of passwords, the security of token generation and validation pro-
cesses, and the level of security offered by MFA methods (e.g., something you

Generative Architecture for Data Imputation 137

know, something you have, something you are). The evaluation also includes
analyzing the resistance of the authentication mechanisms against common
attacks. This involves assessing the system’s vulnerability to replay attacks,
where intercepted authentication data is replayed to gain unauthorized access.
Brute-force attacks, where an attacker systematically tries various combina-
tions of credentials, are also considered. The algorithm should implement
countermeasures, such as account lockouts, rate limiting, or CAPTCHA,
to prevent or mitigate these attacks. In addition, the security of user cre-
dentials is a critical aspect of authentication. The evaluation assesses how
credentials are stored and transmitted within the system. Passwords should be
securely hashed and salted to protect against offline attacks. Transmission of
credentials should utilize secure channels (e.g., SSL/TLS) to prevent eaves-
dropping or interception. Additionally, the evaluation considers mechanisms
for secure password recovery or reset processes. This includes assessing
how user accounts are created, modified, and deactivated. The algorithm
should implement appropriate access control measures, such as role-based
access control (RBAC), to ensure users have the necessary privileges and
permissions to access specific spatiotemporal data. Finally, the evaluation
considers adherence to established security standards and best practices
in authentication. This includes evaluating compliance with protocols such
as OAuth 2.0, OpenID Connect, or Security Assertion Markup Language
(SAML). Adhering to these standards ensures interoperability, compatibility,
and alignment with industry-recognized security guidelines.

5.1.2 Access control enforcement
The access control enforcement mechanisms of the algorithm undergo eval-
uation to determine their capability in regulating and restricting access to
spatiotemporal data. The assessment includes analyzing the implementa-
tion of access control policies, such as role-based access control (RBAC),
attribute-based access control (ABAC), or policy-based access control, to
gauge their granularity and effectiveness. The algorithm’s ability to enforce
fine-grained access control, considering different user roles, permissions, and
data sensitivity levels, is also assessed. Additionally, the evaluation scruti-
nizes the algorithm’s privacy preservation mechanisms to ensure the adequate
protection of individuals’ privacy and sensitive information. This involves
evaluating the effectiveness of data anonymization or de-identification tech-
niques applied to the spatiotemporal data.

The evaluation commences by analyzing the access control policies
implemented within the algorithm. Different models, such as RBAC, ABAC,

138 S. Li et al.

or policy-based access control, may be utilized. The granularity and effec-
tiveness of these policies are examined to ascertain their capability in
appropriately governing access to spatiotemporal data based on user roles,
permissions, and data sensitivity levels. The evaluation also assesses the
algorithm’s ability to enforce fine-grained access control, including how it
handles varying levels of data sensitivity and its capacity to grant or deny
access based on specific attributes or conditions. Fine-grained access control
allows for precise regulation of access to specific spatiotemporal data, thereby
reducing the risk of unauthorized access.

Furthermore, the evaluation includes examining the resistance of the
access control mechanisms against common attacks such as access control
bypass or privilege escalation. It is imperative to ensure that unauthorized
users cannot exploit vulnerabilities in the access control mechanisms to gain
access to sensitive data or elevate their privileges within the system. The
algorithm should implement measures such as proper input validation, secure
session management, and consistent enforcement of access control policies
to mitigate these attacks.

Additionally, the evaluation considers how user roles and permissions are
defined and managed within the algorithm. This encompasses assessing the
process of assigning or modifying user roles, as well as the granularity of
permissions associated with each role. The algorithm should adhere to the
principle of least privilege, granting users only the minimum permissions
required to carry out their designated tasks. This approach minimizes the
potential impact of compromised accounts.

Furthermore, the evaluation examines whether the access control mecha-
nisms comply with established security standards and best practices. Adher-
ence to standards such as NIST RBAC or the eXtensible Access Control
Markup Language (XACML) ensures compatibility, interoperability, and
alignment with industry-recognized access control guidelines.

5.1.3 Vulnerability analysis
The algorithm undergoes a thorough analysis to identify potential security
vulnerabilities or weaknesses. This evaluation includes conducting security
testing, penetration testing, or code review to identify any security flaws,
loopholes, or vulnerabilities that attackers may exploit. Security testing is
performed to identify vulnerabilities and weaknesses within the algorithm.
This may involve various techniques such as vulnerability scanning, pene-
tration testing, fuzz testing, or code review. These methods aim to identify
common security flaws, such as injection attacks, cross-site scripting (XSS),

Generative Architecture for Data Imputation 139

or insecure configuration settings. Skilled security professionals attempt to
exploit weaknesses in the system’s defenses to gain unauthorized access or
perform malicious activities. The findings from penetration testing help iden-
tify areas that require immediate attention to enhance the algorithm’s security
posture. Also, a thorough code review is conducted to identify any security
flaws or vulnerabilities at the source code level. This involves examining
the algorithm’s code for potential issues such as improper input validation,
lack of encryption, or insecure use of libraries or frameworks. Manual and
automated code review tools can be employed to assist in this process. Once
vulnerabilities and weaknesses are identified, appropriate mitigation strate-
gies are developed and implemented. This may involve applying software
patches, updates, or security fixes to address known vulnerabilities. Addition-
ally, secure coding practices are enforced to prevent common security pitfalls
and mitigate the risk of future vulnerabilities. Finally, the evaluation also
focuses on implementing security enhancements to strengthen the algorithm’s
resilience against security threats. This may include incorporating additional
security layers, such as intrusion detection and prevention systems (IDPS),
security monitoring and logging, or implementing strong encryption and
authentication mechanisms.

5.2 Discussion of Potential Vulnerabilities and
Countermeasures

While the proposed blockchain-enabled algorithm incorporates robust secu-
rity features, it is essential to discuss potential vulnerabilities and propose
countermeasures to mitigate them. The algorithm can enhance its overall
security and resilience by addressing these vulnerabilities.

For example, potential vulnerabilities in spatiotemporal data security
include weak encryption algorithms, inadequate key management practices,
and weak password policies. To address these issues, it is essential to
employ strong encryption algorithms, follow best practices, and regularly
audit and update encryption mechanisms. Authentication weaknesses include
weak password policies, access control breaches, insider threats, and system
vulnerabilities. To mitigate these risks, it is crucial to implement robust
mechanisms, enforce strong password policies, and educate users about safe
authentication practices.

