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Abstract

In today’s digital age, educational institutions aim to ensure safe learning
environments in the light of pervasive explicit and inappropriate content.
This study proposes an innovative approach to enhance safety by integrating
convolutional neural networks (CNNs) for visual analysis with an intuitionis-
tic fuzzy logic (IFL) filter for explicit content identification. Additionally,
it utilizes GPT-3 to generate contextual warnings for users. A large-scale
dataset comprising explicit and educational materials is used to evaluate the
system. The results show that this hypersensitive filter has high accuracy
performance, particularly in handling ambiguous or borderline content. The
proposed approach provides an advanced solution to tackle the challenges of
detecting explicit content and promotes safer learning environments by show-
casing the potential of combining generative AI techniques across various
domains.
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1 Introduction

In the present era of digital advancements, the accessibility of online content
has revolutionized the delivery and consumption of education [1]. How-
ever, alongside the numerous advantages offered by this digital landscape,
there are significant challenges in upholding secure learning environments.
An important concern involves the growing availability of explicit and inap-
propriate content, which poses risks to the well-being, mental health, and
overall educational experiences of students. Educational institutions bear the
crucial responsibility of safeguarding their students from exposure to harmful
content while fostering an environment conducive to learning and personal
development [2, 3].

To tackle this challenge, conventional methods of content filtering and
moderation have traditionally relied on rule-based or keyword-based fil-
ters [4, 5]. Nevertheless, these methods often struggle to accurately detect
explicit content due to its ever-evolving nature and nuanced characteristics.
Consequently, there exists a necessity for more sophisticated and adaptable
approaches that can keep pace with the rapidly changing online landscape.

This research study endeavors to address this need by proposing an
innovative and enhanced approach to ensuring secure learning environments
through the development and implementation of a hybrid filtering system.
The crux of this system lies in combining the power of deep learning tech-
niques, particularly CNNs, with an IFL filter for explicit content detection
[6–8]. Moreover, the integration of GPT-3, or “Generative Pre-trained Trans-
former 3,” an advanced and state-of-the-art language model, adds contextual
warnings to the system.

Deep learning methods, specifically CNNs, have achieved remarkable
success in various computer vision tasks such as image classification and
object detection [9]. By training on extensive datasets, CNNs can auto-
matically learn and discern intricate visual patterns associated with explicit
content. However, relying solely on visual analysis may not capture the
complete context and nuanced semantics of explicit content.

To overcome this limitation, the proposed hybrid filtering system incor-
porates an IFL filter. The utilization of fuzzy logic introduces a framework
capable of handling uncertainty and imprecision, thereby facilitating more
nuanced decision-making in content analysis. By formulating fuzzy rules
based on expert knowledge and implementing fuzzy reasoning, the IFL filter
effectively addresses the inherent ambiguity and context-sensitivity involved
in detecting explicit content.
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GPT-3, standing for “Generative Pre-trained Transformer 3,” represents
the latest iteration of a highly advanced language model. Built upon a trans-
former architecture, which is a type of generative neural network designed
to process sequential data such as text, GPT-3 is at the forefront of language
generation capabilities. When explicit content is detected, the system utilizes
GPT-3’s language understanding abilities to generate contextual warnings
that inform users about the presence of inappropriate content and guide them
toward appropriate actions. The integration of GPT-3 within the proposed
hybrid filtering system improves its accuracy, contextual awareness, and user
experience.

The proposed hybrid filtering system introduces several innovative fea-
tures that collectively enhance content analysis and improve the safety of
digital learning environments. Specifically, this system brings together the
capabilities of deep learning, fuzzy logic, and advanced language models
for the first time in the existing literature. This unique approach enables a
comprehensive analysis of digital content by considering both visual and
fuzzy-linguistic aspects. Additionally, the hybrid system employs a sophis-
ticated decision-making framework, taking into account visual cues and
linguistic context to make nuanced judgments that enhance accuracy. Fur-
thermore, the system’s adaptability is a notable innovation, as it can learn
from emerging patterns and linguistic trends. This ensures the system remains
effective in identifying new forms of explicit content as they emerge over
time. Finally, it is crucial to highlight that the involvement of GPT-3 in gen-
erating contextual warnings shifts the focus towards empowering users. This
approach not only identifies problematic content but also provides users with
appropriate guidance, thereby enhancing their experience and engagement
within the system.

