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Abstract

With the increasing number of Web of Things devices, the network and
processing delays in the cloud have also increased. As a solution, fog
computing has emerged, placing computational resources closer to the user
to lower the communication overhead and congestion in the cloud. In fog
computing systems, microservices are deployed as containers, which require
an orchestration tool like Kubernetes to support service discovery, place-
ment, and recovery. A key challenge in the orchestration of microservices is
automatically scaling the microservices in case of an unpredictable burst of
load. In cloud computing, a centralized autoscaler can monitor the deployed
microservice instances and make scaling actions based on the monitored
metric values. However, monitoring an increasing number of microservices
in fog computing can cause excessive network overhead and thereby delay
the time to scaling action. We propose DESA, a fully DEcentralized Self-
adaptive Autoscaler through which microservice instances make their own
scaling decisions, cloning or terminating themselves through self-monitoring.
We evaluate DESA in a simulated fog computing environment with dif-
ferent numbers of fog nodes. Furthermore, we conduct a case study with
the 1998 World Cup website access log, examining DESA’s performance
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in a realistic scenario. The results show that DESA successfully reduces
the scaling reaction time in large-scale fog computing systems compared to
the centralized approach. Moreover, DESA resulted in a similar maximum
number of instances and lower average CPU utilization during bursts of load.

Keywords: Web services in edge clouds, microservice autoscaling, service
elasticity, container orchestration.

1 Introduction

Today, an unprecedented number of Web of Things (WoT) devices are
deployed in our everyday environment. WoT devices such as smart cameras
and traffic sensors in smart cities constantly generate huge amounts of data
that require processing and analysis to extract useful information. Since
resource-constrained WoT devices alone cannot handle such heavy compu-
tational tasks, attempts have been made to transfer the data to a distant global
cloud server or local fog computing nodes, mitigating the communication
overhead by placing computational resources closer to the end devices. as
shown in Figure 1. Even though the distributed fog nodes have less computing
power than the cloud, they effectively mitigate the communication overhead
and congestion in the cloud by placing computational resources closer to the
end devices [2]. In this system, along with the increase of end devices, the
number of fog nodes in between the cloud and the end devices may also
increase.

Meanwhile, in such fog computing systems, MicroService Architecture
(MSA) are increasingly adopted and utilized for operating web applications,
As an evolution of the conventional service-oriented architecture style, MSA
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Figure 1 A fog computing system during a burst of load.
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emphasizes dividing a system into small and lightweight services that each
run its own process, which collaborate with each other with different roles.
These microservices are often deployed in lightweight and portable contain-
ers [7, 8], which are monitored and managed through container orchestration
tools such as Kubernetes.

A key challenge in the orchestration of microservices is service elasticity.
Service elasticity indicates the ability of the microservices to be automatically
scaled up or down corresponding to the computational demand [16]. For
example, in a disaster situation, requests for emergency medical services
may suddenly increase, leading to bursts of computational load at the related
microservices, as shown in Figure 1. To handle such bursts of load, the
load should be distributed across enough instances of the microservices,
which means that the number of instances across the fog nodes should be
temporarily increased in bursts of load [10, 14].

There mainly have been two approaches for the scaling of microservices:
proactive and reactive scaling. In proactive scaling, prediction models predict
the bursts of load in advance and perform scaling actions prior to the actual
burst. However, these prediction models require reliable historical data for
training and cannot predict unprecedented situations. On the other hand, reac-
tive scaling approaches maintain global controllers that monitor the active
microservice instances to make scaling decisions according to predefined
rules. Although reactive scaling may be less efficient than proactive scaling
for predictable bursts of load [14], reactive scaling is inevitably used for
unpredictable bursts of load [14,23].

However, reactively autoscaling during an unpredictable burst of load
requires an expensive process of monitoring. Especially in fog computing,
where a vast number of microservice instances are deployed over geograph-
ically distributed fog nodes, centralized monitoring-based autoscalers lack
scalability as the number of fog nodes and microservices increases, due to
the excessive networking cost of monitoring [20]. Furthermore, the scaling
decisions may be delayed by the monitoring latency, which is aggravated as
more fog nodes and microservices are deployed in the system. Therefore,
rapidly reacting to unpredictable bursts of load has remained a challenge in
realizing service elasticity in fog computing with a myriad of nodes.

