
SPARQL Optimization Using Re-ordering
Joining Patterns with Surrogate Key

Concept and Subset Patterns

Rupal Gupta1,2,∗ and Sanjay Kumar Malik1

1USIC&T, Guru Gobind Singh Indraprastha University, Dwarka, Delhi, 110078,
India
2College of Computing Sciences and IT, Teerthanker Mahaveer University,
Moradabad, Uttar Pradesh, 244001, India
E-mail: rupal.gupta07@gmail.com; skmalik@ipu.ac.in
∗Corresponding Author

Received 21 September 2023; Accepted 31 March 2024

Abstract

Semantic web data resides on the web in the form of knowledge graphs
known as RDF graphs and searching around the web has been always a
crucial task. For the data retrieval of RDF data of the semantic web, SPARQL
query language has been used which in turn is based on triple patterns and
joins. Optimization of SPARQL query has been a problematic concern for
decades due to the large amount of triple patterns associated with RDF data.
Although several researchers have put a lot of effort into the optimization
of SPARQL query, it is difficult to understand the concept from scratch due
to its diversified nature. This paper analyses various optimization techniques
for the SPARQL query used with the semantic web to process knowledge
graphs. These techniques include join-based, heuristic-based, rule-based, and
indexing-based approaches for optimization. This paper will help researchers
in this domain to easily get into the core concept of SPARQL execu-
tion along with various optimization approaches used for query processing,

Journal of Web Engineering, Vol. 23 3, 393–430.
doi: 10.13052/jwe1540-9589.2334
© 2024 River Publishers

394 R. Gupta and S. K. Malik

which can help in various other domains like linked open data and infor-
mation retrieval. In this paper, an optimization algorithm HSOA (hybrid
SPARQL optimization algorithm) has been proposed, which comprises the
features of index-based, cost-based, and triple reordering-based optimization
approaches. The proposed hybrid algorithm has been designed specifically
for n-triple RDF data, which comprises subset patterns, and surrogate key
concepts. The results produced by the proposed algorithm are encouraging
and have also been tested and compared with the benchmark dataset and
SPARQL queries like LUBM, BSBM, and SP2Bench.

Keywords: SPARQL, RDF, optimization, indexing, reordering, meta-
heuristics, triple patterns.

1 Introduction

Optimization in the semantic web is of great concern due to its data rep-
resentation formats and flexibility features. In the semantic web, SPARQL
query processing has a great role in integration as well as for information
processing from RDF data and ontology. The rapid growth of RDF data
makes it too complex to analyze and process after the summarization of
the data [1]. Processing needs optimization to a certain extent for better
information retrieval from RDF data. Optimizing information retrieval is a
key step, especially when the dataset is large. Optimization in this domain
can be categorized with different techniques based on the indexing concept
used with RDF data, along with processing-based focusing SPARQL query
optimization. This paper discusses the different aspects of optimization that
can take place on indexing or triple ordering and joining concepts among
triples used with RDF data and SPARQL query. This paper also proposes a
triple ordering-based optimization algorithm that has been applied to different
RDF datasets. The result obtained by the proposed algorithm gives better
results in information retrieval as compared to the earlier approaches. The
results have also been compared with other benchmark datasets and SPARQL
queries like LUBM, BSBM, and SP2Bench.

The major contributions are as follows:

• An algorithm HSOA (hybrid SPARQL optimization algorithm) is pro-
posed while merging various concepts of optimization based on index-
based and query-based (reordering), and may also be utilized with
processing-based techniques.

SPARQL Optimization Using Re-ordering Joining Patterns 395

• The dataset used in the paper can be treated as a benchmark of the RDF
dataset used for applying machine learning algorithms.

• The queries used in the experiment results can be used to integrate
semantic web and machine learning algorithms to produce further results
that can be explored with knowledge graphs.

• The proposed algorithm works well with the existing benchmark
datasets and queries that focus on the performance criteria based on
triple pattern ordering.

This paper has been divided into four sections. Section 1 gives an
introduction to semantic web technologies along with the motivation for
SPARQL query optimization. Section 2 investigates various techniques used
for SPARQL optimization. Section 3 explains the workflow of the proposed
hybrid SPARQL optimization technique and the last section interprets the
experimental setup, results, and comparison with benchmark datasets and
queries.

2 Semantic Web

The semantic web, also known as Web 3.0, is an extension of Web 2.0 that
focuses on a web with intelligence. The intelligence within this web is that
the machines and devices can interpret and understand the meanings behind
sentences during information processing over the web [2]. The data over the
web can be treated as an interconnection for an enormous amount of data
having attributes and relationships among them. The interconnectedness of
data makes semantic queries more useful for getting the required knowledge
from the huge amount of data that resides in the form of RDF over the web
(semantic web). For example, before the internet, in early documents citations
were followed to get the data that may or may not be available to everyone [3].

Today, searching for specific knowledge will also bring information that
in return may not be related to the search, but with the help of semantic web
technologies useful information will also be retrieved. It makes computers
understand and process the meaning by the interpretation of data in a similar
way humans interpret things to achieve their goals [4]. These kinds of capabil-
ities exist in the current era web for smart meaningful searching. Knowledge
graphs are playing a vital role which are in terms of RDF graphs used in the
semantic web for data representation. SPARQL queries are used to process
and search the data from these huge interconnected data sources over the web
known as the web of data.

396 R. Gupta and S. K. Malik

Figure 1 Sample RDF graph of two instances of the Diabetes RDF dataset.

2.1 RDF (Resource Description Framework)

RDF, which stands for resource description framework, is a standard devel-
oped by the World Wide Web Consortium (W3C). It is a specification created
originally for metadata data modelling [5] and is now treated as a general
method used for information modelling or a conceptual description that is
enforced in web resources, using formats of data serialization and a variety
of syntax notations.

The data model of RDF is similar to a classical conceptual modelling
approach (such as ER-diagram or class diagram) which makes it flexible
and scalable. The idea is based on making statements about resources (being
particular web resources) expressions called triples [6]. The name triples are
given because they follow a structure of subject-predicate-object relationship
structure. The subject defines the resource, while the predicate defines traits
or features of the resources, and conveys the relationship between the subject
and the object [7]. With various serialization formats (i.e., file formats). RDF
is an abstract model, so the specific encoding varies from format to format for
triples or resources. The RDF data can be easily viewed as RDF graphs, one
sample Diabetes RDF dataset with two instances has been shown in Figure 1,
which has been used for further SPARQL query processing and optimization
in this paper.

SPARQL Optimization Using Re-ordering Joining Patterns 397

2.2 SPARQL (Simple Protocol and RDF Query Language)

Simple protocol and RDF query language (SPARQL) is a general-purpose
query used to process data, based on basic graph patterns (BGPs) [8]. It works
on the triple ordering of patterns placed in a query. In this paper, different
queries have been used to find optimal queries on different RDF data. This
query can be better understood further using SPARQL algebra (internal eval-
uation structure for processing) and graph visualizations of checking its types
like star, chain, and others. The SPARQL engine in a query treats each triple
pattern as a separate scan, therefore the sequence of the scans is crucial and is
needed to be smarter to choose the next scan in the order. A sample SPARQL
query which has been optimized by the proposed optimization algorithm is
shown in Figure 2. The SPARQL query retrieves the information for RDF
data using triple patterns used after the where clause of the query.

2.3 OWL (Ontology Web Language)

Web ontology is another useful rich taxonomy of data representation in the
semantic web. This is also one of the standards of the semantic web and also
a major technology used to process the data [9]. The focus area of semantic
web ontology is the knowledge representation of the things that can be easily
published and understood by the machine over the web. Ontology can be
used to easily describe relationships and concepts among entities. One sample
LUBM benchmark ontology for university [10] has been represented using an
intermediate snapshot in Figure 3.

Figure 2 Sample SPARQL query used on the diabetes RDF dataset.

398 R. Gupta and S. K. Malik

Figure 3 A university ontology LUBM benchmark dataset showing classes and proper-
ties [10].

