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Abstract

Edge-Cloud system requires massive infrastructures located in closer to the
user to minimize latencies in handling Big data. Ansible is one of the
most popular Infrastructure as Code (IaC) tools crucial for deploying these
infrastructures of the Edge-cloud system. However, Ansible also consists of
code, and its code quality is critical in ensuring the delivery of high-quality
services within the Edge-Cloud system. On the other hand, the Large Langue
Model (LLM) has performed remarkably on various Software Engineering
(SE) tasks in recent years. One such task is Automated Program Repairing
(APR), where LLMs assist developers in proposing code fixes for identified
bugs. Nevertheless, prior studies in LLM-based APR have predominantly
concentrated on widely used programming languages (PL), such as Java
and C, and there has yet to be an attempt to apply it to Ansible. Hence,
we explore the applicability of LLM-based APR on Ansible. We assess
LLMs’ performance (ChatGPT and Bard) on 58 Ansible script revision
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cases from Open Source Software (OSS). Our findings reveal promising
prospects, with LLMs generating helpful responses in 70% of the sampled
cases. Nonetheless, further research is necessary to harness this approach’s
potential fully.

Keywords: Edge-cloud, Ansible, Bard, large langue model, automated
program repairing.

1 Introduction

The Edge-Cloud system is a crucial computing infrastructure designed to
enhance response times for processing Big data through extensively dis-
tributed infrastructures [1, 4]. This low-latency responsiveness is critical in
advancing modern society, particularly in smart cities and factories. Never-
theless, the manual deployment of such massive infrastructures is fraught
with errors and consumes significant time. Infrastructure-as-Code (IaC)
[17, 19] is a vital tool empowering developers to efficiently provision and
manage the Edge-Cloud system’s massive infrastructures using reusable code
instead of manual labor. Ansible is the most popular IaC tool owing to its
straightforward functionality and a framework implemented using Python
and YAML, languages familiar to various users. However, given that Ansible
is a collection of code, its code quality directly correlates with the quality
of service within the Edge-Cloud system. Consequently, various studies
have been dedicated to ensuring the correctness of Ansible, thereby assuring
service quality [5, 7, 10, 22, 24, 31].

Concurrently, Automated Program Repairing (APR) has emerged as a
dynamic field among various Software Engineering (SE) tasks. APR seeks
to automatically furnish potential code patches when confronted with buggy
code, offering developers a means to reduce both effort and time spent on
bug fixes significantly, consequently curtailing software development costs
[18, 24, 25]. Recently, APR researchers have actively applied the Large Lan-
guage Model (LLM), a deep learning model pre-trained on billions of text and
code tokens, due to its remarkable performance on various SE tasks [2, 9,
16, 20, 28]. Furthermore, the LLM-based APRs have demonstrated better
performance than state-of-the-art APR techniques [8, 24].

Nevertheless, prior LLM-based APR studies evaluated their performance
on widely used Programming Languages (PL), such as Java and C [8, 21,
24, 26, 29, 30]; Ansible has yet to be studied. In the case of Ansible,
compared to Java and C, the availability of training data is notably limited,
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potentially impacting the reliability of findings from prior studies. There-
fore, we explore the applicability of LLM-based APR on Ansible through
experiments. We evaluate the performance of the two version of ChatGPT
and Bard, which are the most actively used LLMs, on 58 Ansible script
revision cases from Open Source Software (OSS) repositories enrolled in
GitHub. Our findings indicate that the three models provide helpful responses
to solve the cases (i.e., offer valuable insights to address cases) in 41 of 58
cases. However, the responses provided by individual models remained rela-
tively modest, underscoring the imperative for further research to establish a
practical framework for real-world program repair.