As an extension of [17], we present DESA, a fully DEcentralized Self-
adaptive Autoscaler, for handling bursts of load at microservices in fog
computing environments. Instead of utilizing a centralized controller, each
microservice instance regularly monitors its own metric value and analyzes
the need for scaling by itself. When a burst of load occurs, the metric
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value of each instance exceeds the upper threshold, and instances clone
themselves to the current or a neighboring fog node. Then, when the burst
fades away, cloned instances gradually terminate themselves as the metric
values fall below the lower threshold. We design DES A based on the Monitor-
Analyze-Plan-Execute (MAPE) model [6] for self-adaptiveness, with the
MAPE control loop running in each microservice instance.

We evaluated the performance of DESA through a widely adopted net-
work simulator, iFogSim2 [11]. We compared DESA with Horizontal Pod
Autoscaler (HPA) as the baseline, which is the default autoscaler provided by
Kubernetes. The simulation results show that DESA successfully reduces the
scaling reaction time compared to the baseline approach by eliminating the
delay caused by centralized controllers. Moreover, even without a centralized
controller, DESA resulted in a lower average CPU utilization during bursts of
load, generating similar numbers of microservice instances during bursts of
load in general.

In addition, to evaluate DESA in a realistic scenario, we conducted a
case study using the 1998 World Cup website access log. Compared to HPA,
DESA more closely followed the needed amount of microservice instances
to handle a burst of load, showing that DESA is more effective than HPA in
handling a burst of load.

The main contributions of this work are summarized as follows:

* We extend the service elasticity problem to consider bursts of load in fog
computing systems with increasing amounts of distributed fog nodes.

* We propose DESA, a fully decentralized self-adaptive autoscaler that
reactively scales microservices across geographically distributed fog
nodes in fog computing systems. DESA applies a fully decentralized
MAPE loop for reactively scaling microservices.

* We evaluate the performance of DESA through iFogSim2, and exper-
imental results show that our proposed autoscaler reacts faster to
unpredictable bursts of load than Kubernetes’ HPA, the de facto standard
reactive autoscaler, reducing the overall network overhead.

The remainder of this paper is organized as follows. In Section 2, we
discuss related works. In Section 3, we present our approach along with
the problem definition. In Section 4, we show and discuss the results of
our experimental evaluation and the case study. Finally, we present some
concluding remarks in Section 5.
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2 Related Works

Autoscaling and self-adaptive systems have been studied extensively by
researchers of microservices. In this section, we discuss some existing
proactive and reactive autoscaling approaches and introduce some works
that utilize a decentralized self-adaptive system to handle autoscaling of
microservices.

2.1 Proactive Autoscaling Approaches

Previous works propose proactive approaches in horizontally autoscaling
microservices, predicting the load of microservices using machine-learning-
based methods [9,13,23]. Ming et al. go further to create a hybrid of proactive
and reactive approaches, handling the decision conflicts between the two
approaches to optimizing the elastic expansion [23]. However, prediction
models used in these works require reliable historical metric data for train-
ing. Moreover, proactive approaches heavily assume that bursts of load are
predictable and can be handled prior to the burst, meaning that they can be
domain-specific and not applicable to unexpected and unpredictable bursts of
load.

2.2 Reactive Autoscaling Approaches

Kubernetes” HPA is the de facto standard for reactively autoscaling microser-
vices [14]. For scaling purposes, a metric server collects resource metric data
every 15 seconds, querying each node in the cluster. Then, a central controller
fetches the metric data from the metric server and makes scaling decisions
based on the threshold values that are manually set by the developer prior to
deployment. While HPA is the most popular tool available on the market, the
centralized metric server lacks scalability and suffers significant performance
degradation as the number of fog nodes in the system increases.

Rossi et al. suggest a hierarchical autoscaling control model in which a
centralized controller collects proactive or reactive scaling actions requested
by decentralized microservice managers [19]. While this approach can suc-
cessfully distribute the monitoring component of the autoscaling system, the
centralized controller can still act as a bottleneck in fog computing systems,
where instances of microservices are geographically distributed to multiple
fog nodes.
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2.3 Decentralized Self-Adaptive Systems

Brogi et al. propose a fully decentralized management of services, showing
the effectiveness of decentralized orchestration of applications [3]. However,
the work does not consider the reaction time in handling bursts of load in a
large number of fog nodes, as their experiment involves only 85 fog nodes.