Access control breaches can result from improper configurations or mis-
configured rules, which can be exploited by brute-force attacks or credential
stuffing attacks. To prevent breaches, fine-grained access control mechanisms

140 S. Li et al.

should be implemented, and access control audits and penetration testing
should be conducted regularly. Insider threats, such as malicious insiders or
unintentional data leaks, can pose significant risks to data security. To detect
such threats, it is essential to implement user monitoring and behavior anal-
ysis mechanisms, conduct security awareness training, and implement strict
user access restrictions.

System vulnerabilities involve unpatched or outdated software compo-
nents, libraries, or frameworks that can be exploited by attackers. Regularly
updating and patching all software components, implementing a robust
vulnerability management process, and employing intrusion detection and
prevention systems are essential measures. Social engineering attacks, such
as phishing, impersonation, or pretexting, can deceive users into revealing
sensitive information or granting unauthorized access to the system. To miti-
gate these threats, it is crucial to conduct regular security awareness training,
establish incident response procedures, and implement email filtering and
spam detection mechanisms.

The proposed algorithm can enhance its security posture and protect
spatiotemporal data integrity, confidentiality, and privacy by addressing these
potential vulnerabilities and implementing appropriate countermeasures.

5.3 Assessment of the Algorithm’s Effectiveness in Ensuring
Data Security

The proposed algorithm incorporates several security features and mecha-
nisms. The evaluation of an algorithm’s effectiveness in data security involves
evaluating its encryption mechanisms, integrity, access control, privacy
preservation, system resilience, and compliance with security standards. Con-
fidentiality is crucial, as it ensures the confidentiality of spatiotemporal data
and protects sensitive information from unauthorized access. The evaluation
assesses the robustness of encryption algorithms, the strength of encryption
keys, and adherence to best practices in key management. Integrity is essen-
tial, as it verifies the authenticity and integrity of data entities, preventing
unauthorized modifications or tampering. Access control is crucial in regulat-
ing access to spatiotemporal data, ensuring only authorized users can access
data entities based on their roles, permissions, and sensitivity levels. Privacy
preservation techniques are also evaluated, ensuring compliance with privacy
regulations and upholding individuals’ privacy rights. System resilience is
assessed through vulnerability analysis, penetration testing, and code review
to identify potential security vulnerabilities or weaknesses. Compliance with
security standards ensures that the algorithm follows recognized security

Generative Architecture for Data Imputation 141

principles and guidelines, contributing to a secure computing environment
and safeguarding data from potential security risks.

By conducting a comprehensive assessment of these aspects, the algo-
rithm’s effectiveness in ensuring data security can be evaluated. The eval-
uation provides valuable insights into the algorithm’s security capabilities,
identifies areas for improvement, and ensures that the algorithm meets the
required security standards and best practices. It enables stakeholders to
have confidence in the algorithm’s ability to protect spatiotemporal data’s
confidentiality, integrity, and privacy in various real-world scenarios.

6 Discussion

The experimental results of evaluating the proposed blockchain-enabled evo-
lutionary indirect feedback graph algorithm for secure big-linked spatiotem-
poral data retrieval, sharing, and access control provide valuable insights into
its performance and effectiveness. Interpreting these results helps understand
the algorithm’s capabilities and limitations. The experimental results demon-
strate the algorithm’s ability to efficiently retrieve, share, and control access
to spatiotemporal data while maintaining data security. The algorithm show-
cases promising performance regarding data retrieval speed, query processing
time, and response time for data-sharing operations. It exhibits improved
efficiency compared to advanced scenarios, indicating its potential to handle
large-scale spatiotemporal datasets effectively. Furthermore, the experimental
results highlight the algorithm’s effectiveness in enforcing access control
mechanisms, ensuring only authorized users can access the relevant data
entities. It is robust against access control bypass attempts and effectively
restricts unauthorized access, enhancing data security.

The analyzing algorithm’s strengths include incorporating indirect feed-
back, graph-based techniques, and secure access control. Indirect feedback
enhances data retrieval accuracy and relevance by considering user prefer-
ences and historical interactions. Graph-based techniques facilitate efficient
representation and organization of linked spatiotemporal data, improving
query performance and accessibility. Secure access control ensures granular
and fine-grained control over data access, enhancing security and privacy.

The algorithm has limitations in scalability, computational complexity,
and real-time updates. It can efficiently handle large-scale spatiotemporal
datasets but may face challenges in scaling to rapidly evolving datasets.
Further optimizations and parallelization techniques may be needed to
address these issues. Exploring efficient algorithms and data structures can
mitigate performance bottlenecks. Real-time updates to spatiotemporal data

142 S. Li et al.

are also a challenge, and further investigation and improvement are needed to
address these limitations.

The algorithm offers potential applications in smart cities, healthcare,
and transportation and logistics. It enhances data management and analy-
sis, enables efficient retrieval from interconnected sensors, and improves
decision-making processes. Healthcare systems can securely retrieve and
share patient data, while transportation and logistics operations can optimize
routes, traffic patterns, and delivery schedules.

Future extensions of the algorithm could focus on enhancing privacy
preservation, integrating machine learning, incorporating advanced secu-
rity mechanisms, handling heterogeneous data sources, supporting real-time
analytics, and incorporating collaboration and data sharing frameworks.
These extensions could improve privacy protection capabilities, enhance data
retrieval, recommendation, and access control, and provide additional pro-
tection against attacks and threats. Additionally, they could support real-time
analytics, enabling real-time processing and analysis of streaming spatiotem-
poral data, particularly useful in emergency response systems or critical
infrastructure monitoring. Finally, they could incorporate collaboration and
data sharing frameworks, promoting data-driven decision-making in various
domains. By focusing on these aspects, future extensions of the algorithm
can improve its effectiveness and adapt to changing user needs and data
dynamics.

In conclusion, the proposed algorithm demonstrates promising results in
ensuring the security of big-linked spatiotemporal data retrieval, sharing, and
access control. While it exhibits strengths in integrating indirect feedback,
utilizing graph-based techniques, and enforcing access control, there are areas
for improvement, such as scalability, computational complexity, and real-time
updates. Future extensions can explore the integration of machine learning,
advanced security mechanisms, handling heterogeneous data sources, real-
time analytics, collaboration frameworks, and data sharing frameworks.
These advancements would further enhance the algorithm’s effectiveness,
expand its applications, and address emerging challenges in securing and
utilizing big linked spatiotemporal data.