Our contributions are as follows: (1) We evaluate the LLM-based ARP
performance on Ansible script for the first time. (2) We curate defective
Ansible scripts from OSS enrolled in GitHub to confirm the applicability
of LLM-based ARP. (3) We conduct comparative assessments involving
three LLMs, exploring a variety of prompts and defect types, with the aim
of elucidating strategies for making prompts to effectively guide LLMs in
generating error-free Ansible scripts.

2 Background and Related Work

2.1 Edge-Cloud System and IaC

Figure 1 shows the overall structure of Edge-Cloud system. The main advan-
tage of Edge-Cloud system is collecting and processing Big data with low
latency using more infrastructures, i.e., Edge nodes in Figure 1, geograph-
ically located close to the user or data source [1, 4]. Such locating Edge
nodes support the implementation of the Internet of Things (IoT) or Internet

.  
Figure 1 Overall structure of Edge-Cloud system.1

1https://www.alibabacloud.com/en/knowledge/what-is-edge-computing.

https://www.alibabacloud.com/en/knowledge/what-is-edge-computing
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Figure 2 Ansible script example for deploying a webserver.2

of Everything (IoE), which is challenging to implement within traditional
Cloud systems [1, 4].

Nevertheless, the manual implementation and management of the massive
infrastructure required for the Edge-Cloud system can be highly error-prone
and time-consuming. IaC is a concept designed to automate these laborious
and error-prone tasks by leveraging reusable code [5, 7, 19]. Thanks to the
advantages of IaC, it is widely employed in deploying Cloud infrastructure,
and the same applies to Edge-Cloud systems.

2.2 Ansible

Ansible is one of the most popular IaC tools [5, 6, 17]. Originating as open-
source software (OSS), Ansible has evolved into an end-to-end automation
platform provided by Red Hat, configuring systems, deploying software, and
orchestrating complex workflow. Figure 2 shows a simple Ansible script
example of deploying a webserver. This script employs YAML formatting,
with the entire script referred to as a Playbook. Within each Playbook,
multiple tasks are defined, each commencing with the ‘-name’ tag, which
succinctly outlines the task’s purpose in natural language. Although not
expressed in the script, each task is executed by internally invoking the cor-
responding Python code. Consequently, these tasks are executed sequentially
in the order of the script.

While Ansible offers substantial conveniences, it is important to recog-
nize that, like any other software, Ansible is not immune to bugs. These bugs
can significantly impact the overall quality of the system. Bugs in Ansible
have been associated with a range of Cloud service outages [5, 7, 22, 25, 32].

2https://www.middlewareinventory.com/blog/ansible-playbook-example/.

https://www.middlewareinventory.com/blog/ansible-playbook-example/
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Researchers have conducted studies focused on enhancing the quality of
Ansible scripts to mitigate the risk of such outages. Opdebeeck et al. [22]
employ graph algorithms to identify problematic variables within the script,
referred to as “smelly variables.” Dalla Palma et al. [5] predict scripts that are
prone using static analysis results from Ansible scripts. Meanwhile, Kwon
et al. [15] confirm that LLM can identify the Ansible script and recommend
an error-free version of the Ansible script.

We extend Kwon et al.’s study by comparing two prominent Large Lan-
guage Models (LLMs), ChatGPT and Bard, with various prompt patterns and
issues. We aim to find the optimal prompt to guide LLMs in resolving issues
on the Ansible script.

2.3 LLM-based APR

Large Language Model (LLM) is a deep learning model pre-trained on
billions of text and code tokens, and it generates the most relevant next word
to a given sequence of words. LLM’s capabilities have significantly advanced
with the expansion of training data and the increase in model parameters
[3, 24]. Recently, LLMs have been fine-tuned by using Reinforcement Learn-
ing from Human Feedback (RLHF) to respond to a wide range of user queries,
and the representative examples are Bard3 and ChatGPT.4 While LLMs are
typically utilized for general purposes, such as Natural Language Processing
(NLP), their powerful capabilities have also been found in automating SE
tasks [2, 9, 14, 16, 28]. Tian et al. [27] demonstrate that ChatGPT can provide
developers valuable insights for resolving software bugs. Xia et al. [29] utilize
the conversational manner of LLM for patch generation and validation. Jin
et al. [8] combine the capabilities of LLM with a static analyzer. It is an end-
to-end program repair framework that identifies source code bugs to execute
the necessary repairs.