Tangari et al. apply a self-adaptive decentralized framework for mon-
itoring network resources for Software-Defined Networking (SDN) [21].
Through this decentralization of the monitoring module, resources are
dynamically reallocated to the services in the system. However, their
approach requires a synchronization interface that may have significant over-
head in fog computing environments. Moreover, since the work focuses
on the specific domain of SDN, their method does not consider the char-
acteristics of microservices that are required for scaling container-based
microservices across fog nodes.

Zhang et al. propose a multi-level self-adaptation model for microservice
scaling, extending the Kubernetes infrastructure to demonstrate its abil-
ity [25]. However, their work is only partially decentralized and can lack
scalability in fog computing systems as more fog nodes enter the system.

3 Decentralized Self-Adaptive Horizontal Autoscaler
3.1 Problem Definition

Figure 2 shows the overview of our target environment. Our target envi-
ronment is a fog computing system in which geographically distributed fog
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Figure 2 Overview of the target environment.
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nodes, f; € F, are connected to the central cloud, ¢, with various network
latencies, /;, depending on their geographical location. Fog nodes are con-
nected to each other, and each fog node maintains a list of its neighboring fog
nodes (N; C F') that have short communication latencies due to geographical
locality. Instances of the microservice, p; € I, are placed across fog nodes
upon deployment. The developer of the microservice sets the minimum
number of instances, j.;, > 0, before deployment, and j,,;, instances are
deployed initially by the system. We define the total number of instances at a
given time ¢ as j(t), with 5(0) = Jmin.

Various end devices, D, send data-processing requests, r, to the instances,
1, that are placed across the system. Following the service-oriented archi-
tecture, a device initially queries a global service registry to establish the
connection with an available microservice instance. The service registry
assigns end devices to microservice instances in a round-robin manner
to equally distribute the requests to the instances. Note that there is no
single-point load balancer that dynamically balances the requests. Once the
assignment is established, the end device sends requests to the assigned
microservice instance until the processing is done or the device is handed over
to another instance. Also, when scaling occurs, the service registry is updated
accordingly to add the newly generated instances or delete the terminated
instances.

A burst of load happens at an unpredictable point in time, t,,,.s¢, and stops
at t.,q. During the burst, the active microservice instances suffer from heavy
networking and computing loads. We use CPU utilization of an instance
at a given time t, CPU; (t), as the performance metric of the instances,
which is the most common performance metric of computation-intensive
applications [4].

The goal of this problem is to stabilize the performance metric of the
system during the burst by dynamically scaling the microservices shortly
after a burst. The autoscaler in the system makes the scaling decisions
by periodically monitoring the metric values of the microservice instances.
During a burst, the autoscaler should notice the burst and increase the number
of microservice instances as soon as possible. Then, after the burst ends,
the autoscaler should decrease the number of instances to reduce the cost
of maintaining an excessive number of instances.

There are two concerns for the autoscaler: (1) minimizing the scale-up
reaction time after a burst occurs, R7T'U, and (2) minimizing the average CPU
utilization, C'PU,,g4, in an acceptable range during a burst. Firstly, we define
the scale-up reaction time, RT'U, as the time at which the burst of load has
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been successfully handled. RT'U is measured as the first time after a burst
at which the average metric value of the entire microservice instances, I, fall
below the upper threshold «, while each instance does not exceed the upper
threshold by 10%, as follows:
1
RTU = min ({ t| @CPU]-(IS) < aand Vu;, CPU;(t) < ax 1.1 })
J

where tpyrst <t < teng. Secondly, to measure the stabilization of the metric
value resulting from scaling, we define the average CPU utilization of all
microservice instances during the burst, C PU,,4, as follows:

tend
1 1
CPUyg = ———— —— » CPU(1).
“ tend — tburst t%«st ](t) ; ]( )

3.2 System Architecture & Algorithm

As a solution to the defined problem, we propose DESA, as shown in
Figure 3. Instead of placing a global and centralized controller over the
microservices, we place a self-adaptive and decentralized controller for each
microservice instance. Through this controller, each microservice instance
individually decides whether to scale up (cloning) or scale down (cooling).
To implement the self-adaptiveness of DESA, we design DESA based on the
Monitor-Analyze-Plan-Execute (MAPE) model [6] , with the MAPE control
loop running in each microservice instance. Each step of the MAPE loop
is represented as an independent component within an instance, with each
component passing commands to the next component in a loop.
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Figure 3 Overview of DESA’s architecture.



Fully Decentralized Horizontal Autoscaling 857

Monitor In the monitor component, each microservice instance period-
ically collects the metric value (e.g. CPU utilization, memory utilization,
workload) for every custom interval. The monitor component only fetches
the metric value within the container holding the instance, which means that
no network communication is involved in this monitoring process.