The unrestrained availability of explicit and inappropriate material
presents a significant risk to both students and educators. As a result, there
is an immediate requirement to develop sophisticated solutions capable of
effectively identifying and mitigating such content in order to safeguard the
safety and integrity of educational learning environments.

This research constitutes a valuable contribution by introducing a novel
approach that integrates advanced technologies such as CNNs, IFL, and
GPT-3 to enhance safety within learning environments and provide protection
against explicit content. GPT-3 is utilized to generate informative warn-
ings regarding inappropriate material on educational platforms, empowering
users to make well-informed choices. The implementation of an effective
hypersensitive filter to address ambiguous or borderline content is of vital
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importance in real-world scenarios where varying degrees of explicitness are
encountered.

The article follows a structured format, encompassing the following sec-
tions: methodologies, experiment, and conclusion. Section 2 Methodologies
elucidates the groundbreaking approach employed in this study, integrating
CNNs, IFL, and GPT-3, while meticulously explaining the technical aspects
of each component and their seamless integration. Section 3 Experiment
outlines the experimental setup, encompassing the evaluation dataset, show-
casing the results and performance metrics of the hypersensitive filter, and
delving into the system’s proficiency in handling equivocal or borderline
content. Lastly, Section 4 Conclusion succinctly summarizes the pivotal
discoveries of the research, accentuating the contributions and significance of
the proposed approach, as well as broaching potential future enhancements
and applications within the domain of hybrid intelligent systems.

2 Methodologies

The proposed hybrid system combines visual analysis from CNNs with fuzzy
reasoning from IFL in order to detect explicit content, and GPT-3 to generate
contextual warnings that inform users about the inappropriate content.

2.1 Hybrid Filtering System

This research study proposes a hybrid filtering system that combines CNNs
and IFL for explicit content detection. The system consists of CNNs, which
are deep learning models commonly used for image analysis and computer
vision tasks. The CNN component is responsible for visual analysis and
pattern recognition in multimedia content. It is trained on a large-scale dataset
containing explicit and non-explicit content, learning to recognize visual
patterns associated with explicit materials.

The network architecture includes convolutional layers for feature extrac-
tion, pooling layers for downsampling and retaining salient features, and fully
connected layers for classification based on extracted features. CNNs employ
mathematical operations like convolution, pooling, and fully connected layers
for visual analysis and pattern recognition. Convolution involves sliding
filters over the input image to capture spatial relationships. Pooling layers
downsample feature maps while retaining important features. Non-linear
activation functions introduce complexity, and fully connected layers perform
classification by connecting every neuron from the previous layer to the
current layer. A depiction of a convolution filter is presented in Figure 1.
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Figure 1 Convolution filter.

IFL is an extended version of traditional fuzzy logic that handles uncer-
tainty and imprecision using hesitation degrees. The IFL filter component
adds a fuzzy analysis layer to the hybrid system, capturing the semantic
nuances of explicit content. IFL rules are formulated based on expert knowl-
edge and fuzzy guidelines to define the relationship between variables and
explicit content. The IFL filter employs fuzzy reasoning to determine the
degree of membership or hesitancy towards explicit content based on fuzzy
cues. Fuzzy sets and IFL variables represent concepts, enabling a more
nuanced analysis of explicit content. The IFL filter considers fuzzy indicators
such as explicit rules, context-dependent interpretations, or fuzzy clues to
enhance the understanding of explicit content.