Despite the ongoing research efforts in the field, the prior studies have
concentrated on Java and C, which are widely used in software development.
However, research on Ansible has yet to be done. Since the information on
Ansible was expected to be relatively scarce compared to C and Java when
learning the model, there exists the potential for discrepancies in the results
obtained from previous studies. Consequently, our objective is to evaluate the
automated repairing performance of LLMs on Ansible.

3https://bard.google.com/
4https://chat.openai.com/

https://bard.google.com/
https://chat.openai.com/
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3 Approach

3.1 GitHub Pull-Request (GHPR)

We gathered cases to evaluate the performance of Large Language Models
(LLMs) in Automated Program Repair (ARP) by utilizing the GitHub Pull-
Request (GHPR) workflow, which is a standard process on GitHub for
addressing issues in developing software. Figure 3 provides an overview of
the GHPR process. Initially, when a software issue arises, a developer creates
a separate branch from the main branch, which represents the original code
thread of a project, to address the issue. After resolving the issue, the devel-
oper submits a Pull Request (PR) to the maintainers of the main repository,
requesting a review of the modified code. If the maintainers approve the PR,
the changes are merged into the main branch. All GHPR-related information
is stored on GitHub, and this data can be accessed through the GitHub API.
Due to the ease of collecting information using the GitHub API, several
studies have utilized it to gather data for various Software Engineering (SE)
research tasks [12, 13, 15, 16, 31].

We gathered cases to evaluate the performance of LLMs in APR by uti-
lizing GitHub Pull-Request (GHPR), one of GitHub’s workflows, to resolve
issues on the developing Software. Figure 2 provides the overall process of
GHPR. Initially, when an issue arises, a developer creates a separate branch
from the main branch, the original thread of code for a project, to resolve
the issue. After addressing the issue, the developer submits a Pull Request
(PR) to the main repository maintainers requesting a review of the modified
code. If the maintainers accept the PR, the changed code is merged into the
main branch. All GHPR-related information is stored on GitHub, and this
data can be accessed through the GitHub API.5 Due to the ease of collecting
information using the GitHub API, several studies have utilized it to gather
data for various Software Engineering (SE) research tasks [12, 13, 15, 16, 31].

We implemented a Python-based tool for crawling the information using
the API. This tool enabled us to collect three distinct types of information:
the original code (i.e., Pre-modified code), issue information (i.e., Symptoms
of the issue), the changed code to address the issue (i.e., Post-modified
code). We consider the changes merged into the main branch reliable, as
the repository’s maintainers have reviewed and approved these modifications.
Consequently, we employ the merged code as the ground truth for our
evaluation process.

5https://docs.github.com/en/rest?apiVersion=2022-11-28

https://docs.github.com/en/rest?apiVersion=2022-11-28
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Figure 3 Overview of the GHPR process.

Figure 4 Overall process for collecting cases and evaluation LLM.

3.2 Collecting Cases and Evaluation

Figure 4 provides an overview of the process involved in data-collecting cases
and evaluating LLM using the collected cases. The first line represents the
data-collecting process, and the second line represents the evaluating process.
The data-collecting process begins with the Andromeda dataset [21] con-
taining metadata of approximately 25K Ansible projects enrolled in Ansible
Galaxy,6 a platform for sharing pre-packaged Ansible works. We applied six
criteria to select the necessary repositories. Initially, we chose repositories
with (1) more than 50 forks and stars and (2) licenses to filter out unserious
projects (i.e., homework or personal purposes). Second, we gathered projects
that (3) consist of over half of Ansible, (4) more than two contributors, and
(5) releases. We also confirmed that the (6) issue frequency is more than

6https://galaxy.ansible.com/

https://galaxy.ansible.com/
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one per month to select actively developing Ansible projects. Consequently,
we selected 25 Ansible repositories actively developing and serious projects
using the criteria. Utilizing our self-implemented crawling tool based on
GHPR, as mentioned in Section 3.1, we collected 61 cases, each resolving
an issue by modifying an Ansible script.