Analyze The analyze component receives the metric value from the
monitor component and makes cloning or cooling decisions using threshold-
based policies. DESA clones the instance as a child instance when the metric
value exceeds the upper threshold (Algorithm 1). Then, when the burst of
load has been relieved and the metric values fall below the lower threshold,
child instances terminate themselves.The metric data provided by monitor
are analyzed through threshold-based policies, making decisions to clone the
microservice instance when the metric value exceeds the upper threshold.
DESA label all newly generated instances as children, and each child instance
holds its parent container’s ID.

Algorithm 1 shows the cloning algorithm of DESA. The cloning algo-
rithm of DESA is as follows, For every custom interval, the metric value
is fetched from the monitor (line 4), and a cloning decision is made if the
metric value exceeds the upper threshold,  (line 5). For cloning, the number
of new child instances to be cloned, newChildNum, is decided similarly
to HPA, using the ratio of the current and desired metric values to estimate
the number of instances that are needed to lower the metric value below «
(line 7-12). In case the instance already has child instances, however, the
floor operation is used instead of the ceiling operation to limit the number of
child instances newly generated by DESA. Then, actual cloning commands
are sent to the plan component (line 14-15). Note that without any buffers,
microservices may repeatedly alternate between cloning and cooling in a
short period of time if the metric value is on the border of the threshold.
Therefore, a different cooltime is assigned to each child instance to make the
cooling process gradual (line 16).

Plan When the plan component receives a cloning command from the
analyze component, the fog node for deploying the clone is selected. If the
current node has enough computing resources to place the cloned instance,
the current node is selected. If the resource is insufficient, then the cloning
command is forwarded to a neighboring node in a round-robin manner. When
a neighboring node receives this forwarded command, it restarts this node
selection process. Once a node with enough resources is found, the loop
proceeds to the execute component.
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Algorithm 1: Cloning algorithm

Input : «, monitoringlnterval, monitor
1 Procedure cloningAnalysis
childNum «+ 0
for every monitoringinterval do
metric < monitor.getMetricValue ()
if metric > « then
cooltime +- 0
if childNum > 0 then
| newChildNum « ceil(metric + o)
end
else
| newChildNum «— £1oor (metric + a)
end
childNum < childNum + newChildNum
for steps < 1 to newChildNum by 1 do
this.clone (cooltime)
cooltime <« cooltime + monitoringInterval
end

e e N R WD
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19 end
20 end

Execute With the selected node received from the plan component, the
execute component makes the actual cloning or terminating request to the
selected node. In the case of cloning, as the child instances are placed,
some of the end devices connected to the parent instance are directly handed
over and distributed across newly generated child instances without the end
devices having to revisit the service registry. Finally, the service registry is
updated with the network address of the newly generated instances.

4 Experimental Evaluation

We evaluated DESA by comparing the RT'U, maxz(j(t)), and CPUg,q with
the baseline in a simulated fog computing environment. For the simulations,
we used iFogSim2, which is the most commonly used simulator of fog
computing environments [11, 16]. The simulation code used for evaluation
is available online.!

"https://github.com/pec9399/DESA
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4.1 Simulation Setting

Table 1 depicts the settings of the simulations. The simulations were per-
formed on a Windows 11 Pro machine with Intel i7-12700F 2.10GHz CPU
and 32GB RAM. We chose HPA as the baseline since it is the de facto stan-
dard of centralized monitoring-based reactive autoscalers [14]. HPA utilizes a
metric server in the cloud that collects the metric values from each fog node’s
monitor component. The central controller, also located in the cloud server,
fetches the metric value from the metric server and makes scaling decisions
for the microservices.

Generally, we set the parameters of the simulations based on the default
settings of HPA. We set the upper threshold, «, of the CPU utilization metric
to 50%, following a common threshold value of HPA. We set the monitoring
interval of the autoscalers to 15 seconds, the default setting of HPA. The
initial and minimum number of microservice instances was set to 4. Finally,
the network latencies, [;, from node f; to cloud ¢, were set between 50 to
900ms, considering the distributed nature of fog nodes. We performed 50
independent simulations for the number of fog nodes from 100 to 5000 since
the metric server used by HPA officially supports up to 5000 nodes. Note that
the number of fog nodes in the system remained fixed for each simulation.
Each simulation lasted for 15 minutes, and the simulations were repeated ten
times.