3 Literature Review

Groppe [11] proposes an index construction approach to generate a map-
ping for RDF from unique identities and evaluates indices according to the
collation order of RDF based on subject, predicate, and objects. Further,
it can be useful for data analytics. The paper defines steps to indices and
represents a comprehensive experiment of the proposed model for execu-
tion time analysis by importing 1 billion triples [11]. Nguyen et al. [12]
represent the challenges of storing and retrieving RDF data efficiently with
graph-based and relational-based approaches. They also focus on RDF data
indexing, where a structure index was used to obtain RDF data for evaluating
query patterns based on the execution plan, reducing intermediate triples
results that are not used for joining further to obtain the result. It has
been seen that the system reduces the query execution time by up to 79%
compared with the conventional query processing approach like that used by
Jena [12].

Wu et al. [13] propose effective heuristic methods with generic data
partitioning approaches that can consider a much larger space with the same
search time. It has been presented that heuristics rules can be used to reduce
the degree of join variables along with the number of triples in the join
graph to get better performance [13]. Chawla et al. [14] propose that the
SPARQL query execution problem can be visualized as a graph traversal.
A modified all-pair shortest path algorithm was analyzed with a complete
SPARQL query graph and they found an optimal order of execution using

SPARQL Optimization Using Re-ordering Joining Patterns 399

heuristics for SPARQL which is obtained with minimum cost. It has been
observed that the Floyd Warshall algorithm works faster than the Johnson
algorithm in computing the execution plan [14].

Papailiou et al. [15] present the H2RDF+ Tool, which is a fully distributed
RDF store capable of storing and querying large RDF datasets. A scalable
adaptive decision about centralized and distributed join execution is presented
and effective results are being found in the Hadoop environment using HBase
indexes [15]. Oh et al. [16] present an efficient query processing system
that uses a job-optimized, map-only query planner. They conclude that by
utilizing a careful design HBase storage schema, RDF data can be input to
the map phase so that reordering is not needed to evaluate the query. They
found that by utilizing abstract RDF data to find out which pattern the result
lay in, the number of inputs to map-side jobs could be reduced, resulting in
better performance [16].

Ge et al. [17] propose a query decomposition algorithm that has further
been used in a source selection optimization strategy, which has been proved
efficient in reducing the number of remote requests. Here a query execution
plan has been proposed for efficient evaluation of top-k queries. The proposed
algorithm can be applied to top-k queries for single variable ordering as well
as expression ordering [17]. Li et al. [18] perform a mapping of keywords
to draw RDF graphs over federated queries in the proposed model. The
utilization of a full-text search has been done to map keywords to schema
graphs which has been further used to generate SPARQL queries. Further, to
optimize the query evaluation process, the technique of query rewriting has
been proposed [18]. Peng et al. [19] present a study on a federated RDF sys-
tem with optimization multi-query evaluation. The proposed algorithm finds
common sub-queries with an effective cost model. The query generated has
been further rewritten into smaller queries. Also, a discussion on the efficient
selection of sources and join order has been presented. For the experiments
standard and new operations of SPARQL 1.1 have been used [19].

Jose and Poulose [20] discuss the difficulties encountered when con-
ducting query joins, which involve merging data from sources to improve
the efficiency of web systems. They introduce an optimization strategy that
utilizes a customized version of the grey wolf optimization (GWO) algorithm
to enhance query join operations. The GWO process involves three stages:
encircling, hunting and attacking. Their study demonstrated that implement-
ing GWO on the LUBM 10000 dataset reduced execution time by 2–5
minutes and improved precision scores such as recall and f measure, by
2–7%. The GWO algorithm, inspired by grey wolf hunting behaviour aims

400 R. Gupta and S. K. Malik

to minimize the cost of query execution through join procedures in a query
model join optimization on the semantic web. Additionally, they proposed
a modified GWO method specifically tailored for query join optimization
to navigate semantic web data complexities. The results indicate that their
adapted GWO algorithm outperforms other methods, by optimizing joins and
enhancing query execution speed [20].

Dhiman et al. [21] introduced the emperor penguin optimizer (EPO), a
novel swarm-based metaheuristic algorithm inspired by the huddling behav-
ior of emperor penguins. The EPO algorithm is applied to solve six real-life
constrained and unconstrained engineering design problems [21]. They also
introduced the seagull optimization algorithm (SOA) [22], a bio-inspired
metaheuristic algorithm designed for solving computationally expensive
problems. The algorithm is inspired by the migration and attacking behav-
iors of seagulls in nature, which are mathematically modeled to emphasize
exploration and exploitation in search spaces [22]. They introduced in another
research paper the spotted hyena optimizer (SHO) [23], a novel swarm-based
metaheuristic algorithm inspired by the social hierarchy and hunting behavior
of spotted hyenas. The algorithm consists of three key steps: searching for
prey, encircling and attacking, which are mathematically modeled and imple-
mented. The SHO algorithm is compared with eight existing metaheuristic
algorithms on 29 benchmark test functions, showcasing superior performance
in terms of convergence and computational complexity [23].

Kaur et al. [24] introduced the tunicate swarm algorithm (TSA), a bio-
inspired metaheuristic optimization approach mimicking the jet propulsion
and swarm behaviors of tunicates during navigation and foraging. The
algorithm is compared with other metaheuristic approaches and applied to
engineering design problems, showcasing its robustness and ability to gen-
erate superior solutions. The TSA is inspired by the unique jet propulsion
and swarm behaviors of tunicates, marine organisms that emit biolumines-
cent light and migrate vertically in the ocean. The algorithm is described
mathematically, and its efficacy is tested on various benchmark functions,
outperforming other algorithms in terms of optimal solution generation [24].
Dhiman et al. [25] introduced the binary emperor penguin optimizer (BEPO),
an extension of the emperor penguin optimizer (EPO), a metaheuristic algo-
rithm inspired by the huddling behavior of emperor penguins. The study
evaluates BEPO’s effectiveness using 25 benchmark functions and com-
pares it with seven other binary metaheuristic algorithms. The paper also
applies BEPO to feature selection problems on 12 benchmark datasets,

SPARQL Optimization Using Re-ordering Joining Patterns 401

demonstrating its superior performance and robustness compared to other
algorithms [25].

Dehghani et al. [26] introduced the darts game optimizer (DGO),
designed to simulate the rules of a darts game. The key concept is to max-
imize points scored by players in their throws at the game board. DGO’s
performance is compared to existing algorithms, showcasing its exploration
and exploitation capacities [26]. Dehghani et al. [27] also introduced a
multileader optimizer (MLO) designed to address optimization problems by
employing multiple leaders to guide the population toward optimal solu-
tions. MLO’s performance is evaluated on 23 standard objective functions
and compared with eight existing optimization algorithms [27]. Dehghani
et al. [28] introduces the binary orientation search algorithm (BOSA), a
binary model derived from the orientation search algorithm (OSA). The per-
formance of BOSA is compared with eight other algorithms on twenty-three
benchmark test functions, demonstrating its high ability to solve optimization
problems [28].

For optimization problems, various meta-heuristics approaches like
STOA [29], ESA [30] and RSO [31] may also be utilized. SPARQL optimiza-
tion can also be correlated with the existing methodology of meta-heuristics
and bio-inspired techniques.

4 Motivations

In the semantic web, SPARQL query optimization has been a major concern
for decades due to its complex nature of processing, which is based on triple-
ordering joins [32]. The complexity of processing especially the large RDF
requires lots of join-patterns among the triple form of RDF based on (S, P, O)
subject, predicate, and object.

The major contribution of this paper towards the semantic web is that
the proposed optimized algorithm provides a hybrid approach of SPARQL
optimization which is based on subset patterns and uses the logic of surrogate
keys for the introduction of new triples with unique object values, i.e.,
generate an index on a specific triple. The hybrid approach has not been seen
yet. The RDF dataset used in the paper is based on the UCI repository which
is a standard repository of data for researchers [33, 34]. The RDF data used
in the experimental setup can also be used as a standard, focusing machine
learning applications on it. The methodology used in the paper will help in
the integration of machine learning on semantic web data, where SPARQL
query can be used to process it efficiently.