The evaluation process commences using the collected cases comprising
issue information, pre-modified, and post-modified code. The issue informa-
tion provides a natural language description of the issue’s symptoms. The
pre-modified code represents the Ansible script afflicted with the issue, and
the post-modified code is the human-modified code to resolve the issue.
Subsequently, we generate prompts that include an instruction for LLM to
propose issue-free Ansible scripts based on the issue information and pre-
modified code from each case. Finally, we assess the APR performance of
the LLM by comparing the script suggested by the LLM in response to the
prompts and the human-modified script, which is post-modified code.

4 Experimental Setup

4.1 Dataset

Table 1 presents an overview of the 58 collected cases, categorized into three
distinct types. The first type is ‘Modification/Addition,’ which entails cases
where the issues can be resolved by modifying or introducing new code. Out
of the 58 cases, 30 were addressed by modifying the code, while 20 required
adding new lines. The second type, ‘Single-line/Multi-line,’ distinguishes
between cases where an issue can be resolved by modifying or adding just a
single line of code and cases where multiple lines of code need to be altered or
added. The last type, ‘Single-task/Multi-task,’ relates to the structure of Ansi-
ble scripts, which consist of several independent tasks. Thus, the necessary
modifications or additions to address an issue can occur within a single task or
span multiple tasks. This classification allows us to explore the performance
of LLM-based APR on Ansible from various angles, considering the diversity
of issues and the scope of changes required for resolution.

4.2 Research Questions

This study establishes 2 research questions and they are as follows.

(1) RQ1: Does prompt affect LLM based ARPs’ performance? (Analysis on
the pattern of the prompt)
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Table 1 Characteristics of the 58 collected cases
Case Type # of Case
Modification/Addition 30/28
Single-line/Multi-line 19/39
Single-task/Multi-task 35/23
Total 58

A prompt is a sequence of tokens we provide to the LLMs, and these
models generate their responses based on the information provided in the
prompt. Prior studies show that LLMs’ outputs are sensitive to the given
prompt. Therefore, it is crucial to carefully engineer prompts to ensure that
LLMs produce the desired responses with our intentions. Thus, we began by
following the prompt engineering guidelines provided by OpenAI.7 These
guidelines offer specific formats for prompts that align more effectively with
user intent and tend to yield better results. The first instruction in the guideline
is “Put instructions at the beginning of the prompt and use ### or """ to
separate the instruction and context.” We construct our prompt framework
following these instructions. Subsequently, we crafted a variety of prompts
by incrementally adding more context to each one. Each case in our study
consisted of issue information, including an issue title and body. We generate
a variance of prompts by adding these one by one, and the prompts for our
experiment are shown in Table 2.

Prompt1 provides the LLM with the defective Ansible script and makes it
fix it. This prompt is designed to ascertain the LLM’s ability to comprehend
the given Ansible script, and accurately predict and fix an issue within the
script. Prompt2 additionally provides LLM an issue title, which is the implicit
information regarding the issue in the defective Ansible script. We designed
this prompt to examine how the performance of LLMs is affected when
they are given supplementary implicit information about the issue. Similarly,
Prmopt3 additionally provides LLM with an issue body, which offers detailed
information on the issues. The issue body includes the symptoms, the pre-
cise location of bugs within the code, and the desired direction for fixing
them. Using the third prompt, we aim to analyze how LLMs perform when
presented with a wealth of context related to specific issues.