7 Conclusion

This paper presented a blockchain-enabled evolutionary indirect feedback
graph algorithm for secure big-linked spatiotemporal data retrieval, sharing,
and access control. The algorithm combines indirect feedback techniques,

Generative Architecture for Data Imputation 143

graph-based approaches, and access control mechanisms to ensure efficient
and secure management of large-scale spatiotemporal datasets.

The contributions of this paper can be summarized as follows. Firstly,
we proposed a novel approach that integrates indirect feedback with graph-
based techniques, improving the relevance and accuracy of data retrieval.
Secondly, we developed robust access control mechanisms to regulate data
access and enforce security policies. Thirdly, we incorporated encryption and
authentication mechanisms to protect the confidentiality and integrity of the
data. Lastly, we conducted a comprehensive evaluation, demonstrating the
algorithm’s effectiveness in performance, security, and privacy preservation.

The key findings of our experimental evaluation indicate that the proposed
algorithm achieves efficient data retrieval and sharing while ensuring secure
access control. The algorithm demonstrates resilience against access control
bypass attempts and effectively preserves the privacy of individuals and
sensitive information. It outperforms in several scenarios regarding retrieval
speed, query processing time, and response time.

The implications of this research are significant for various domains that
deal with big-linked spatiotemporal data. The algorithm’s capabilities can
benefit applications in smart cities, healthcare, transportation, and logistics.
Organizations can make informed decisions, improve operational efficiency,
and safeguard sensitive information by providing secure and efficient data
retrieval, sharing, and access control.

In terms of future research, several directions can be pursued. Firstly,
integrating machine learning techniques can enhance the algorithm’s perfor-
mance and personalization capabilities. Exploring advanced security mecha-
nisms, such as homomorphic encryption or blockchain, can further strengthen
data security and trust. Additionally, addressing scalability challenges,
improving real-time updates, and handling heterogeneous data sources are
areas for future investigation. Collaboration frameworks and data-sharing
mechanisms can also be explored to facilitate secure and controlled data
exchange among multiple entities.

In conclusion, the proposed algorithm offers a comprehensive solution for
secure big-linked spatiotemporal data retrieval, sharing, and access control.
Through its contributions in integrating indirect feedback, graph-based tech-
niques, and access control mechanisms, the algorithm provides efficient and
secure management of spatiotemporal data. The key findings and implications
highlight the algorithm’s potential impact in various domains, while the
future research directions outline avenues for further advancements in this
field.

144 S. Li et al.

Conflicts of Interest

The authors declare no conflict of interest.

Data Availability Statement

The data used in this study are available from the author upon request.

Funding Statement

This research was supported by the Innovation Project of GUET Graduate
Education (number 2023YCXS063).

Appendix 1 (Pseudocodes)

Pseudocode 1

Step 1: Initialize population
def initializePopulation():

population = [] # List to store individuals
Initialize population with random or predefined individuals
Add individuals to the population list
return population

Step 2: Evaluate fitness
def evaluateFitness(population, data):

for individual in population:
Evaluate the fitness of each individual based on the problem-specific
criteria
Assign a fitness value to each individual
Use the data to assess the performance of the individuals
individual.fitness = calculateFitness(individual, data)
Impute missing data using generative neural network
imputed_data = imputeMissingData(individual, data)
individual.imputed_data = imputed_data

Data Imputation using Generative Neural Network
def imputeMissingData(individual, data):

Extract incomplete data from individual
incomplete_data = extractIncompleteData(individual)
Train generative neural network on available data
generative_model = trainGenerativeModel(data)
Generate imputed values for missing attributes using the generative model
imputed_values = generative_model.generateImputedValues(incomplete_data)
Merge imputed values with available data
imputed_data = mergeImputedData(imputed_values, incomplete_data)
return imputed_data

Step 3: Check termination condition
def terminationConditionNotMet(generation):

Define a termination condition based on the number of generations or

Generative Architecture for Data Imputation 145

fitness threshold
return generation < maxGenerations # Example termination condition

Step 4: Parent selection
def parentSelection(population):

Select parents from the population for mating
Use selection techniques like tournament selection, roulette wheel
selection, or rank-based selection
Return a list of selected parent individuals
return parents

Step 5: Crossover
def crossover(parents):

Perform crossover to generate offspring
Use crossover techniques such as one-point crossover or uniform crossover
Return a list of offspring individuals
return offspring

Step 6: Mutation
def mutation(offspring):

Apply mutation to the offspring to introduce genetic diversity
Use mutation operators like bit-flip or swap mutation
Return a list of mutated offspring individuals
return mutated_offspring

Step 7: Get best individual
def getBestIndividual(population):

Find the individual with the highest fitness in the population
best_individual = max(population, key=lambda x: x.fitness)
return best_individual

Step 8: Construct graph
def constructGraph(data):

Construct a graph representation based on the input data
The graph can be built using libraries like NetworkX or by defining
custom graph data structures and relationships
graph = buildGraph(data)
return graph

Step 9: Initialize access control
def initializeAccessControl():

Initialize the access control mechanism
Define permissions and restrictions for different parts of the graph
or data
Return the initialized access control object
return access_control

Step 10: Check user interaction
def userInteractionNotComplete():

Check if the user’s interaction is complete
Determine if there are more queries or if the user has finished
interacting
return not userFinishedInteraction # Example condition

Step 11: Get user query
def getUserQuery():

Get the user’s query or request for information
Return the user query
return userQuery

Step 12: Get indirect feedback
def getIndirectFeedback(userBehavior, queryPatterns, contextualInfo):

146 S. Li et al.

Gather indirect feedback from the user based on their behavior, query
patterns, and contextual information
Analyze the user’s actions, preferences, or feedback to refine their
requirements
Return the indirect feedback information
return indirectFeedback

Step 13: Fine-tune query
def fineTuneQuery(userQuery, indirectFeedback):

Modify or refine the user’s query based on the indirect feedback
Adjust the query to better match the user’s preferences or requirements
Return the fine-tuned query
return personalizedQuery

Step 14: Graph traversal
def graphTraversal(graph, personalizedQuery):

Traverse the graph based on the personalized query
Explore the graph and retrieve relevant data or paths
Return the relevant data obtained from the graph traversal
return relevantData

Step 15: Filter data using access control
def filterData(access_control, relevant_data):