402 R. Gupta and S. K. Malik

As per the literature review, optimization of the SPARQL query can be
categorized into three specific approaches mentioned below:

4.1 Index-based Approach

Index-based optimization is based on the indexes used on RDF data. RDF
data is based on triple patterns of subject (s), predicate (p), and object
(o). The information retrieval is based on the triple pattern joins used with
SPARQL queries to fetch the information retrieval from stored RDF data in
any data store or database on any platform like the Jena Fuseki server [35],
Stardog [36], etc. Any triple pattern can be joined depending on the format
and structure of RDF data. For a better understanding of the data and its
processing through SPARQL, analysis of RDF data and SPARQL query
joining patterns is required. As per the complexity of the SPARQL joining
pattern, it is always better to have an index on either field used in joining
patterns. This indexing can be done by assigning a unique identifier to every
subject, predicate, or object [37].

4.2 Query-based Approach

This optimization is based on a query-based approach, which focuses more
on the patterns used in the SPARQL query. The SPARQL query can work in
various shapes like star, chain, and others. These query shapes emphasize
the joining patterns of triples used in filtering the data. The query-based
approach broadly works with either rewriting the rule-based or focusing
on reordering of joining patterns used in SPARQL queries. This approach
requires knowledge of SPARQL execution plans and the shapes used to filter
the data. The SPARQL graphs can be explored using joining patterns of
triples used with queries [38]. The execution plan of the SPARQL queries can
also be analyzed to find the sequence of the operations used for information
retrieval.

4.3 Processing-based Approach

Processing-based optimization focuses on the processing-based aspects in
terms of parallel processing capabilities to filter the data. This approach is
majorly used with distributed database systems where RDF data is stored.
These data are very large RDF graphs that are spread over different URIs over
the web. This approach also focuses on fast processing capabilities which can
be utilized with map-reduce/Apache spark/Hive [39, 40].

SPARQL Optimization Using Re-ordering Joining Patterns 403

In this section, the categorization is made and the analysis of dif-
ferent approaches is represented. The categories in which the SPARQL
optimization can be put are shown in Table 1. According to the literature
survey, SPARQL optimization can be categorized as query-based, storage-
based, or processing-based. Query-based optimization takes place as per
the written queries and its sequence of operations like filtering, selection,
and joins. Storage-based optimization is based on the indexes made on the
triple pattern of subject, predicate, and object. Processing-based optimiza-
tion is categorized based on processing frameworks based on processing
speed and storage. Concepts like parallel processing and advanced process-
ing concepts with map-reduce and Apache Spark have been used in this
category.

5 Proposed Methodology for SPARQL Optimization

The optimization algorithm proposed in this paper is a hybrid approach pri-
marily based on index-based and query-based approaches. The algorithm can
also be utilized with the better processing capabilities of processing-based
optimization techniques. The nobility of the optimized algorithm is that it is
a hybrid optimization technique that has the capabilities of three approaches
of optimization, that is query query-based, index-based, and processing-
based. This hybrid approach produced better results and output for generating
optimized queries for better information processing. This optimized SPARQL
query can be further utilized in various ways for information processing, and
integration of the semantic web with other latest technologies of computer
science that use SPARQL for integration. SPARQL queries have had a variety
of roles in semantic web engineering. Due to its complex nature of processing
it is always better to produce effective optimized SPARQL queries so that
efficient results can be produced.

There can be various ways to optimize the overall result obtained while
applying the SPARQL query on RDF also known as knowledge graphs
in some sense. The optimization can be of either type like eliminating
unnecessary triple ordering joins during the evaluation, storing and using the
pre-aggregated computation when and where it can be used to reduce the cost,
optimize the data despite optimizing the Query. In this section, an algorithm
has been proposed which is based on the hybridization of a few optimizations
mentioned in Section 4.

404 R. Gupta and S. K. Malik

Table 1 Description and comparison of SPARQL optimization techniques
Query Based (q)/

Optimization Storage Based (s)/
Category Key points [description] Processing Based (p)
Index based In this technique, indexes have been con-

structed using some indexing schemes like the
RP index or RG index. These indexes are based
on a triple pattern that is further used with
SPARQL queries with filtering and joins.
Indexing-based approaches produce faster
results this is how the query optimization takes
shape.

(s)

Re-writing rules This is rewriting rules while analyzing the
operator tree generated from the SPARQL
query. The analysis can also be done using the
generation of the query execution plan.
In general, the set of rules has been applied to
optimize the operator tree until the rules do not
apply to the tree.
The relational algebra for SPARQL has been
visualized to put projection and selection oper-
ations before the execution of different types of
joins, wherever it can be applied.

(q)

Join based Different types of joins are used for SPARQL
query optimization. The order of joining the
triple patterns in different shapes of query mat-
ters a lot for making an efficient execution plan.
Triple join re-ordering has been made to opti-
mize the solution [41].
Little join-based exploration is needed like
NaryJoin, NestedLoopJoin, MergeJoin, etc.

(q) + (p)

Heuristic rules This is another reordering-based optimization
technique that uses meta-heuristic approaches
like ACO, PSO, etc. These approaches solve
the optimization problems using one objective
function and use further iterations to get the
optimized result [7].

(q) + (p)

Parallel processing This optimization approach is based on
parallel processing frameworks like Spark and
MapReduce.
Processing-based tools like S2RDF and
H2RDF are widely used to process large
RDF graphs efficiently with the advanced
processing capacities of Hive, HBase, and
Apache Spark [15, 32, 42].

(p)

SPARQL Optimization Using Re-ordering Joining Patterns 405

5.1 Proposed Workflow for SPARQL Optimization on RDF

In this section, the proposed HSOA (hybrid SPARQL optimization algorithm)
has been represented using the execution workflow using Figure 4. The
execution workflow can be viewed from the top left corner to the bottom right
corner mentioned as blocks with sequential numbers. The HSOA will work
with all those RDF datasets where there is non-existence of any candidate
triple pattern in it. If the RDF dataset already contains it, then directly
algorithm Optimizer can be used to produce the optimized SPARQL query.
This model has been specially constructed where SPARQL queries are used
repeatedly on RDF datasets. One such example is applying machine learning
models to train the model and further test the model with different variants.

The execution workflow has been represented using a block diagram in
Figure 4 which contains sequential numbers. A detailed description has been
elaborated using Table 2.

Figure 4 Execution workflow of HSOA (hybrid SPARQL optimization algorithm).

406 R. Gupta and S. K. Malik

Table 2 Functioning description of workflow of HSOA (hybrid SPARQL optimization
algorithm)

Next Sequence
Step to Follow
(Output Which
Will be Input

Sequence Working/ to the Further
Step Description Functioning Process)
(1) SPARQL query (Q) This is an input query given to pro-

cess the data
(2)

(2) Analyse SPARQL
and apply
re-writing rules on
it.

Apply the heuristics and re-writing
rules on the SPARQL query. This
process involves the selection and
projection to be applied earlier
before applying the triple-ordering
join patterns.

(3)

(3) Generate SPARQL
query (Q’)

This is a newly updated query that
has been applied to the rules of
step 2.

(5)

(4) RDF Data (D) This is an input RDF data that con-
tains the URI source and triple pat-
terns in the form of a subject, predi-
cate, and an object in n-triple form.

(5),(9)

(5) Information
processing using
ARQ query
processor

In this step, the SPARQL query has
been applied to retrieve data from
the RDF dataset. Further, any tool
can be used to process this step. This
step involves the JENA ARQ (an
RDF query) engine for query pro-
cessing [31].
Further, any tool like JENA ARQ,
Twinkle, SPARQL DBpedia end-
point, JENA Fuseki Server, Stardog,
etc., can be used to apply the step
[35, 36, 44].

(6)

(6) Generate dataset in
structured data

Mostly semantic web data is in semi-
structured form. It is helpful to pro-
duce the dataset in a structured form.
In the implementations of this step,
the dataset is generated in CSV
(comma-separated value) format.