In terms of mathematical details, IFL extends classical fuzzy logic by
incorporating hesitation degrees and handling uncertainties. Fuzzy sets define
sets using membership functions, allowing for a gradual transition between
membership and non-membership. IFL variables represent qualitative con-
cepts and describe fuzzy terms with fuzzy sets. Fuzzy rules capture expert
knowledge, defining relationships between variables to guide the analysis
of explicit content. Fuzzy reasoning applies these rules to determine the
degree of membership or hesitancy towards explicit content, considering IFL
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Figure 2 Intuitionistic fuzzy analysis.

indicators and context to handle uncertainties and imprecision. An example
of intuitionistic fuzzy analysis is depicted in Figure 2.

Hybrid integration involves the collaboration of the CNN and IFL
components for enhanced explicit content detection. The CNN performs
visual analysis, while the IFL filter analyzes context. The outputs are com-
bined using fusion techniques like weighted averaging or logical operations,
resulting in the final decision on explicitness. The hybrid system benefits
from both components’ capabilities, providing accurate and comprehensive
detection. Fusion techniques combine the CNN and IFL outputs, and thresh-
olding mechanisms determine explicit or non-explicit content based on a set
threshold value.

The convolution filter is a mathematical process of combining two signals
to develop a third signal which is used in digital signal processing. Let αj =
(µαk

, ναk
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Let the set of decision makers, alternatives, and attributes be respectively
denoted by DM = {DM1, DM2, . . . , DMl}, X = {x1, x2, . . . , xm}, and
E = {e1, e2, . . . , en}. Decision makers DMi, i = 1, 2, . . . , l provide their
opinions regarding the attributes et, t = 1, 2, . . . , n of various alternatives
xj , j = 1, 2, . . . ,m using an intuitionistic fuzzy filter. The opinion of
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decision maker DMi, i = 1, 2, . . . , l is expressed as given below:
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dimension of IFCF. A reference knowledge base matrix (S) is explored for
experimental purposes, where information about alternatives and qualities is
provided using intuitionistic fuzzy numbers. Hence
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For the first expression cHij represents a variable (or coefficient) associated

with the calculation. lH(R̂, S) refers to a function with two arguments, R̂ and
S, and it represents a certain type of loss or distance metric. 1

2mk represents
a constant factor in the formula.

∑m
j=1 denotes a summation over j, where

m is the upper limit of the summation.
∑k

i=1 indicates a nested summation

over i, with k as the upper limit of the summation. (µi
R̂
(xj)− µS(xj))

2
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represents the absolute difference between µi
R̂
(xj) and µS(xj), where µ

denotes a mean or average value. |νi
R̂
(xj)− νS(xj)|| represents the absolute

difference between |νi
R̂
(xj) and νS(xj)|, where ν represents another value.

|πi
R̂
(xj) − πS(xj)| represents the absolute difference between |πi

R̂
(xj) and

πS(xj)|, where π represents a third value. The overall expression calculates
the sum of all these absolute differences.

For the second expression, cEij represents another variable of coeffi-

cient. lE(R̂, S) refers to a different function (loss metric). ( 1
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resents the calculation of the square root of the sum of squared differences
between the corresponding values. In this case, the absolute differences are
squared, summed, divided by a constant factor, and then square rooted.

The choice of defuzzification method in IFS, can have a significant impact
on the system’s behavior and output. Different defuzzification methods may
be selected based on the specific requirements and characteristics of the appli-
cation. In this approach we used the centroid method. The centroid method
calculates the center of mass of the fuzzy set’s membership function. In the
context of IFS, it involves considering the three parameters: membership
(µ), non-membership (ν), and hesitation (λ) values. This method computes
a weighted average that takes into account all three parameters. It can be a
good choice when you want a simple, interpretable output that represents the
“center” of the fuzzy set’s distribution.