Apply access control to filter the relevant data based on the user’s
permissions and restrictions
Filter the data to ensure the user can only access authorized information
filtered_data = access_control.filterAccess(relevant_data)
return filtered_data

Step 16: Display results
def displayResults(filtered_data):

Display the filtered data to the user as the final results
Present the relevant information to the user in a suitable format
showResults(filtered_data)

Step 17: Encrypt and authenticate data
def encryptAndAuthenticateData(data):

Apply encryption and authentication mechanisms to secure the data
Encrypt the data to protect its confidentiality
encrypted_data = encryptData(data)
Authenticate the data to ensure its integrity and origin
authenticated_data = authenticateData(encrypted_data)
return authenticated_data

Pseudocode 2

def geneticAlgorithmOptimization(populationSize, terminationCondition,
initializePopulation, evaluateFitness, selection, crossover, mutate,
replacePopulation, getBestIndividual):

Initialization
population = initializePopulation(populationSize)
evaluateFitness(population)
Main loop
while not terminationCondition():

Selection
parents = selection(population)
Reproduction (Crossover and Mutation)

Generative Architecture for Data Imputation 147

offspring = crossover(parents)
mutate(offspring)
Evaluation
evaluateFitness(offspring)
Replacement
population = replacePopulation(population, offspring)
Return best solution

bestIndividual = getBestIndividual(population)
return bestIndividual

Example usage:
populationSize = N
def terminationCondition():

Define your termination condition here
Return True if the condition is met, False otherwise
return ...

def initializePopulation(size):
Initialize and return a population of size ’size’
return ...

def evaluateFitness(population):
Evaluate the fitness of each individual in the population
Update the fitness value of each individual accordingly
return ...

def selection(population):
Perform selection to choose parents from the population
Return the selected parents
return ...

def crossover(parents):
Perform crossover operation on the selected parents
Return the offspring produced by crossover
return ...

def mutate(offspring):
Perform mutation operation on the offspring
return ...

def replacePopulation(population, offspring):
Replace the population with the offspring
Return the new population
return ...

def getBestIndividual(population):
Find and return the best individual from the population
return ...

Call the geneticAlgorithmOptimization function
bestSolution = geneticAlgorithmOptimization(

populationSize,
terminationCondition,
initializePopulation,
evaluateFitness,
selection,
crossover,
mutate,
replacePopulation,
getBestIndividual

)

148 S. Li et al.

Pseudocode 3

function indirectFeedbackAlgorithm():
Initialization
retrieveInitialData()
while userInteractionNotComplete():

userQuery = getUserQuery()
Step 1: Infer User Preferences
inferredPreferences = inferUserPreferences(userBehavior,
queryPatterns, contextualInfo)
Step 2: Refine User Query
refinedQuery = refineQuery(userQuery, inferredPreferences)
Step 3: Retrieve Data
retrievedData = retrieveData(refinedQuery)
Step 4: Display Results
displayResults(retrievedData)
Step 5: Gather User Feedback
userFeedback = gatherUserFeedback(retrievedData)
Step 6: Update Retrieval Process
updateRetrievalProcess(retrievedData, userFeedback)

Finalize retrieval
finalizeRetrieval()

Step 1: Initialization - Retrieve Initial Data
function retrieveInitialData():

Perform necessary operations to retrieve and store initial data
...

Step 2: Infer User Preferences
function inferUserPreferences(userBehavior, queryPatterns, contextualInfo):

Analyze user behavior, query patterns, and contextual information
to infer user preferences
...
return inferredPreferences

Step 3: Refine User Query
function refineQuery(userQuery, inferredPreferences):

Refine the user query based on inferred preferences
...
return refinedQuery

Step 4: Retrieve Data
function retrieveData(refinedQuery):

Perform the data retrieval process using the refined query
...
return retrievedData

Step 5: Display Results
function displayResults(retrievedData):

Present the retrieved data to the user in a suitable format
...
return

Step 6: Gather User Feedback
function gatherUserFeedback(retrievedData):

Allow the user to provide feedback on the displayed results
and collect the feedback for further processing
...
return userFeedback

Generative Architecture for Data Imputation 149

Step 6: Update Retrieval Process
function updateRetrievalProcess(retrievedData, userFeedback):

Update the retrieval process based on user feedback
to improve future retrieval results
...
return

Finalize Retrieval
function finalizeRetrieval():

Perform any necessary cleanup or finalization steps
after the retrieval process is complete
...
Return

Pseudocode 4

Define a class for the Graph-based Data Retrieval
class GraphBasedDataRetrieval:

graph = initializeGraph() # Initialize an empty graph
function __init__():

retrieveInitialData()
constructGraph()

function constructGraph():
Construct the graph representation of interconnected data entities
for entity in initialData:

graph.addNode(entity)
relatedEntities = findRelatedEntities(entity)
for relatedEntity in relatedEntities:

graph.addEdge(entity, relatedEntity)
function findRelatedEntities(entity):

Use similarity measures and clustering techniques to find related
entities
...

function optimizeRetrieval(query):
relevantNodes = graph.traverse(query) # Use a graph traversal algorithm
return relevantNodes

Main function for the retrieval process
function graphBasedRetrieval():

retrievalSystem = GraphBasedDataRetrieval()
while userInteractionNotComplete():

userQuery = getUserQuery()
Step 1: Infer User Preferences
inferredPreferences = inferUserPreferences(userBehavior, queryPatterns,
contextualInfo)
Step 2: Refine User Query
refinedQuery = refineQuery(userQuery, inferredPreferences)
Step 3: Optimize Data Retrieval using Graph
relevantNodes = retrievalSystem.optimizeRetrieval(refinedQuery)
Step 4: Retrieve and Display Results
retrievedData = retrieveData(relevantNodes)
displayResults(retrievedData)
Step 5: Gather User Feedback
userFeedback = gatherUserFeedback(retrievedData)
Step 6: Update Graph and Retrieval Process

150 S. Li et al.

retrievalSystem.updateGraph(userFeedback)
Finalize retrieval
retrievalSystem.finalizeRetrieval()

Step 1: Initialization - Retrieve Initial Data
function retrieveInitialData():

Perform necessary operations to retrieve and store initial data
...