(7)

(Continued)

SPARQL Optimization Using Re-ordering Joining Patterns 407

Table 2 Continued
Next Sequence
Step to Follow
(Output Which
Will be Input

Sequence Working/ to the Further
Step Description Functioning Process)
(7) Generate SPARQL

query to augment
new triple pattern
(say ? x) like
adding a surrogate
key [45]

An additional attribute (triple) has
been added using the SPARQL
query construct clause to generate
a new triple (?x) using URI and
ROWNUM features. This generates
an additional triple with all unique
numbers. This has been shown in
Figure 5 using the code snippet in
Section 5.2.1

(8)

(8) Produce new RDF
dataset (F)

This new RDF data has been gener-
ated from sequence step (7)

(10)

(9) Add triple pattern
with SPO on (?x)
as a first pattern in
SPARQL query
(Q’)

A new triple pattern with the addi-
tional attribute has been added as the
first triple pattern of the SPARQL
query which has been generated
from sequence step (3). This shape
of BGP (basic graph pattern) used in
the query will help the algorithm to
produce better results.

(10) Apply Algo-
rithm Optimizer
(F,Q’,K,N,P)

Input from sequence step (8) and
step (9) along with the value of K,
N, and P as the value of subset size,
number of triple patterns, and triple
pattern used in SPARQL query.

(11)

(11) Find optimized
triple ordering
pattern for
SPARQL query
(Q”)

This is the output generated and
required to find the optimized triple
ordering pattern.

Final outcome
(optimized
triple pattern
order)

The sequence steps (2), (3), (5), (6), (7), (8), and (9) can be omitted if there is already an
existence of a prime attribute triple pattern in the RDF dataset or in SPARQL query. In this
case, the input of the SPARQL query of sequence step (1) and the RDF dataset in sequence
step (4) will directly be passed as an input to Algorithm Optimizer in sequence step (10).

408 R. Gupta and S. K. Malik

5.2 Optimization Algorithm Pseudocode

In this section Algorithm 1: Pseudocode is presented of the proposed HSOA,
which will give the basic idea of the steps followed to produce the desired
results that generate the optimized triple ordering pattern of SPARQL query.

Algorithm 1 Pseudocode for the proposed SPARQL optimization technique (HSOA)
Input: SPARQL Query (Q) and RDF data (F)
Output: Optimized SPARQL Query (Q’)
Step 1: Analyse the RDF data and identify the possibility of adding information like the
concept of surrogate key in structural data.
Step 2: Introduce the attribute to the existing structure of RDF with the additional subject
?x based on ROWNUM.
Step 3: Create a subset of RDF data (F’) based on parameter K (10%) on subject ? x, of
the whole triples existing in the original RDF data.
Step 4: Generate the triple patterns ordering (P) from the SPARQL query (Q)
Step 5: Construct a matrix (M) based on triple pattern ordering on individual pairs of
triple patterns. This matrix contains the time stamp value used with the triple pattern on
the RDF data (F / F’) depending on steps 1, 2 & 3.
For i in each triple sequence t
{

For j in each triple sequence t
{

If (i != j)
{

Calculate the time required for triple pattern joins (i, j)
store in time value on matrix index(i,j)

}
}

}
Step 6: Construct the shortest path (Path sequence) keeping the source node based on
attribute subject ?x.
Step 7: Generate the reordering of triples based on the path sequence constructed in
step 6.
Step 8: Utilize the reordering triple pattern to construct the final SPARQL query which is
the optimized SPARQL query (Q’).

The detailed description of the pseudocode of the algorithm is elaborated
in the next sections.

5.2.1 Surrogate key utilization for enhancing the performance
for finding the optimized SPARQL query

Based on index-based optimization the surrogate key has been introduced
which is an index-based optimization. As SPARQL is based on a joining

SPARQL Optimization Using Re-ordering Joining Patterns 409

triple-based pattern, if all the joining is based on the key this will help
find faster results for the same. The concept of the surrogate key has been
introduced with the existing data. The surrogate key feature has been utilized
a lot in data warehousing projects, which results in better performance while
joining huge fact tables with wider dimensional tables. A similar utility of
a surrogate key has been introduced for existing RDF files or any structured
data, to formulate new RDF data having the surrogate key in it [45]. The
results of using this concept produce significant results, especially when
comparing it with other optimization algorithms for generating optimized
SPARQL queries.

This implementation model uses ARQ (an RDF query) engine [43] for
information processing and further produces the dataset in comma-separated
value (CSV) structured format (with the reference of sequence steps (4), (5)
and (6) of Figure 4). Further, SPARQL query has been generated to add a
new triple pattern with a key component based on the surrogate key concept
with the help of ROWNUM. A sample SPARQL query is shown using a code
snippet in Figure 5.

The proposed model produces the new RDF dataset using the above
code. Various tools can be used to perform this task like Tarql (transfor-
mation SPARQL) [46] which generates RDF datasets. Further, an algorithm
optimizer has been used while passing the parameter values of K (an arbitrary
number to find subset size say 10% or 20%), N (total number of triples in

Figure 5 Code snippet used for generating a triple pattern based on the surrogate key concept
using SPARQL and “Tarql”.

410 R. Gupta and S. K. Malik

RDF data), and P (number of triple patterns used with SPARQL) discussed
in Figure 1 and sequence step (10).

5.2.2 Subset pattern
This is another approach, through which the SPARQL optimization can
perform even better than the other earlier proposed ways. In the proposed
optimization a subset pattern has been used with the surrogate key; the idea
behind this approach is that the indexing used by the surrogate key can
be further utilized to reduce the steps to be followed. This way will also
play a vital role in finding SPARQL optimized query, and it will take less
time as compared to previous optimization algorithms because it works on
the whole data. These subset patterns will take an initial arbitrary size say
K, where K denotes the number of triple patterns like 10% or 20% of the
whole data. The SPARQL query works on a Cartesian joining pattern, so
with the concept of surrogate key the subset patterns will also work the same
while calculating the running time for different triple patterns. This way has
also been considered as an efficient way where the optimized SPARQL query
can be generated in very little time as compared to previous approaches. The
implementation has been done using the concept of file handling in Python.
The new RDF dataset has been generated using the search for a specific triple
pattern with the index value of K, which is also the size for which the RDF
dataset has to be reduced. The Python code snippet has been shown using
Figure 6, which uses file handling to read the contents from the original file
cervical cancer.nt and further the new reduce file.nt has been generated using
the string utility on the Cervical Cancer dataset, where str1 is a temporary
string holding the initial RDF data using file content shown in Figure 7.

5.2.3 Generation of a query matrix
This section discusses the query matrix generated based on the triple pattern
used in the basic graph pattern of the query. This matrix is generated using the
time stamp and the execution time based on the triple patterns joining with
the rest of the triple patterns used in the query. This matrix generation is the
key concept for calculations which has been used by optimization algorithms
to generate optimized SPARQL queries. This intermediate matrix is shown in
Figure 8.

5.2.4 Reordering joining patterns based on the shortest path
The joining pattern of the query is the main step for finding the optimized
query. The ordering of the SPARQL query has been reordered based on the

SPARQL Optimization Using Re-ordering Joining Patterns 411

Figure 6 Python code snippet reading the contents of cervical cancerRDF data.

Figure 7 Python code snippet for generating subset pattern of RDF data on parameter K.

Figure 8 Snapshot of intermediate matrix generation M (|P|*|P|) string time stamps used
for triple pattern joins.

412 R. Gupta and S. K. Malik

query matrix generated using Section 5.2.3. Further, this has been used with
the shortest path/minimum spanning tree algorithm like Prim’s to obtain the
minimum path and its sequence using the query matrix, which in turn is used
to obtain the final optimized reordered joining pattern for the query.

5.2.5 Generate reordering of triple patterns to obtain optimized
triple ordering

As per the shortest path calculated from Section 5.2.4, the path originates
from the surrogate key concept triple variable (?x). This will help to obtain
the triple patterns which are less time-consuming concerning the key triple
pattern. This will generate the triple pattern reordering sequence as per the
input SPARQL query. This obtained triple pattern sequence will be merged
with the existing SPARQL query to obtain the final optimized SPARQL query
shown in Table 3.