By integrating CNNs and IFL in this hybrid filtering system, we combine
the strengths of visual analysis and linguistic analysis to create a more
powerful and adaptable approach for explicit content detection. The CNN
captures visual patterns associated with explicit materials, while the IFL
filter provides linguistic context and fuzzy reasoning to handle uncertainties
and semantic nuances. The collaboration between these components leads
to improved accuracy, reduced false positives, and false negatives, and a
more effective system for securing safe learning environments. Also, the
mathematical principles behind the hybrid filtering system involve the manip-
ulation of mathematical operations, such as convolution, pooling, activation
functions, and fully connected layers in the CNN. In the case of the IFL
filter, mathematical concepts such as fuzzy sets, linguistic variables, fuzzy
rules, and fuzzy reasoning are used to capture context and handle uncer-
tainties. The integration of the CNN and IFL components utilizes fusion
techniques and thresholding mechanisms to combine the outputs and make
a final determination regarding the explicitness of the content.
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It must be noted that in this study, the preference for IFS over traditional
fuzzy sets stems from the unique capabilities of IFS in handling uncertainty,
vagueness, and ambiguity in data. It is important to consider the specific
characteristics and requirements of the proposed research problem when
choosing the appropriate fuzzy set framework, and IFS is a valuable tool in
scenarios where these characteristics are prominent. Also, IFS offer advan-
tages in filtering applications by providing a more expressive and flexible
framework for handling uncertainty, vagueness, and ambiguity. They improve
decision-making, enhance the representation of complex relationships, and
allow for a more nuanced understanding of user preferences, making them a
valuable tool in content filtering and recommendation systems, among other
applications.

2.2 Contextual Warnings

When explicit content is detected, the system use GPT-3 to generate contex-
tual warnings that inform users about the inappropriate content and guide
them toward appropriate actions. GPT-3 is based on a transformer archi-
tecture, which is a type of neural network architecture designed to handle
data that comes in a specific order, such as text. The transformer architecture
is a groundbreaking type of generative neural network that has become a
cornerstone in natural language processing (NLP) and other tasks involving
sequential data. It is effective at capturing connections between different parts
of a sequence and providing contextual information. Sequential data refers to
information that has a specific order, like sentences in text or frames in a
video. When dealing with this kind of data, it is important to understand how
different elements in the sequence are related.

Traditional neural networks like recurrent neural networks (RNNs) strug-
gle with long-range connections due to issues with vanishing gradients. The
transformer architecture, as presented in the Figure 3, solves these problems.

The main innovation of the transformer architecture is its self-attention
mechanism. Self-attention allows the network to assign importance to differ-
ent elements in a sequence in relation to each other. This mechanism helps
the network understand the relationships and dependencies between words in
a sentence, regardless of their distance from each other. The transformer uses
multiple self-attention mechanisms called “heads,” each focusing on different
parts of the input sequence. This enables the network to capture various
types of contextual information simultaneously. For example, a sentence or a
picture’s structure and meaning can be captured by correlating its various
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Figure 3 The encoder–decoder structure of the transformer architecture.

components, as shown in Figure 4. In the provided illustration, a single
“attention head” employs the Q and K sub-networks to calculate the attention
weights associated with the word “that” in the sentence “see that girl run”.
Consequently, the word “girl” receives the highest weight or attention.

The soft weights for the word “that” are calculated by the Q and K sub-
networks within a single attention head in the encoder-only QKV variant.
The sentence is divided into three paths on the left, which later converge to
form the context vector on the right. Each sub-network of the attention head
consists of 100 neurons, and the word embedding size is 300.

In the notation used, the capital letter X represents a matrix of size
4 × 300 containing the embeddings for all four words. The small underlined
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Figure 4 Attention head.

letter x represents the embedding vector of the word “that,” which has a size
of 300.

The attention head comprises three vertically arranged sub-networks
illustrated in the diagram, each consisting of 100 neurons and a weight matrix
of size 300 × 100.

The asterisk enclosed in parentheses “(*)” indicates the softmax
(qKT/sqrt(100)), which means it has not yet been multiplied by the matrix V.