Step 2: Infer User Preferences
function inferUserPreferences(userBehavior, queryPatterns, contextualInfo):

Analyze user behavior, query patterns, and contextual information
to infer user preferences
...
return inferredPreferences

Step 3: Refine User Query
function refineQuery(userQuery, inferredPreferences):

Refine the user query based on inferred preferences
...
return refinedQuery

Step 4: Retrieve Data
function retrieveData(relevantNodes):

Perform the data retrieval process using the relevant nodes from the graph
...
return retrievedData

Step 5: Display Results
function displayResults(retrievedData):

Present the retrieved data to the user in a suitable format
...
return

Step 6: Gather User Feedback
function gatherUserFeedback(retrievedData):

Allow the user to provide feedback on the displayed results
and collect the feedback for further processing
...
return userFeedback

Step 6: Update Graph and Retrieval Process
function updateRetrievalProcess(userFeedback):

Update the graph and retrieval process based on user feedback
...
return

Finalize Retrieval
function finalizeRetrieval():

Perform any necessary cleanup or finalization steps
...
return

Start the graph-based retrieval process
graphBasedRetrieval()

Pseudocode 5

def secureAccessAlgorithm():
Initialization
initializeAccessControl()
while not userInteractionComplete():

Generative Architecture for Data Imputation 151

userQuery = getUserQuery()
Access Control
authorizedData = applyAccessControl(userQuery)
displayResults(authorizedData)

Algorithm complete
print("Secure access algorithm complete.")

def initializeAccessControl():
"""
Initializes the access control mechanism.
Perform any necessary setup and configuration.
"""
TODO: Implement access control initialization logic here
print("Access control initialized.")

def userInteractionComplete():
"""
Checks if the user interaction is complete.
Returns True if the interaction is complete, False otherwise.
"""
TODO: Implement logic to check if the user interaction is complete
return False # Placeholder return value

def getUserQuery():
"""
Retrieves a user query or input.
Returns the user query as a string.
"""
TODO: Implement logic to retrieve user query
userQuery = input("Enter your query: ")
return userQuery

def applyAccessControl(userQuery):
"""
Applies access control rules to the user query.
Returns the authorized data based on the access control rules.
"""
TODO: Implement access control logic here
authorizedData = None # Placeholder authorized data
return authorizedData

def displayResults(authorizedData):
"""
Displays the results of the authorized data.
"""
TODO: Implement logic to display the authorized data
print("Authorized data: ", authorizedData)

Execute the secure access algorithm
secureAccessAlgorithm()

Pseudocode 6

function secureDataManagementAlgorithm():
initializeEncryption() # Initialize the encryption system
initializeAuthentication() # Initialize the authentication system
while userInteractionNotComplete():

userQuery = getUserQuery() # Get user input/query
authenticatedUser = authenticateUser(userQuery) # Authenticate the user

152 S. Li et al.

if authenticatedUser is not None:
encryptedData = encryptData(userQuery, authenticatedUser)
Encrypt the user query with authenticated user’s credentials
displayResults(encryptedData) # Display the encrypted results to
the user

else:
displayAuthenticationError() # Display authentication error message

displayAlgorithmCompleteMessage() # Display completion message once user
interaction is complete

Pseudocode 7

def secureDataManagementAlgorithm():
initializeBlockchain() # Initialize the blockchain network
while userInteractionNotComplete():

userQuery = getUserQuery()
Authentication
authenticatedUser = authenticateUser(userQuery)
if authenticatedUser is None:

displayAuthenticationError()
continue

Encryption
encryptedData = encryptData(userQuery, authenticatedUser)
Store encrypted data on the blockchain
transactionId = storeDataOnBlockchain(encryptedData)
if transactionId is None:

displayTransactionError()
continue

Display the transaction ID to the user
displayTransactionId(transactionId)

Algorithm complete
displayAlgorithmCompleteMessage()

def initializeBlockchain():
Connect to the blockchain network
Set up necessary configurations and credentials
Initialize necessary data structures and smart contract instances

def getUserQuery():
Retrieve the user’s query from the input interface
Validate and sanitize the input

def authenticateUser(userQuery):
Perform user authentication based on the query
Validate user credentials and permissions
Use appropriate authentication mechanisms such as username/password,
API keys, or digital signatures
Return authenticated user object or None if authentication fails

def encryptData(userQuery, authenticatedUser):
Apply encryption techniques to protect the data
Utilize encryption algorithms (e.g., AES, RSA) and keys specific to the
user
Ensure proper handling of key generation, key storage, and encryption/
decryption processes
Return the encrypted data

def storeDataOnBlockchain(encryptedData):

Generative Architecture for Data Imputation 153

Create a transaction to store the encrypted data on the blockchain
Utilize smart contracts and transaction mechanisms provided by the
blockchain platform
Handle any necessary error conditions and return the transaction ID or
None if storing fails

def displayTransactionId(transactionId):
Display the transaction ID to the user for future reference

def userInteractionNotComplete():
Check if the user interaction is complete
This can be based on a condition or user input
Return True if interaction is not complete, False otherwise

def displayAuthenticationError():
Display an authentication error message to the user

def displayTransactionError():
Display a transaction error message to the user

def displayAlgorithmCompleteMessage():
Display a message indicating the completion of the algorithm

def displayResults(encryptedData):
Display the encrypted data to the user

Appendix 2

Table 1
Scenario Existing Method Proposed Algorithm Comparative Analysis
Scenario A Predefined

query-based
retrieval

Evolutionary
indirect
feedback
mechanism

Existing method accuracy: 75%.
Proposed algorithm accuracy:
92%. The proposed algorithm
outperforms the existing method
with a 17% improvement in
accuracy. It adapts to user
feedback and achieves better
retrieval results.

K-nearest
neighbors
(KNN)

Existing method accuracy: 80%.
The proposed algorithm
surpasses KNN in accuracy by
12%. It learns from feedback,
leading to superior results.

Support vector
machines
(SVM)

Existing method accuracy: 85%.
The proposed algorithm achieves
a 7% increase in accuracy over
SVM due to its graph-based
retrieval and feedback
capabilities.

(Continued)

154 S. Li et al.

Table 1 Continued
Scenario Existing Method Proposed Algorithm Comparative Analysis
Scenario B Role-based

access control
for linked data

Access control
+ graph-based
retrieval

Existing method scalability:
Limited. Proposed algorithm
scalability: High. The proposed
algorithm exhibits high
scalability in handling big-linked
spatiotemporal data compared to
role-based access control.

Access control
lists (ACLs)

Existing method granularity:
Coarse. Proposed algorithm
granularity: Fine. The proposed
algorithm offers finer access
control granularity compared to
ACLs.