Table 3 Comparison of SPARQL triple pattern sequence for query (Q1) input query and
optimized triple pattern sequence generated using proposed HSOA (algorithm)
Description Original SPARQL Query Triples Optimized SPARQL Query Triples
Triple patterns 0 ?x rdf:typefoaf:Person
of the query 0 ?x rdf:typefoaf:Person 10 ?x foaf:Cancer ?Cancer

1 ?x foaf:ClumpThickness
?ClumpThickness

7 ?x foaf:BlandChromatin
?BlandChromatin

2 ?x foaf:cell size ?cellsize 9 ?x foaf:Mitoses ?Mitoses
3 ?x foaf:cellshape ?cellshape 5 ?x foaf:SingleEpithelialCellSize

?singleEpithelialCellSize
4 ?x foaf:marginaladhesion
?marginaladhesion

1 ?x foaf:ClumpThickness
?ClumpThickness

5 ?x foaf:SingleEpithelialCellSize
?singleEpithelialCellSize

3 ?x foaf:cellshape ?cellshape

6 ?x foaf:BareNuclei ?BareNuclei 8 ?x foaf:NormalNucleoli
?NormalNucleoli

7 ?x foaf:BlandChromatin
?BlandChromatin

6 ?x foaf:BareNuclei ?BareNuclei

8 ?x foaf:NormalNucleoli
?NormalNucleoli

2 ?x foaf:cellsize ?cellsize

9 ?x foaf:Mitoses ?Mitoses 4 ?x foaf:marginaladhesion
?marginaladhesion.

10 ?x foaf:Cancer ?Cancer
Pattern
sequence results

Triple pattern sequence of
original query (step 2)

Triple pattern sequence of the
optimized query (step 5)

Algorithm Optimizer (F,Q,K,N,P) Algorithm Optimizer (F,Q,K,N,P)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] [0, 10, 7, 9, 5, 1, 3, 8, 6, 2, 4]

SPARQL Optimization Using Re-ordering Joining Patterns 413

5.3 SPARQL Optimization Algorithm (HSOA)

Algorithm 2 used for optimization is Algorithm Optmizer which uses several
parameters to work upon. It comprises five subroutines that work sequentially
to obtain the outcome as an optimized SPARQL query. These subroutines
have been elaborated further in subsequent sections respectively.

Algorithm 2 HSOA (hybrid SPARQL optimization algorithm)
Algorithm Optimizer(F,Q,K,N,P)
Input: (F) is the RDF File in N-Triple Format, (Q) is SPARQL Query, (K) is an arbitrary

number taking say 10% or 20% value of total size of input File, (N) is the total size of the
n triples File, (P) is the No. the triple pattern used in SPARQL Query.

Output: Optimized SPARQL Query (Q’)
1: F’ <- Construct SubSet RDF(F,K,N)
2: P <- Generate Pattern Sequence SPARQL(Q)
3: for i in range(P):
4: for j in range(P):

M[i][j] <- 0
5: for i in range(P):
6: for j in range(P):
7: if (i !=j):

M[i][j] <- Estimate Execution Cost(F’, Q, i, j)
// triple i join triple j

8: Path Seq<- Shortest Path(M,|p|,|p|)
9: Q’<- Generate Optimize Query(Q,Path Seq)
10: return Q’

5.3.1 Construct SubSet RDF (F, K, N)
This subroutine will generate and return a subset of the dataset (F’). The
generation is based on the parameter k which in turn is an arbitrary value, say
10% of the whole dataset triple patterns stored in n-triple format. The existing
dataset will work on the dataset using a prime attribute concept in the dataset.
The structure of the n-triple pattern will work the same in the SPARQL query
processing as per the indexing scheme and triple order pattern evaluation
based on join. Considering the above point, it will reduce the time taken for
calculating optimized SPARQL query for such type of n-triples RDF data.
For the same, Algorithm 3 has been shown as a pseudocode, which used
FILE READ, FILE WRITE utility of file handling, FIND Index to find sub-
string index position on file pointer and concatenate and Slice implemented
using string handling functions.

414 R. Gupta and S. K. Malik

Algorithm 3 Pseudocode function Construct SubSet RDF (F, K, N)
Input: (F) is a RDF dataset File , K is an arbitrary number and (N) is total No. of triples (N)
Output: A RDF subset (F’)
1: Identify the URI of the initial triple pattern which has been added using the ROWNUM

key with ?x source.
2: Data <- FILE READ(F)
3: X <- Truncate the substring from initial position to beginning of first ?x # identify “<”

for n-triple data.
4: Y <- generate a value with (%) K on Total triples- N
5: Z <- Truncate the substring after first ?x # identify “>”
6: L <- FIND Index(Concatenate (X, Y , Z))
7: SubSet Data (F’) <- FILE WRITE(Slice[initial index (0) to L])
8: Return (F’)

For implementation, Python utilities like split, find, list and slicing con-
cepts have been used along with the file handling concepts to generate the
subset rdf dataset. The few key implementations have been shown using the
code snippet:

str1[:str1.find(str1[str1.find("<"):str1.find(">") -

1] + p + ">")]

where N is the count (percentage) of the data in which you want to reduce the
dataset. The value of N is based on the size of the dataset that has been read
(using the str1 object of the file) and further sliced and written using the file
handling object.

5.3.2 Generate Pattern Sequence SPARQL(Q)
This subroutine will generate the triple patterns of the SPARQL query into
separate patterns for triples say t0, t1, t2, and so on. This approach will be
used to find the optimal triple pattern joining sequence as the path sequence
is shown using Path Seq in step 5. The pattern sequence has been generated
using the matrix M (N*M) obtained using algorithm optimizer, where N is the
number of triples used for joining patterns in a query. These pattern sequences
have been generated directly from the query string which has been passed
based on triple patterns. These triple patterns have been stored as a list with
the name attributeName shown by below code snippet below. Here str(i) has
been used to show pattern sequence with the triple patterns passed through
the query:

for i in range(len(attributeName)):

print(str(i)+attributeName[i])

SPARQL Optimization Using Re-ordering Joining Patterns 415

5.3.3 Estimated Execution Cost(F’,Q,i,j)
This subroutine has been used to find the running time for the SPARQL query
on the ith and jth triple pattern as a joining sequence. This running time is
based on CPU running time taken for the execution of the SPARQL pattern.
This has been implemented using the time module utility of Python, where
the CPU timestamp has been recorded to calculate the running time taken by
the query.

Code snippet:

tempq=”SELECT * WHERE {{}}”

start=time.perf counter()

g.query(tempq.format(opt q p))

end=time.perf counter()

print(”Time Taken optimized Query”)

print(end-start)

5.3.4 Shortest Path(M,|p|,|p|)
This subroutine will generate the path sequence (reordering of join) based
on the triple pattern used in SPARQL query. For an intermediate finding of
the final triple pattern, join ordering has been found using Prim’s algorithm,
which has been ably verified by another shortest path/minimum spanning tree
algorithm like Kruskal and Dijkstra. For our experiment, Prim’s algorithm has
been used to find the optimal triple reordering pattern by fixing the source
node ?x as a triple pattern which has been generated with the concept of
surrogate key.

5.3.5 Generate Optimize Query(Q,Path Seq)
This subroutine will generate the optimized SPARQL query (Q’) which will
work efficiently irrespective of the initial given SPARQL query (Q). For
generating the optimized path, a minimum spanning tree algorithm has been
used to find the shortest path from the source triple covering all the other
triple patterns. It has been implemented to optimize the query pattern based
on joins.

The path seq shown in algorithm step 5 has been implemented using ts
(triple sequence) and the opt q p is the optimized triple pattern sequence
generated from path seq shown in Figure 9.

Further, the optimized path sequence has been used to merge with the
query select clause and triple order pattern sequence with the attribute in

416 R. Gupta and S. K. Malik

Figure 9 Intermediate code for generating an optimized path sequence.

terms of triple patterns. The following code has been used to find an opti-
mized SPARQL query:

tempq="SELECT ?ClumpThickness ?cellsize ?cellshape

?marginaladhesion ?singleEpithelialCellSize ?BareNuclei

?BlandChromatin ?NormalNucleoli ?Mitoses ?Cancer WHERE {{}}"
Optimized query=tempq.format(opt q p)

6 Experimental Setup

For the experiment setup the SPARQL query has been executed and tested on
an Intel i3-7100 processor with 2.4 GHz, 8 GB RAM, and 64-bit operating
system. Further Python Idle has been used along with the library setup of
time, rdflib, numpy, and os modules.