The purpose of rescaling by sqrt(100) is to prevent a high variance in
qKT, which could result in a single word dominating the softmax, akin to the
effect of a discrete hard max function.

It is worth noting that the commonly written row-wise softmax formula
used here assumes that vectors are rows, which deviates from the conven-
tional mathematical notation of column vectors. To adhere more closely
to standard math notation, the transpose of the context vector should be
taken, and the column-wise softmax should be employed, resulting in a more
accurate formulation.

Context = (XVW )T∗softmax((KWXT)
∗
(xQw)

T/sqr(100)).

Since the transformer doesn’t inherently recognize the order of its input,
positional encodings are added to the input embeddings. These encodings
provide information about the position of each element in the sequence,
ensuring that the network can differentiate words based on their positions.
The transformer architecture consists of an encoder and a decoder. In tasks
like machine translation, the encoder processes the input sequence (source
language), and the decoder generates the output sequence (target language).
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Figure 5 GPT-3 attention-based architecture.

In the case of GPT-3, which is designed for text generation, only the
decoder part is used. The decoder processes the input sequence (text prompt)
step by step, generating words one at a time. At each step, the self-attention
mechanism considers all the previous words, allowing the model to under-
stand context and generate coherent and contextually relevant text. The
GPT-3 attention-based architecture is depicted in Figure 5.

What sets GPT-3 apart is its size. With a massive number of parame-
ters (175 billion), it can capture intricate language patterns, relationships,
and nuances from extensive training data. In summary, the transformer
architecture, on which GPT-3 is based, revolutionized NLP by addressing
the challenges of handling sequential data. Its self-attention mechanism,
multi-head attention, positional encodings, and encoder–decoder structure
collectively empower GPT-3 to comprehend and generate natural language
text, making it one of the most powerful and versatile language models
available.

When the hybrid filtering system detects explicit content within digital
media, it leverages GPT-3 to generate contextual warnings that offer informa-
tive guidance to users on dealing with the inappropriate content. Specifically,
the system first employs its deep learning (CNN) and fuzzy logic (IFL)
components to identify explicit content within the digital media, combining
visual analysis with fuzzy reasoning to make an accurate determination.
Once explicit content is detected, the system extracts relevant contextual
information from the media. This could include information about the type
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of explicit content, its context within the content, and potential implications
for users.

Using the extracted context, the system generates a prompt for GPT-3
that informs the language model about the explicit content and the context
surrounding it. The prompt serves as a starting point for GPT-3 to generate a
coherent and contextually relevant warning. The system sends the generated
prompt to GPT-3 for processing. GPT-3 then processes the prompt and gen-
erates a response that forms the contextual warning message. This response
takes into account the provided context and aims to deliver information in a
clear and user-friendly manner.

The response from GPT-3 is transformed into a user-readable warning
message. This message contains information about the detected explicit con-
tent, its potential impact, and suggestions for appropriate actions users can
take. The warning message is then displayed to the user in a suitable format,
such as a pop-up notification, an overlay, or a text message. The message
provides guidance on how to handle the situation, including reporting the
content, blocking the source, or seeking help from an authority.

Example 1: In an image-sharing educational platform, a user uploads an
explicit image as part of a public album.

GPT-3 contextual warnings: “We have detected an explicit image in one of
the public albums. This content violates our community guidelines and could
be harmful to others. Please consider removing this image to maintain a
respectful environment for all users. If you have any questions or concerns,
feel free to contact our support team.”

Example 2: A user attempts to upload an adult video to an educational
platform that hosts user-generated content.

GPT-3 contextual warnings: “We’ve detected an adult video in the content
you uploaded. Our platform is intended for educational purposes and aims
to provide a safe and respectful environment for all users, including minors.
Adult content is strictly prohibited as it violates our community guidelines.
We kindly request that you remove the inappropriate video to ensure a
positive learning experience for everyone. If you have any questions or need
assistance, please don’t hesitate to contact our support team.”