In the simulations, the number of requests to a microservice suddenly
increases at tp,.-s¢, Which is set as a random time within the first five minutes
of the simulation. As a result, the C'PU of the initial instances exceeds «,
and the autoscalers eventually scale the microservice in order to lower the
CPU below a. We assumed that the fog nodes in our system, F', have enough
computing resources to host the additional microservice instances generated
by scaling.

Table 1 Simulation parameters

Parameter Value
Number of nodes 100 ~ 5000
Simulation time 15 minutes
Burst time (tpyrst) Random within first 5 minutes
Burst duration (teng — tourst) 5 minutes
Min instances (jmin) 4
Upper threshold () 50%
Monitoring interval 15 seconds
Network latency (I;) 50 ~ 900 milliseconds
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4.2 Result and Analysis

Figure 4a shows the scale-up reaction time, RT'U, of HPA and DESA as the
number of fog nodes increases. Specifically, DESA has 48.03% faster RT'U
from N = 100 to 1000, 71.38% for 1100 to 2000, 64.48% for 2100 to 3000,
71.17% for 3100 to 4000, and 71.55% for 4100 to 5000. The result shows
that DESA reacts faster than HPA to bursts of load overall, especially as the
number of fog nodes increases.

Figure 4b shows the maximum number of instances, max(j(t)), created
during the burst of load as the number of fog nodes increases. The result
shows that DESA produces similar maz(j(t)) compared to the baseline,
generating 23.92% more instances on average. Note that while max(j(t))
of DESA remained similar to that of HPA at the beginning, max(j(t)) of
DESA had sudden increases at N = 1900, 2400, 3200, and 4700. This is
because DESA’s cloning algorithm nearly doubles the number of instances
to react faster to bursts of load. However, without the exceptional cases, the
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Figure 4 Experimental Result of DESA and HPA.
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maximum number of instances generated during the burst does not overly
exceed that of the baseline in general.

Figure 4c shows the C' PU,,,4 during the burst as the number of fog nodes
increases. Specifically, C PU,,, of DESA is 78.30% lower than that of HPA
on average. This indicates that DESA more successfully handles the burst of
load than HPA by reacting faster to the burst of load.

In summary, by reducing the network overhead caused by a centralized
controller, DESA reacted faster to bursts of load while resulting in similar
maximum number of instances and lower average CPU utilization during
bursts of load.

4.3 Case Study: 1998 World Cup Website Access Log

For the simulations, the bursts of load were statically given to the microser-
vice such that the metric value exceeds the upper threshold, as stated in
the problem definition. However, to further evaluate DESA in a real-world
scenario, we used the 1998 World Cup website access log to represent the
burst of load. Specifically, we used the requests received by the website
between 18:00 to 24:00 of July 7, 1998 (GMT+2 timezone). This time was
chosen since the website received the highest number of requests per minute
during this period.

To speed up the simulation, the number of requests made per minute to the
1998 World Cup website was instead sent every second to the microservice
instances in our system, lasting for a duration of six minutes instead of six
hours in total. During the six-minute period, we measured the number of
instances generated by both autoscalers and compared the results with the
number of instances actually needed to keep the metric value below the upper
threshold. The actually needed number of instances is estimated by linearly
regressing HPA’s max(j(t)). For the case study, we set the number of nodes
to 1000, jmin to 4, and « to 50%.

Figure 5 shows the number of microservice instances generated by each
autoscaler during the simulation, and the green line represents the number of
actually needed instances to keep the metric value below «. Note that cooling
does not occur during the six-minute period.

The results show that DESA generated instances closer than HPA to the
actually needed amount of instances. Specifically, up to t = 222, the time
at which the number of requests reaches the maximum, DESA generated
on average 70.64% of the actually needed amount of instances while HPA
only generated 37.17%. This means that DESA is more effective in reactively
handling unpredictable bursts of load in the real world.
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Figure 5 Case study using 1998 World Cup access log.

4.4 Threats to Validity

We used iFogSim?2 [11, 16] to establish the external validity of the sim-
ulations. Because there is no implementation of HPA in iFogSim2, we
implemented both DESA and HPA in iFogSim2 by ourselves, translating
the components of DESA and HPA as application modules in iFogSim?2.
Our implementation includes all the components in HPA so that the scaling
behavior closely follows the actual behavior of HPA.