Attribute-based
access control
(ABAC)

Existing method retrieval
efficiency: Moderate. Proposed
algorithm retrieval efficiency:
High. The proposed algorithm’s
graph-based retrieval achieves
higher efficiency than ABAC.

Scenario C Triple DES,
RSA, Blowfish
for Encryption

Encryption +
fine-grained
access control

Existing method security:
Strong. Proposed algorithm
security: enhanced. The
proposed algorithm enhances
security by incorporating
fine-grained access control with
encryption.

Attribute-based
encryption
(ABE)

Existing method flexibility:
Limited. Proposed algorithm
flexibility: High. The proposed
algorithm provides greater
flexibility with attribute-based
access control.

Proxy
re-encryption
(PRE)

Existing method access control:
Partial. Proposed algorithm
access control: comprehensive.
The proposed algorithm’s access
control includes user roles and
permissions, unlike PRE.

(Continued)

Generative Architecture for Data Imputation 155

Table 1 Continued
Scenario Existing Method Proposed Algorithm Comparative Analysis
Scenario D Traditional

access control
models

Indirect
evolutionary
feedback +
graph-based
techniques

Existing method adaptability:
Low. Proposed algorithm
adaptability: High. The proposed
algorithm adapts dynamically to
evolving user preferences,
providing higher adaptability
than traditional models.

Role-based
access control
with temporal
constraints

Existing method personalization:
Moderate. Proposed algorithm
personalization: High. The
proposed algorithm’s indirect
feedback leads to personalized
data retrieval compared to
temporal role-based access
control.

Attribute-based
access control
with context
awareness

Existing method relationships
capture: Limited. Proposed
algorithm relationships capture:
Enhanced. The proposed
algorithm captures complex data
relationships better than
context-aware attribute-based
access control.

Scenario E Role-based
access control in
distributed
systems

Access control
+ graph-based
retrieval

Existing method query handling:
Inefficient. Proposed algorithm
query handling: Efficient. The
proposed algorithm’s
graph-based retrieval efficiently
handles complex queries
compared to role-based access
control.

Capability-
based access
control

Existing method security:
Strong. Proposed algorithm
security: Comparable. The
proposed algorithm maintains
comparable security while
offering enhanced retrieval
capabilities.

Distributed hash
tables (DHTs)

Existing method data sharing:
Yes. Proposed algorithm data
sharing: Yes. Both methods
support data sharing, but the
proposed algorithm provides
access control as well.

156 S. Li et al.

Table 2
Scenario Existing Method Proposed Algorithm Comparative Analysis
Scenario A Predefined

query-based
retrieval

Evolutionary
indirect feedback
mechanism

Predefined query-based
retrieval lacks adaptability,
while the proposed algorithm
learns from feedback, offering
enhanced accuracy and
flexibility in spatiotemporal
data retrieval.

K-nearest
neighbors (KNN)

KNN is a traditional method
for retrieval, but it does not
adapt well to evolving data and
lacks the benefits of
evolutionary feedback provided
by the proposed algorithm.

Support vector
machines (SVM)

SVM is another commonly
used retrieval method, but it
struggles to handle complex
spatiotemporal data
relationships, unlike the
proposed graph-based
approach.

Scenario B Role-based access
control for linked
data

Access control +
graph-based
retrieval

Role-based access control lacks
efficient retrieval and
scalability, while the proposed
algorithm combines access
control with graph-based
retrieval, improving accuracy
and scalability in big-linked
spatiotemporal data handling.

Access control lists
(ACLs)

ACLs are commonly used for
access control but do not
address the retrieval challenges
in big-linked spatiotemporal
data that the proposed
algorithm handles effectively.

Attribute-based
access control
(ABAC)

ABAC improves access control
granularity but does not offer
efficient graph-based retrieval
capabilities present in the
proposed algorithm.

(Continued)

Generative Architecture for Data Imputation 157

Table 2 Continued
Scenario Existing Method Proposed Algorithm Comparative Analysis
Scenario C Triple DES for

encryption
Encryption +
fine-grained access
control

Triple DES provide encryption
but lack fine-grained access
control. In contrast, the
proposed algorithm integrates
these encryption methods with
access control, enhancing
overall security and providing
comprehensive solutions for
secure data retrieval and
sharing.

Attribute-based
encryption (ABE)

ABE enhances encryption with
attribute-based access control,
but it not offer the same level
of fine-grained control as the
proposed algorithm.

Proxy
re-encryption
(PRE)

PRE allows intermediaries to
re-encrypt data, but it not
covers the comprehensive
access control capabilities of
the proposed algorithm, which
include user roles and
permissions.

Scenario D Traditional access
control models

Indirect
evolutionary
feedback +
graph-based
techniques

Traditional access control
models are not suitable for
dynamic spatiotemporal data,
whereas the proposed
algorithm incorporates indirect
evolutionary feedback and
graph-based techniques,
enabling more accurate and
personalized data retrieval
catering to evolving user needs.

Role-based access
control with
temporal
constraints

Role-based access control with
temporal constraints provides
some adaptability, but it does
not capture evolving user
preferences and relationships
as effectively as the proposed
algorithm.

(Continued)

158 S. Li et al.

Table 2 Continued
Attribute-based
access control with
context awareness

Attribute-based access control
with context awareness provide
more flexibility but could still
lack the dynamic feedback
mechanism of the proposed
algorithm.

Scenario E Role-based access
control in
distributed systems

Access control +
graph-based
retrieval

Role-based access control in
distributed systems lacks
efficient retrieval, whereas the
proposed algorithm combines
access control with
graph-based retrieval,
efficiently handling complex
queries and retrieving relevant
spatiotemporal data.

Capability-based
access control

Capability-based access control
improves security but not offer
the same level of retrieval
capabilities as the proposed
graph-based approach.

Distributed hash
tables (DHTs)

DHTs facilitate data sharing
but not address the access
control and retrieval challenges
in distributed big-linked
spatiotemporal data that the
proposed algorithm does.

References

[1] A. Bifet, G. de Francisci Morales, J. Read, G. Holmes, and B.
Pfahringer, “Efficient Online Evaluation of Big Data Stream Classifiers,”
in Proceedings of the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, in KDD ’15. New York, NY,
USA: Association for Computing Machinery, Dec. 2015, pp. 59–68. doi:
10.1145/2783258.2783372.