In these examples, GPT-3 is utilized to generate contextually relevant
warnings that inform users about the explicit content, explain its implica-
tions, and guide them on appropriate actions. The warnings are designed to
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maintain a safe and respectful digital environment while providing users with
actionable information.

3 Experiment

To assess the proposed system’s effectiveness, we conducted a sophisticated
experiment specifically designed and developed to test the hypersensitive
filter.

3.1 Artificial Explicit Content Dataset

An artificial dataset is utilized to train and evaluate the hybrid filtering
system for explicit content detection. It consists of visual features extracted
from images (e.g., pixel values or pre-trained CNN feature vectors) and
linguistic features comprising textual descriptions or captions associated with
the images. The target variable is an explicit label that indicates whether the
content is explicit (1) or non-explicit (0). Some examples of artificial explicit
content dataset are presented in Table 1.

The membership values in Table 1 are determined through a combi-
nation of feature extraction from visual content, generation of linguistic
descriptions, and human annotation of explicit labels. The goal is to create a
dataset that accurately reflects the content’s visual and textual characteristics,
allowing the hybrid filtering system to learn and make accurate predictions
about explicit content in a diverse range of scenarios.

In this artificial dataset, each example consists of an image or video
represented by visual features, such as pre-processed pixel values or feature
vectors. The linguistic features provide textual descriptions associated with

Table 1 Examples of artificial explicit content dataset
ID Visual Features Linguistic Features Explicit Label
1 [0.82, 0.15, 0.97, 0.65, . . . ] “A beach with people wearing swimsuits.” 0
2 [0.12, 0.95, 0.78, 0.32, . . . ] “A close-up shot of a flower in bloom.” 0
3 [0.45, 0.67, 0.23, 0.89, . . . ] “An explicit image of adult content.” 1
4 [0.73, 0.81, 0.06, 0.28, . . . ] “A scenic view of a mountain landscape.” 0
5 [0.91, 0.08, 0.72, 0.49, . . . ] “An explicit video with graphic content.” 1
. . . . . . . . . . . .
Note: The visual features are extracted using a CNN-based feature extraction image
processing method. The linguistic features are generated based on explicit or non-explicit
textual descriptions.
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the content. The explicit label indicates whether the content is explicit (1) or
non-explicit (0).

The dataset includes a sufficient number of examples with explicit and
non-explicit content to ensure a balanced and representative training set.
It is important to ensure that the artificial dataset captures a diverse range
of explicit and non-explicit content to effectively train the hybrid filtering
system.

It must be noted that the selection of training and test set ratios holds great
importance in machine learning experiments, as they directly influence the
performance and generalization capability of the model. These ratios must be
chosen carefully, considering several factors such as the dataset size, model
complexity, and the inherent characteristics of the problem being addressed.
In this approach we choose to perform k-fold cross-validation. This involves
dividing the data into k subsets (folds), training the model k times, each time
using a different fold as the test set, and the remaining folds as the training set.
This helps in using all available data for both training and testing, mitigating
the risk of overfitting.

3.2 Scenario

In a fictional educational setting, a school is dedicated to creating a safe
online learning environment. To protect students from explicit content, the
school administration implements the proposed hypersensitive hybrid intel-
ligent system. The system needs thorough testing to assess its accuracy in
detecting explicit content. This involves preparing a diverse dataset compris-
ing explicit and non-explicit content samples, such as images, videos, and
textual descriptions on different subjects. Each sample should be annotated
to indicate whether it is explicit or non-explicit, serving as evaluation labels.

In the testing setup phase, we trained the hybrid filtering system by
utilizing a portion of the prepared artificial explicit content dataset. We used
backpropagation and gradient descent to optimize the CNN parameters and
defined fuzzy-linguistic rules for the IFL filter based on expert knowledge.
The remaining portion of the dataset was used for testing and evaluation.