The semantic web has to go a long way regarding the evaluation
of systems proposed with semantic web technologies. The semantic web
researchers are in the process of creating benchmark datasets for evaluation
purposes. Due to the unavailability of benchmark datasets in the field of
semantic web technologies, for the evaluation of the proposed system, four
benchmark datasets (Cervical Cancer [34], Diabetes [34], Iris [34], and Breast
Cancer [34]) generated in RDF n-triple and RDF/XML format from the field
of machine learning have been used.

The dataset used in the experimental set has been generated in .nt (N-
Triple) RDF format based on datasets available on the UCI repository, which
are standard datasets used for various experimental research. The dataset
used in RDF forms is based on Cervical Cancer, Diabetes, Iris, and Breast
Cancer [34]. Further, for the processing of RDF datasets, SPARQL queries
have been developed for information retrieval from the RDF into a desired
format which can be further utilized for analysis of its processing.

SPARQL Optimization Using Re-ordering Joining Patterns 417

The evaluation metrics have been used on the time stamps taken from
the operating system processor while executing of SPARQL query based on
reordering for triple patterns.

7 Results and Discussions

In this section, the results of SPARQL optimization are observed and ana-
lyzed. The information retrieval using SPARQL has been found with different
SPARQL queries on different RDF datasets. The comparison of optimized
query has been compared with the original query passed on for a specific
dataset. Along with the same, the time for calculating optimized SPARQL
has also been visualized and compared with the subset patterns using the
concept of surrogate key.

7.1 Results of HSOA with Experimental Datasets and Queries
Using Python Utilities

Four SPARQL queries (Q1, Q2, Q3, Q4) on different datasets have been used
to evaluate the HSOA optimization algorithm. The output produced by the
HSOA has been shown using Figures 10, 11, 12, and 13. These elaborate the
result of joining patterns for various queries (Q1, Q2, Q3, Q4) on different
datasets (Breast Cancer, Diabetes, Iris, and Cervical Cancer) specifications
are shown in Table 4.

Q1:

Figure 10 Optimized SPARQL query patterns generated on Breast Cancer RDF data.

418 R. Gupta and S. K. Malik

Q2:

Figure 11 Optimized SPARQL query patterns generated on Diabetes RDF data.

Q3:

Figure 12 Optimized SPARQL query patterns generated on Iris RDF data.

SPARQL Optimization Using Re-ordering Joining Patterns 419

Q4:

Figure 13 Optimized SPARQL query patterns generated on Cervical Cancer RDF data.

It has been found that the results produced by the optimized SPARQL
query are identical and perform better than the older queries. The results are
presented using a bar graph in Figure 14, and the time taken is shown in
seconds.

Table 4 Comparison of running time SPARQL Queries (Q1-Q2-Q3-Q4) with optimized
query generated using the proposed HSOA (algorithm)

SPARQL
Query

No. Triple
Patterns Were

Used in Joining
Including the
Surrogate Key Dataset

No. of
Triples

Time Taken
Original

Input Query
(time in ms)

Time Taken by
Optimized

Query (Time
in ms)

Q1 11 Breast cancer 3149 9.6736 3.793
Q2 10 Diabetes 7680 104.267 9.0306
Q3 6 Iris 1109 16.4736 7.2013
Q4 37 Cervical cancer 31746 175.9408 16.9934

420 R. Gupta and S. K. Malik

0

20
40
60
80

100
120
140
160
180
200

Breast
cancer

Diabetes Iris Cervical
cancer

11 10 6 37

Q1 Q2 Q3 Q4

Time Taken Original Input
Query (time in ms)

Time Taken by Optimized
Query (time in ms)

Figure 14 Comparison of running time taken by original and optimized SPARQL query.

7.2 Results of HSOA with Experimental Datasets and Queries on
the Stardog Platform

Stardog, a knowledge graph database platform, supports semantic web tech-
nologies to store, visualize, and process RDF data using SPARQL [47, 48].
The SPARQL queries used in the paper have also been executed on the
Stardog cloud environment by creating an instance of the RDF database
and a comparison was made with the optimized queries generated from the
proposed algorithm shown in the comparison of running time using Table 5
and Figure 15.

7.3 Comparative Study with Benchmark SPARQL Queries with
HSOA

In this section, a comparison has been made of HSOA on the benchmark
datasets and queries with LUBM, BSBM [49], and SP2Bench [50]. It was
observed that in several benchmark queries, the optimized SPARQL query
produced by the HSOA produced better results and is discussed using
Tables 6, 7, and 8. The results are shown for all benchmark queries which
suited well with the structure of triple patterns used in the experimental
setup. Queries taken here use more triple pattern joins and fewer filtering
options. The running times shown in Tables 6, 7, and 8 are in milliseconds
and represent the AET (average execution time). They can also be visualized
using Figures 16, 17, and 18.

SPARQL Optimization Using Re-ordering Joining Patterns 421

T
ab

le
5

C
om

pa
ri

so
n

of
ru

nn
in

g
tim

e
of

va
ri

ou
s

ph
as

es
of

SP
A

R
Q

L
qu

er
ie

s
(Q

1-
Q

2-
Q

3-
Q

4)
w

ith
op

tim
iz

ed
qu

er
y

ge
ne

ra
te

d
us

in
g

pr
op

os
ed

H
SO

A
(a

lg
or

ith
m

)
us

in
g

th
e

St
ar

do
g

to
ol

pl
at

fo
rm

N
o.

of
T

ri
pl

e
T

im
e

Ta
ke

n
O

ri
gi

na
lI

np
ut

Q
ue

ry
T

im
e

Ta
ke

n
by

O
pt

im
iz

ed
Q

ue
ry

Pa
tte

rn
s

U
se

d
(T

im
e

M
ic

ro
se

co
nd

s)
(T

im
e

in
M

ic
ro

se
co

nd
s)

in
Jo

in
in

g
Q

ue
ry

Po
st

Q
ue

ry
Po

st
SP

A
R

Q
L

In
cl

ud
in

g
th

e
N

o.
of

E
xe

cu
tio

n
Pr

e-
ex

ec
ut

io
n

E
xe

cu
tio

n
To

ta
l

E
xe

cu
tio

n
Pr

e-
ex

ec
ut

io
n

E
xe

cu
tio

n
To

ta
l

Q
ue

ry
Su

rr
og

at
e

K
ey

D
at

as
et

T
ri

pl
es

T
im

e
T

im
e

T
im

e
T

im
e

T
im

e
T

im
e

T
im

e
T

im
e

Q
1

11
B

re
as

tc
an

ce
r

31
49

5
1

0
13

72
4

1
0

82
4

Q
2

37
C

er
vi

ca
lc

an
ce

r
31

74
6

71
6

7
23

31
39

1
5

99
9

Q
3

6
Ir

is
11

09
3

1
0

24
51

1
0

0
21

79
Q

4
10

D
ia

be
te

s
76

80
13

1
1

25
38

9
1

1
15

32

422 R. Gupta and S. K. Malik

Figure 15 Evaluation of execution time for optimized SPARQL queries using HSOA and
using the Stardog tool platform.

Table 6 Comparison of running time in (ms) of BSBM queries (Q1-Q2-Q6-Q8) with the
optimized query generated using the proposed algorithm HSOA
BSBM
Benchmark BSBM-50K BSBM-250K BSBM-1M
Query BSBM-Query HSOA BSBM-Query HSOA BSBM-Query HSOA
Q1 7.711 6.654 36.216 33.459 66.769 62.466
Q2 32.37 30.459 46.859 41.898 47.317 43.567
Q6 5.759 5.278 43.215 42.718 49.023 45.5903
Q8 27.343 25.734 60.075 58.935 235.52 224.507

Table 7 Comparison of running time in (ms) of LUBM queries (Q2-Q4-Q8-Q9) with the
optimized query generated using the proposed algorithm HSOA

LUBM LUBM-100 LUBM-1000
Benchmark Query LUBM-Query HSOA LUBM-Query HSOA
Q2 2809.2 2579.69 20849.6 19796.508
Q4 218 204.696 272 264.05
Q8 1153.6 1071.968 2564.8 2389.082
Q9 1712.8 1579.308 17383.6 16431.098

SPARQL Optimization Using Re-ordering Joining Patterns 423

Table 8 Comparison of running time in (ms) of SP2Bench queries (Q2-Q4-Q5(b)) with the
optimized query generated using the proposed algorithm HSOA

SP2Bench
Benchmark SP2Bench-250K SP2Bench-5M
Query SP2Bench – Query HSOA SP2Bench – Query HSOA
Q2 4.26 4.07256 5.964 5.01402
Q4 3104.262 2822.51412 229509.204 210007.8846
Q5(b) 134.19 128.32185 4432.53 3973.22745

Figure 16 HSOA comparison with the BSBM dataset and queries.