DESA requires developers to choose appropriate parameter settings such
as the upper («) and lower () thresholds of the metric values, and the perfor-
mance of DESA can be affected by such parameters. While we empirically
chose reasonable values of these parameters for our simulations, we plan to
perform in-depth experiments to analyze the influence of these parameters on
DESA’s performance in future work.

Note that we disregard the container startup time in measuring R7T'U.
Therefore, in an actual system, RT'U is expected to be slightly higher than the
simulation result for both DESA and HPA. However, this increase is expected
to be constant for both autoscalers, which means that disregarding container
startup time does not influence the comparison of the two approaches.

Furthermore, for DESA, the MAPE loop in an instance should begin once
the instance is cloned. This means that although the monitoring interval is
set to equal values for all instances, instances that are cloned at different
times should have different starting points for monitoring. However, due to
the limitation of the simulator, the MAPE loop begins from the same point
in time for all the microservice instances. However, we expect that having
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different starting points of monitoring will have a minor influence on the
scaling reaction time and overall performance of scaling.

Also due to the limitation of the simulator, we disregard the compu-
tational overhead of the MAPE control loop running in each microservice
instance. This overhead that exists in DESA, however, is similar in amount
to the computational overhead of HPA. The difference exists in that DESA
distributes this overhead across multiple instances while HPA handles the
computation in the centralized controller. Therefore, we expect that this
overhead does not influence the result of our work.

4.5 Discussion and Future Work

Although DESA successfully reduces the RT'U after a burst occurs, scaling
down after the burst is designed to be gradual, which means that the scale-
down process requires more computing resources to be occupied briefly after
the burst has ended. This is to ensure that child instances are not terminated
simultaneously, which may result in repeated fluctuation of the metric value
such that instances are repeatedly scaled up and down within a short period
of time.

Also, it is typical for developers to set an upper limit for the number
of instances to negotiate the operational costs during bursts. To apply this
limit, the autoscaler should be aware of the total number of instances that
are currently active. However, since DESA is fully decentralized, the total
number of active instances can only be heuristically estimated, which is the
reason that DESA makes more instances than HPA in general. We leave the
development of the method for limiting the number of total instances as future
work.

We plan to expand DESA to consider the geographic locality of the
requests from the end devices. To fully exploit the advantage of geograph-
ically distributed fog nodes, DESA may detect a burst of load in a specific
region and clone microservice instances to the fog nodes close to the request-
ing end devices in the region. In that case, neighboring fog nodes would be
defined in terms of geographical locations and may cooperate to make scaling
decisions systematically.

In order to expand DESA to consider the geographic locality, the
node selection process needs to be carefully considered. Currently, when
the current node cannot place the cloned instance, DESA uses a simple
round-robin method to select an alternative neighboring node. However, if all
the resources in IV; are occupied and cannot host any additional microservice
instance, the cloning command may repeatedly hover around the fog layer
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before finally reaching the cloud. While this limitation was not focused on
in this work, we plan to consider such resource-constrained scenarios in
selecting the appropriate neighboring node in future work.

5 Conclusion

Establishing service elasticity when microservices experience unpredictable
bursts of load has been a challenge that must be addressed, especially for
large-scale fog computing systems. Since these bursts of load are unpre-
dictable, existing proactive approaches are insufficient. Furthermore, current
reactive autoscalers lack scalability in fog computing systems due to their
centralized components. In this work, we present DESA, a fully decentralized
self-adaptive autoscaler that rapidly scales microservice instances across
geographically distributed fog nodes. With a MAPE loop running in each
microservice instance, DESA performs scaling of microservices without a
centralized controller, reducing the network overhead of existing reactive
autoscalers. Evaluation results show that DESA has a faster scale-up reaction
time to bursts of load, especially as the number of fog nodes in the system
increases. Moreover, DESA leads to a similar maximum number of instances
and a lower average CPU utilization during a burst compared to the base-
line, showing a comparable performance of scaling despite its decentralized
nature. The case study also demonstrates DESA’s effectiveness compared to
HPA in handling a realistic burst of load.

We plan to expand DESA to consider the geographic locality of the
requests from the end devices. To fully exploit the advantage of geograph-
ically distributed fog nodes, DESA may detect a burst of load in a specific
region and clone microservice instances to the fog nodes close to the request-
ing end devices in the region. In that case, neighboring fog nodes would be
defined in terms of geographical locations and may cooperate to make scaling
decisions systematically. We will also expand upon the node selection process
to consider scenarios in which regional clusters are resource-constrained.
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