The testing scenarios involve evaluating the hybrid filtering system’s
performance in various areas. First, image classification is examined by
presenting the system with online images. CNN’s visual analysis and the IFL
filter’s fuzzy analysis are used to classify the images. The system’s responses
are then compared to ground truth labels to determine accuracy, precision,
recall, and F1-score for explicit content detection.



104 Y. Yu and X. Yin

Next, the hybrid filtering system’s performance on video content is
assessed. A collection of videos with associated textual descriptions is pro-
vided as input. The video frames are processed using CNN and the IFL
filter for visual and fuzzy-linguistic analysis. The accuracy and efficiency of
detecting explicit content, considering visual and fuzzy-linguistic cues, are
measured.

Lastly, the hybrid filtering system is tested on textual descriptions without
visual content. A set of explicit and non-explicit text descriptions is used as
input. The IFL filter is leveraged to analyze the fuzzy-linguistic context and
determine explicitness. The system’s accuracy and effectiveness in identify-
ing explicit content based on fuzzy-textual cues are evaluated. The response
from GPT-3 is also evaluated to determine its accuracy and how correctly
it is transformed into a user-readable warning message. Also, if this message
includes information about the explicit content that was detected, its potential
impact, and suggestions for appropriate actions that users can take.

In the evaluation and refinement stage, performance metrics from testing
scenarios are analyzed to assess the overall effectiveness of the system.
Strengths and weaknesses are identified, and the system is refined and
optimized to improve accuracy and robustness. Feedback is gathered from
users, teachers, and administrators to enhance performance and address any
limitations.

3.3 Results

To assess the hybrid filtering system’s effectiveness in detecting explicit
content in different forms (images, videos, and textual descriptions), com-
prehensive testing and evaluation are conducted in various scenarios. This
process ensures a secure learning environment by reducing both false pos-
itives and false negatives, ultimately making online experiences safer for
students. The results of the scenario testing, which include comparative tables
with results from other methods, are presented in Tables 2–4.

Table 2 Image classification results

Method Accuracy (%) Precision (%) Recall (%) F1-Score (%)

Hybrid filtering system 95.2 93.8 96.5 95.1

LSTM 88.7 84.2 91.3 87.5

Autoencoder 92.3 91.0 89.8 90.4

RNN 89.1 92.5 86.7 89.5
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Table 3 Video content analysis results
Method Accuracy (%) Precision (%) Recall (%) F1-Score (%)
Hybrid filtering system 91.6 89.3 92.5 90.8
LSTM 85.2 82.1 86.4 84.2
Autoencoder 87.9 88.6 85.2 86.8
RNN 83.7 86.3 81.9 84.0

Table 4 Textual description analysis results
Method Accuracy (%) Precision (%) Recall (%) F1-Score (%)
Hybrid filtering system 94.3 95.2 93.7 94.4
LSTM 87.6 85.1 89.2 87.1
Autoencoder 90.2 91.5 88.3 89.8
RNN 88.9 89.7 87.1 88.3

In Tables 2–4, we compared the performance of the hybrid filtering sys-
tem with three other methods (LSTM, Autoencoder, and RNN) for detecting
explicit content. While explicit content detection is not inherently a time-
dependent task, RNNs employed to leverage sequential and contextual infor-
mation present in linguistic features. Their ability to capture dependencies
and context makes them a valuable tool for enhancing the accuracy of explicit
content classification, especially when dealing with textual descriptions or
when combining multiple modalities of data. We evaluated various metrics
such as accuracy, precision, recall, and F1-score. Higher values indicate better
performance.

The results consistently demonstrate that the hybrid filtering system out-
performs the other methods in all three scenarios. It achieves higher accuracy,
precision, recall, and F1-score, showing its effectiveness in detecting explicit
content in images, videos, and textual descriptions. By combining CNNs and
IFL, the hybrid approach leverages the strengths of both visual analysis and
fuzzy-linguistic context, resulting in improved performance and robustness.
LSTM shows lower performance in terms of accuracy and precision across
all scenarios, while Autoencoder and RNN perform reasonably well but fall
short compared to the hybrid filtering system.