424 R. Gupta and S. K. Malik

Figure 17 HSOA comparison with the LUBM dataset and queries.

Figure 18 HSOA comparison with the SP2Bench dataset and queries.

SPARQL Optimization Using Re-ordering Joining Patterns 425

8 Conclusions and Future Scope

It has been determined that the SPARQL query is a fundamental element
for managing various data kinds on the semantic web for various objectives.
For the same, SPARQL uses triple patterns to evaluate the results based on
joining patterns. The algorithm HSOA has been proposed for the optimization
towards information retrieval from RDF data, which uses the concepts of
various optimization techniques that are based on reordering of joining triple
patterns based on a surrogate key initially applied on RDF data generation
or restructuring the data. Further, the optimization has been also applied
to finding the optimized SPARQL query triple pattern on given RDF data.
The results produced have also been compared with a few existing versions
of SPARQL query on other datasets and it was found that the proposed
algorithm produces faster results as compared to a non-optimized way for
information retrieval. Four different datasets were used with four respective
SPARQL queries. The HSOA algorithm generates optimized SPARQL triple
patterns which were effective as compared to the input SPARQL. The results
of optimized HSOA were also verified on benchmark datasets. The datasets
and SPARQL queries can be utilized by the community for further query
processing and machine learning in future aspects.

The HSOA was designed primarily for n-triple RDF datasets and was
applied with SPARQL queries to get the optimal execution plan. These
SPARQL queries were used to apply machine learning algorithms on RDF
datasets. The triple pattern order of execution takes lots of time if it is applied
to large RDF datasets. The proposed HSOA algorithm experimental result
shows and demonstrates that it is very effective. For other formats of RDF
datasets like RDF/XML, turtle and other formats, HSOA can be performed
with reordering concepts of optimization. The applicability of surrogate key
concepts will be explored for other types of RDF datasets as a future scope.

In the future, a few meta-heuristics algorithms can be explored while
integrating their concepts with existing algorithms to enhance the capabil-
ities for finding efficient query plans. Also, the proposed algorithm can be
tested to work on real-time applications that use RDF and SPARQL for the
semantic web.

References

[1] Guo, J., and Wang, Y.: (2022) RDF Graph Summarization Based
on Node Characteristic and Centrality. Journal of Web Engineering,
pp. 2073–2094.

426 R. Gupta and S. K. Malik

[2] G. Koutitas, P. Demestichas, (2009) ‘A review of energy efficiency in
telecommunication networks’, Proc. In Telecomm. Forum (TELFOR),
pp. 1–4, Serbia, Nov.

[3] Gartner Report, Financial Times, (2007).
[4] I. Cerutti, L. Valcarenghi, P. Castoldi, (2009) ‘Designing power-efficient

WDM ring networks’, ICST Int. Conf. on Networks for Grid Applic.,
Athens, 2009.

[5] W. Vereecken, et al., (2009) ‘Energy Efficiency in thin client solutions’,
ICST Int. Conf. on Networks for Grid Applic., Athens.

[6] J. Haas, T. Pierce, E. Schutter, (2009) ‘Datacenter design guide’,
whitepaper, the greengrid.

[7] Kalayci, E. G., Kalayci, T. E., and Birant, D. (2015). An ant colony
optimization approach for optimizing SPARQL queries by reordering
triple patterns. Information Systems, 50, 51–68.

[8] Maillot, P., Corby, O., Faron, C., Gandon, F., and Michel, F. (2023).
IndeGx: A model and a framework for indexing RDF knowledge graphs
with SPARQL-based test suits. Journal of Web Semantics, 100775.

[9] Ntioudis, D., Masa, P., Karakostas, A., Meditskos, G., Vrochidis, S., and
Kompatsiaris, I. (2022). Ontology-Based Personalized Job Recommen-
dation Framework for Migrants and Refugees. Big Data and Cognitive
Computing, 6(4), 120.

[10] Guo, Y., Pan, Z., and Heflin, J. (2005). LUBM: A benchmark for OWL
knowledge base systems. Journal of Web Semantics, 3(2–3), 158–182.

[11] S. Groppe, D. Heinrich, C. Blochwitz, T. Pionteck, (2016) “Constructing
Large Scale Semantic Web Indices for the Six RDF Collation Orders”,
Open Journal of Big Data (OJDB), Volume-2, Issue-1, RonPub.

[12] M.D. Nguyen, M.S. Lee, S. Oh and G.C. Fox, (2014) “SPARQL Query
Optimization for Structural Indexed RDF Data”.

[13] Buwen Wu, Yongluan Zhou, Hai Jin and Amol Deshpande, (2017)
“Parallel SPARQL Query Optimization”, IEEE 33rd International Con-
ference on Data Engineering (ICDE).

[14] T. Chawla, G. Singh, E.S. Pilli, (2017) “A Shortest Path Approach
to SPARQL Chain Query Optimization”. International Conference on
Advances in Computing, Communications and Informatics (ICACCI).

[15] Papailiou, N., Konstantinou, I., Tsoumakos, D., Karras, P., and Koziris,
N. (2013, October). H 2 RDF+: High-performance distributed joins over
large-scale RDF graphs. In 2013 IEEE International conference on big
data (pp. 255–263). IEEE.

SPARQL Optimization Using Re-ordering Joining Patterns 427

[16] Hyunsuk Oh, Sejin Chun, Sungkwang Eom, Kyong-Ho Lee, (2015)
“Job-Optimized Map-Side Join Processing using MapReduce and
HBase with Abstract RDF Data”, IEEE/WIC/ACM International Con-
ference on Web Intelligence and Intelligent Agent Technology.

[17] Ge, N., Qin, Z., Peng, P., Li, M., Zou, L., and Li, K. (2022). A cost-
driven top-K queries optimization approach on federated RDF systems.
IEEE Transactions on Big Data.

[18] Li, M., Peng, P., Tian, Z., Qin, Z., Huang, Z., and Liu, Y. (2022).
Optimizing Keyword Search Over Federated RDF Systems. IEEE
Transactions on Big Data.

[19] Peng, P., Ge, Q., Zou, L., Özsu, M. T., Xu, Z., and Zhao, D. (2019).
Optimizing multi-query evaluation in federated RDF systems. IEEE
Transactions on Knowledge and Data Engineering, 33(4), 1692–1707.

[20] Jose, R. T., and Poulose, S. L. (2019). Semantic Web Query Join
Optimization Using Modified Grey Wolf Optimization Algorithm. Inter-
national Journal of Intelligent Engineering & Systems, 12(5).

[21] Dhiman, G., and Kumar, V. (2018). Emperor penguin optimizer: A
bio-inspired algorithm for engineering problems. Knowledge-Based
Systems, 159, 20–50.

[22] Dhiman, G., and Kumar, V. (2019). Seagull optimization algorithm:
Theory and its applications for large-scale industrial engineering prob-
lems. Knowledge-based systems, 165, 169–196.

[23] Dhiman, G., and Kumar, V. (2017). Spotted hyena optimizer: a novel
bio-inspired based metaheuristic technique for engineering applications.
Advances in Engineering Software, 114, 48–70.

[24] Kaur, S., Awasthi, L. K., Sangal, A. L., and Dhiman, G. (2020). Tunicate
Swarm Algorithm: A new bio-inspired based metaheuristic paradigm for
global optimization. Engineering Applications of Artificial Intelligence,
90, 103541.

[25] Dhiman, G., Oliva, D., Kaur, A., Singh, K. K., Vimal, S., Sharma,
A., and Cengiz, K. (2021). BEPO: A novel binary emperor penguin
optimizer for automatic feature selection. Knowledge-Based Systems,
211, 106560.