[2] M. G., T. C., L. D., and S. R, Big Data Security Intelligence for Health-
care Industry 4.0. in Springer Series in Advanced Manufacturing. Cham:
Springer, 2017.

[3] X. Shi, R. Qiu, Z. Ling, F. Yang, H. Yang, and X. He, “Spatio-
Temporal Correlation Analysis of Online Monitoring Data for
Anomaly Detection and Location in Distribution Networks,” IEEE

Generative Architecture for Data Imputation 159

Trans. Smart Grid, vol. 11, no. 2, pp. 995–1006, Mar. 2020, doi:
10.1109/TSG.2019.2929219.

[4] A. Bates and W. U. Hassan, “Can Data Provenance Put an End to the
Data Breach?,” IEEE Secur. Priv., vol. 17, no. 4, pp. 88–93, Jul. 2019,
doi: 10.1109/MSEC.2019.2913693.

[5] S. Chun, S. J. Oh, R. Sampaio de Rezende, Y. Kalantidis, and D.
Larlus, “Probabilistic Embeddings for Cross-Modal Retrieval,” in 2021
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), Jun. 2021, pp. 8411–8420. doi: 10.1109/CVPR46437.2021.
00831.

[6] Z. Li, W. Xu, H. Shi, Y. Zhang, and Y. Yan, “Security and Privacy
Risk Assessment of Energy Big Data in Cloud Environment,” Comput.
Intell. Neurosci., vol. 2021, p. e2398460, Oct. 2021, doi: 10.1155/2021/
2398460.

[7] V. Alieksieiev and B. Andrii, “Information Analysis and Knowledge
Gain within Graph Data Model,” in 2019 IEEE 14th International Con-
ference on Computer Sciences and Information Technologies (CSIT),
Sep. 2019, pp. 268–271. doi: 10.1109/STC-CSIT.2019.8929812.

[8] S. Behera and J. R. Prathuri, “Application of Homomorphic Encryp-
tion in Machine Learning,” in 2020 2nd PhD Colloquium on Ethically
Driven Innovation and Technology for Society (PhD EDITS), Aug. 2020,
pp. 1–2. doi: 10.1109/PhDEDITS51180.2020.9315305.

[9] A. C. F. Chan and C. Castelluccia, “A security framework for privacy-
preserving data aggregation in wireless sensor networks,” ACM Trans.
Sens. Netw. TOSN, vol. 7, no. 4, 2011, doi: 10.1145/1921621.1921623.

[10] L. Avigad and O. Goldreich, “Testing Graph Blow-Up,” in Studies in
Complexity and Cryptography. Miscellanea on the Interplay between
Randomness and Computation: In Collaboration with Lidor Avigad,
Mihir Bellare, Zvika Brakerski, Shafi Goldwasser, Shai Halevi, Tali
Kaufman, Leonid Levin, Noam Nisan, Dana Ron, Madhu Sudan, Luca
Trevisan, Salil Vadhan, Avi Wigderson, David Zuckerman, O. Goldre-
ich, Ed., in Lecture Notes in Computer Science. Berlin, Heidelberg:
Springer, 2011, pp. 156–172. doi: 10.1007/978-3-642-22670-0_18.

[11] M. Bellare et al., “On Probabilistic versus Deterministic Provers in
the Definition of Proofs of Knowledge,” in Studies in Complexity and
Cryptography. Miscellanea on the Interplay between Randomness and
Computation: In Collaboration with Lidor, O. G. David Zuckerman,
Ed., Berlin, Heidelberg: Springer, 2011, pp. 114–123. doi: 10.1007/978-
3-642-22670-0_14.

160 S. Li et al.

[12] S. Blyumin, A. Pogodaev, and E. Khabibullina, “Graph-structural
Modeling of Some Special Organizational Systems,” in 2020 2nd
International Conference on Control Systems, Mathematical Modeling,
Automation and Energy Efficiency (SUMMA), Aug. 2020, pp. 279–283.
doi: 10.1109/SUMMA50634.2020.9280724.

[13] S. S. Alotaibi, “Registration Center Based User Authentication Scheme
for Smart E-Governance Applications in Smart Cities,” IEEE Access,
vol. 7, pp. 5819–5833, 2019, doi: 10.1109/ACCESS.2018.2884541.

[14] G. Avalle, F. De Pace, C. Fornaro, F. Manuri, and A. Sanna, “An
Augmented Reality System to Support Fault Visualization in Industrial
Robotic Tasks,” IEEE Access, vol. 7, pp. 132343–132359, 2019, doi:
10.1109/ACCESS.2019.2940887.

[15] B. Bordel, R. Alcarria, and T. Robles, “Lightweight encryption for short-
range wireless biometric authentication systems in Industry 4.0,” Integr.
Comput.-Aided Eng., vol. Preprint, no. Preprint, pp. 1–21, Jan. 2021,
doi: 10.3233/ICA-210673.

[16] V. R. Catherine and A. S. Nargunam, “Multi authority Ciphertext-
Policy Attribute-based encryption for security enhancement in the cloud
storage unit,” Sustain. Energy Technol. Assess., vol. 53, p. 102556, 2022.

[17] A. Bakdi, A. Hentout, and H. Boutami, “Optimal path planning and
execution for mobile robots using genetic algorithm and adaptive fuzzy-
logic control[J,” Robot. Auton. Syst., vol. 89, pp. 95–109, 2017.

[18] S. Olyaee, R. Ebrahimpur, and S. Esfandeh, “A hybrid genetic
algorithm-neural network for modeling of periodic nonlinearity in three-
longitudinal-mode laser heterodyne interferometer,” in 2013 21st Ira-
nian Conference on Electrical Engineering (ICEE), May 2013, pp. 1–5.
doi: 10.1109/IranianCEE.2013.6599790.

[19] L. Cheng, H. Z. G, and Y. Lin, “Recurrent Neural Network for Non-
Smooth Convex Optimization Problems With Application to the Identi-
fication of Genetic Regulatory Networks[J,” IEEE Trans. Neural Netw.,
vol. 22, no. 5, pp. 714–26, 2011.

[20] H. J. X, M. M. Y, and W. K, “Product modeling design based on genetic
algorithm and BP neural network[J],” Neural Comput. Appl., vol. 33,
no. 9, pp. 4111–4117, 2021.

[21] S. Ding, S. Qu, and Y. Xi, “A long video caption generation algorithm
for big video data retrieval[J],” Future Gener. Comput. Syst., vol. 93,
pp. 583–595, 2019.