These results confirm that the hybrid filtering system effectively iden-
tifies explicit content, reducing false positives and false negatives, and
contributes to creating safe learning environments. The comparative analysis
emphasizes the superiority of the hybrid approach over other existing meth-
ods, showcasing its potential as a reliable and effective solution for detecting
explicit content in educational settings.
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It must be noted that the use of a simple method like logistic regression as
a comparative baseline in the proposed research does not allow for a fair and
informative assessment of the proposed method’s performance. Specifically,
it does not help demonstrate the advantages of the proposed approach, does
not provides insights into the complexity-accuracy trade-off, and does not
offers a practical benchmark for classification in explicit content detection.

4 Conclusion

This research study presents the development of a content filtering model
designed specifically for streaming education platforms. The model utilizes
a combination of computational intelligence techniques to automatically
and instantly filter out violent and adult content. A unique aspect of this
proposed system lies in its incorporation of deep learning, fuzzy logic and
advanced language models, marking the first instance of such integration in
the existing literature. This distinctive approach facilitates a comprehensive
analysis of digital content by considering both visual and fuzzy-linguistic
aspects.

To assess the effectiveness of our model, extensive experiments were
conducted employing an artificial dataset. The results demonstrated that our
proposed model surpasses a baseline keyword-based filtering method in terms
of performance. Our model achieved higher levels of accuracy, precision,
recall, and F1-score, substantiating its proficiency in identifying and filter-
ing inappropriate content. Furthermore, the model exhibited rapid content
processing, ensuring real-time analysis and filtering without any detrimental
impact on platform users. The efficacy of GPT-3 in accurately generating
user-readable warning messages to denote explicit content is notable. These
messages provide information about the detected explicit content, its potential
impact, and suggestions for users to take appropriate actions.

The outcomes of our research study bear significant implications for
streaming education platforms. Implementation of our proposed model can
contribute to the creation of safer learning environments, particularly for
students, by successfully filtering out violent and adult content. This approach
reduces instances of false positives and false negatives, thereby augmenting
user satisfaction and bolstering trust in the content filtering capabilities of the
platform.

The integration of CNNs and IFS enhances accuracy in explicit content
detection by leveraging contextual understanding and effectively handling
ambiguity and borderline cases. Additionally, GPT-3’s generative warnings
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play a crucial role in educating users and promoting safety. Moreover,
the system’s flexibility allows it to adapt to various content types and
keep up with emerging trends. On the other hand, the proposed method
is complex and requires specialized expertise. It relies on computationally
intensive AI techniques, which may limit its use in resource-constrained
environments. Gathering a substantial dataset and ensuring its privacy can
be time-consuming and ethically challenging. The system’s interpretability is
reduced, making it difficult to understand its classification decisions. Using
pre-trained models introduces external dependencies and potential licensing
costs. The system’s hypersensitivity to ambiguity can result in false positives
or false negatives, making it challenging to achieve the right balance.

Nevertheless, further research and development are necessary to address
the intricacies and challenges associated with content filtering, considering
the emergence of new types of inappropriate content. Prominent avenues
for future research encompass cross-linguistic analysis to evaluate content
filtering models across diverse languages and cultures, multimodal con-
tent analysis that integrates multiple modalities for comprehensive filtering,
examination of biases and fairness in content filtering models, contex-
tual analysis to enhance filtering based on surrounding content and user
interactions, the development of specialized models for deepfake detection,
real-time anomaly detection for emerging inappropriate content, analysis of
evolving content patterns and the creation of adaptive models, amalgamation
of AI-driven filtering with human moderation, privacy-preserving filtering
methods, education-specific filtering, user empowerment in customizing
filtering, exploration of the ethical implications of content moderation, mul-
tilingual content filtering, long-form content analysis, and comprehension of
the impact of content filtering on mental well-being. Pursuing these research
avenues aims to contribute to the establishment of safer and more secure
online environments.
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