[26] Dehghani, M., Montazeri, Z., Givi, H., Guerrero, J. M., and Dhiman,
G. (2020). Darts game optimizer: A new optimization technique based
on darts game. International Journal of Intelligent Engineering and
Systems, 13(5), 286–294.

[27] Dehghani, M., Montazeri, Z., Dehghani, A., Ramirez-Mendoza, R. A.,
Samet, H., Guerrero, J. M., and Dhiman, G. (2020). MLO: Multi Leader

428 R. Gupta and S. K. Malik

Optimizer. International Journal of Intelligent Engineering & Systems,
13(6).

[28] Dehghani, M., Montazeri, Z., Malik, O. P., Dhiman, G., and Kumar,
V. (2019). BOSA: binary orientation search algorithm. International
Journal of Innovative Technology and Exploring Engineering, 9(1),
5306–5310.

[29] Dhiman, G., and Kaur, A. (2019). STOA: a bio-inspired based opti-
mization algorithm for industrial engineering problems. Engineering
Applications of Artificial Intelligence, 82, 148–174.

[30] Dhiman, G. (2021). ESA: a hybrid bio-inspired metaheuristic optimiza-
tion approach for engineering problems. Engineering with Computers,
37, 323–353.

[31] Dhiman, G., Garg, M., Nagar, A., Kumar, V., and Dehghani, M. (2021).
A novel algorithm for global optimization: rat swarm optimizer. Journal
of Ambient Intelligence and Humanized Computing, 12, 8457–8482.

[32] Chawla, T. (2023) “Storage and Query Processing Architectures for
RDF Data.”, In Encyclopedia of Data Science and Machine Learning
(pp. 298–313). IGI Global.

[33] Kelwin Fernandes, Jaime S. Cardoso, and Jessica Fernandes. (2017)
’Transfer Learning with Partial Observability Applied to Cervical Can-
cer Screening.’ Iberian Conference on Pattern Recognition and Image
Analysis. Springer International Publishing.

[34] Dua, D. and Graff, C. (2019). UCI Machine Learning Repository [http:
//archive.ics.uci.edu/ml]. Irvine, CA: University of California, School
of Information and Computer Science.

[35] Thapar, P., and Sharma, L. S. (2022). Implementing SPARQL-based
Prefiltering on Jena Fuseki TDB store to reduce the semantic web ser-
vices search space. In Evolutionary Computing and Mobile Sustainable
Networks: Proceedings of ICECMSN 2021 (pp. 319–333). Singapore:
Springer Singapore.

[36] Taelman, R., Vander Sande, M., and Verborgh, R. (2019). Bridges
between GraphQL and RDF. In W3C Workshop on Web Standardization
for Graph Data. W3C.

[37] Leeka, J., &Bedathur, S. (2017). Indexing and query processing in RDF
quad-stores (Doctoral dissertation, IIIT-Delhi).

[38] Lin, X., and Jiang, D. (2022). A Two-Phase Method for Optimization of
the SPARQL Query. Journal of Sensors, 2022.

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

SPARQL Optimization Using Re-ordering Joining Patterns 429

[39] Hassan, M., and Bansal, S. (2023). S3QLRDF: distributed SPARQL
query processing using Apache Spark—a comparative performance
study. Distributed and Parallel Databases, 1–41.

[40] Albahli, S. (2019). Efficient distributed SPARQL queries on Apache
Spark. International Journal of Advanced Computer Science and Appli-
cations, 10(8).

[41] Ferrada, S., Bustos, B., and Hogan, A. (2022). Similarity Joins and
Clustering for SPARQL. Semantic Web Journal IOS press.

[42] Schätzle, A., Przyjaciel-Zablocki, M., Skilevic, S., and Lausen, G.
(2015). S2RDF: RDF querying with SPARQL on spark. arXiv preprint
arXiv:1512.07021.

[43] Grobe, M. (2009, October). Rdf, jena, sparql and the semantic web’.
In Proceedings of the 37th annual ACM SIGUCCS fall conference:
communication and collaboration (pp. 131–138).

[44] Lehmann, J., et al. (2015). Dbpedia–a large-scale, multilingual knowl-
edge base extracted from Wikipedia. Semantic Web, 6(2), 167–195.

[45] Palar, P. S., Liem, R. P., Zuhal, L. R., and Shimoyama, K. (2019, July).
On the use of surrogate models in engineering design optimization
and exploration: The key issues. In Proceedings of the Genetic and
Evolutionary Computation Conference Companion (pp. 1592–1602).

[46] Kalampokis, E., Nikolov, A., Haase, P., Cyganiak, R., Stasiewicz, A.,
Karamanou, A.et,al,. (2014, October). Exploiting Linked Data Cubes
with OpenCube Toolkit. In ISWC (Posters & Demos) (pp. 137–140).

[47] Stardog, an enterprise Knowledge Graph platform – https://www.stardo
g.com/.

[48] Paradzikovic, P., Hoch, R., and Kaindl, H. (2022). Assigning Systems
to Test Environments Through Ontological Reasoning. In Towards a
Knowledge-Aware AI (pp. 75–89). IOS Press.

[49] Bizer, C., and Schultz, A. (2009). The Berlin SPARQL benchmark.
International Journal on Semantic Web and Information Systems
(IJSWIS), 5(2), 1–24.

[50] Schmidt, M., Hornung, T., Lausen, G., and Pinkel, C. (2009, March).
SPˆ2Bench: a SPARQL performance benchmark. In 2009 IEEE 25th
International Conference on Data Engineering (pp. 222–233). IEEE.

https://www.stardog.com/
https://www.stardog.com/

430 R. Gupta and S. K. Malik

Biographies

Rupal Gupta is a Research Scholar at USIC&T, Guru Gobind Singh
Indraprastha University, Delhi, India. His areas of interest are semantic web,
SPARQL query processing and optimization, big data, and data mining.
He received his Master’s, MCA from UPTU, Lucknow, and M.Tech (IT) from
USIT, GGSIPU, New Delhi. He has published papers in various conferences
and peer-reviewed journals indexed in SCOPUS and Web of Science. He is
currently working as an Assistant Professor at Teerthanker Mahaveer Univer-
sity, Moradabad, and has more than 16 years of teaching experience.

Sanjay KumarMalik completed his Ph.D. in the area of Semantic Web from
USIC&T, GGSIP University, Delhi. He is currently working as a Professor
in the University School of Information, Communication and Technology,
GGSIP University. He has more than 20 years of industry and academic
experience in India and abroad (Dubai and USA). His areas of research
interest are semantic web and web technologies. He has several research
papers published in reputed international conferences (India/abroad) and
journals. He has been session chair for several international IEEE/Springer
conferences and was honored with the third best researcher award in 2011 by
GGSIP University for his research contributions.

	Introduction
	Semantic Web
	RDF (Resource Description Framework)
	SPARQL (Simple Protocol and RDF Query Language)
	OWL (Ontology Web Language)

	Literature Review
	Motivations
	Index-based Approach
	Query-based Approach
	Processing-based Approach

	Proposed Methodology for SPARQL Optimization
	Proposed Workflow for SPARQL Optimization on RDF
	Optimization Algorithm Pseudocode
	Surrogate key utilization for enhancing the performance for finding the optimized SPARQL query
	Subset pattern
	Generation of a query matrix
	Reordering joining patterns based on the shortest path
	Generate reordering of triple patterns to obtain optimized triple ordering

	SPARQL Optimization Algorithm (HSOA)
	Construct_SubSet_RDF (F, K, N)
	Generate_Pattern_Sequence_SPARQL(Q)
	Estimated_Execution_Cost(F',Q,i,j)
	Shortest_Path(M,|p|,|p|)
	Generate_Optimize_Query(Q,Path_Seq)

	Experimental Setup
	Results and Discussions
	Results of HSOA with Experimental Datasets and Queries Using Python Utilities
	Results of HSOA with Experimental Datasets and Queries on the Stardog Platform
	Comparative Study with Benchmark SPARQL Queries with HSOA

	Conclusions and Future Scope