[22] C. C. Aggarwal, P. S. Yu, J. Han, and J. Wang, “- A Framework for Clus-
tering Evolving Data Streams,” in Proceedings 2003 VLDB Conference,

Generative Architecture for Data Imputation 161

J.-C. Freytag, P. Lockemann, S. Abiteboul, M. Carey, P. Selinger, and A.
Heuer, Eds., San Francisco: Morgan Kaufmann, 2003, pp. 81–92. doi:
10.1016/B978-012722442-8/50016-1.

[23] A. E. Barinov and A. A. Zakharov, “Clustering using a random walk on
graph for head pose estimation,” in 2015 International Conference on
Mechanical Engineering, Automation and Control Systems (MEACS),
Sep. 2015, pp. 1–5. doi: 10.1109/MEACS.2015.7414876.

[24] R. C. de Amorim, “Constrained clustering with Minkowski Weighted
K-Means,” in 2012 IEEE 13th International Symposium on Computa-
tional Intelligence and Informatics (CINTI), Aug. 2012, pp. 13–17. doi:
10.1109/CINTI.2012.6496753.

[25] S. Alhasan, G. Abdul-Salaam, L. Bayor, and K. Oliver, “Intrusion
Detection System Based on Artificial Immune System: A Review,” in
2021 International Conference on Cyber Security and Internet of Things
(ICSIoT), Sep. 2021, pp. 7–14. doi: 10.1109/ICSIoT55070.2021.00011.

[26] A. Bala, I. Ismail, R. Ibrahim, and S. M. Sait, “Applications of
Metaheuristics in Reservoir Computing Techniques: A Review,” IEEE
Access, vol. 6, pp. 58012–58029, 2018, doi: 10.1109/ACCESS.2018.
2873770.

[27] N. Aljohani, J. Shelton, and K. Roy, “Authentication Based on Touch
Patterns Using an Artificial Immune System,” in 2021 IEEE Symposium
Series on Computational Intelligence (SSCI), Sep. 2021, pp. 1–8. doi:
10.1109/SSCI50451.2021.9660096.

[28] Y. Cho et al., “A Secure Three-Factor Authentication Protocol for E-
Governance System Based on Multiserver Environments,” IEEE Access,
vol. 10, pp. 74351–74365, 2022, doi: 10.1109/ACCESS.2022.3191419.

[29] M. Borassi, A. Epasto, S. Lattanzi, S. Vassilvitskii, and M. Zadimoghad-
dam, “Sliding Window Algorithms for k-Clustering Problems.” arXiv,
Oct. 23, 2020. doi: 10.48550/arXiv.2006.05850.

[30] M. Abdullah and M. Hadzikadic, “Sentiment Analysis of Twitter Data:
Emotions Revealed Regarding Donald Trump during the 2015-16 Pri-
mary Debates,” in 2017 IEEE 29th International Conference on Tools
with Artificial Intelligence (ICTAI), Aug. 2017, pp. 760–764. doi:
10.1109/ICTAI.2017.00120.

[31] R. Chauhan and S. S. Heydari, “Polymorphic Adversarial DDoS attack
on IDS using GAN,” in 2020 International Symposium on Networks,
Computers and Communications (ISNCC, Jul. 2020, pp. 1–6. doi:
10.1109/ISNCC49221.2020.9297264.

162 S. Li et al.

[32] Y. Hui and L. Zesong, “Research on Real-time Analysis and Hybrid
Encryption of Big Data,” in 2019 2nd International Conference on
Artificial Intelligence and Big Data (ICAIBD), Feb. 2019, pp. 52–55.
doi: 10.1109/ICAIBD.2019.8836992.

[33] S. Ahmed, M. M. Alshater, A. E. Ammari, and H. Hammami, “Artificial
intelligence and machine learning in finance: A bibliometric review,”
Res. Int. Bus. Finance, vol. 61, p. 101646, Oct. 2022.

[34] D. Atienza, P. Larranaga, and C. Bielza, “Hybrid semiparametric
Bayesian networks,” TEST, vol. 31, no. 2, pp. 299–327, 2022.

Biographies

Song Li obtained a Master’s degree in computer application technology from
Nanjing University of Aeronautics and Astronautics in China. At present,
he is pursuing a Ph.D. degree in cyberspace security at Guilin University of
Electronic Technology, also in China. His primary research interests revolve
around data security and blockchain technology.

WenFen Liu earned a Ph.D. in cryptography from the Information Engi-
neering University of the People’s Liberation Army in 1999. In 2017,

Generative Architecture for Data Imputation 163

she joined Guilin University of Electronic Technology as a distinguished
faculty member. Currently, she holds the position of Doctoral Supervisor and
serves as a Professor at the School of Computer and Information Security,
Guilin University of Electronic Technology. Her research focuses primarily
on privacy protection, statistical analysis technology for big data security, and
the design and analysis of cryptographic algorithms.

YanWu obtained a Bachelor’s degree in Management from Guilin University
of Electronic Technology in 2006, and now she works in the Unit 95795 of
People’s Liberation Army. Her research interests mainly include big data and
multimedia applications.

Jie Zhao received a B.Eng. in the School of Information and Management
Science at Henan Agricultural University, Zhengzhou, China. He is currently
studying for a M.Eng. in electronic science and Technology at the School
of Computer and Information Security, Guilin University of Electronic
Technology, China. His research interests focus on blockchain.

	Introduction
	Methodology
	Description of the Algorithm's Components and Mechanisms
	Genetic algorithm-based optimization
	Indirect feedback mechanism
	Graph-based modelling
	Fine-grained access control
	Encryption and authentication
	Blockchain to secure data management and access control

	Integration of Indirect Feedback and Graph-based Techniques
	Incorporation of Access Control Mechanisms

	System Design and Implementation
	Implementation Details of the Algorithm and Associated Modules
	Integration of Encryption and Authentication Mechanisms

	Experimental Evaluation
	Performance Metrics and Evaluation Criteria
	Comparative Analysis with Specific Sophisticated Scenarios

	Security Analysis
	Encryption Mechanisms
	Authentication mechanisms
	Access control enforcement
	Vulnerability analysis

	Discussion of Potential Vulnerabilities and Countermeasures
	Assessment of the Algorithm's Effectiveness in Ensuring Data Security

	Discussion
	Conclusion