RQ2: Does different LLM show similar performance? (Analysis on the
type of the LLMs)

7https://help.openai.com/en/articles/6654000-best-practices-for-prompt-engineering-wit
h-openai-api

https://help.openai.com/en/articles/6654000-best-practices-for-prompt-engineering-with-openai-api
https://help.openai.com/en/articles/6654000-best-practices-for-prompt-engineering-with-openai-api
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Table 2 Variance of prompts
Type Prompt
Prompt1 You will be provided with a defective Ansible script. Your task is to find and fix

bugs and provide the modified code with a reference for notification.

Defective Ansible script:"""{defective_script}"""
Prompt2 You will be provided with a defective Ansible script and bug report title. Your task

is to find and fix bugs and provide the modified code with a reference for
notification.

Issue report Title:"""{issue_title}"""
Defective Ansible script:"""{defective_script}"""

Prompt3 You will be provided with a defective Ansible script and bug report title and body.
Your task is to find and fix bugs and provide the modified code with a reference
for notification.

Issue report Title:"""{issue_title}"""
Issue report body:"""{issue_body}"""
Defective Ansible script:"""{defective_script}"""

Table 3 Characteristics of various LLMs
Type ChatGPT 3.5 ChatGPT 4.0 Bard
Manufacturer OpenAI OpenAI Google
Basic Model GPT3.5 GPT4.0 PalM2
Parameters 1750B Private Private
Dataset (Word) 1.37T 1.37T 1.56T

Recently, LLMs developed independently by large companies have been
actively announced. Except for Llama8 provided by Meta, these announced
LLMs are working in black-box natural, which means information on their
architecture, layers, and parameters are private for potential commercial rea-
sons. Furthermore, their enormous size makes them impractical for operation
within local computing environments. Instead, they are designed to be oper-
ated via the web or the API provided by the manufacturer. Among various
LLMs, we select three highly popular models, the characteristics of which
are summarized in Table 3. OpenAI’s ChatGPT 3.5 is the first LLM freely
available on the web, and ChatGPT 4.0 is the most advanced system with
more sophisticated language understanding and processing abilities than the
previous version. On the other hand, Bard is a model announced to compete

8https://github.com/facebookresearch/llama

https://github.com/facebookresearch/llama
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directly with ChatGPT and is also currently available for free use on the web.
While OpenAI offers an API for accessing their LLMs, there is no officially
provided API for Bard. Therefore, the three models experimented on the web
and synthesized results.

4.3 Evaluation and Statistical Test

The evaluation process involved three Ph.D. students, each independently
assessing a set of 63 cases, the number of cases initially collected. These
assessments were conducted on three LLMs using three different prompts.
They utilized objective and subjective indicators to evaluate LLMs’ per-
formance. The objective indicators are used to measure how closely LLM
modifies the script to the human-modified script (i.e., Post-modified script),
and there are four choices: (1) Does the script modified by the LLM according
to the given prompt exactly match the human-modified code? If not, (2) Is it
modifying the content inside the same task? (3) Amend the same line within
the same task? (4) Amend irrelevant parts? The subjective indicator is used to
assess how helpful the LLM-modified script is in fixing the actual defective
script, and there are two choices: (1) Is the LLM-provided script helpful in
modifying the actual defective script? or (2) isn’t it?

Following the independent evaluation, we employed Krippendorff’s
α [11] to measure the agreement between evaluation results. It is a reliability
coefficient that measures the agreement among observers or raters. Its values
fall within the range of −1 to 1, with 1 representing perfect agreement
between the raters, 0 indicating they are guessing randomly, and negative
values suggesting the raters systematically disagree. The initial agreement
rate of individual results was 0.58. However, all raters discussed cases where
their evaluations diverged until Krippendorff’s α was 1.0. Finally, of the 63
cases initially collected, 58 cases were used for analysis, excluding 5 cases in
which the evaluations did not match.

5 Experimental Results

5.1 RQ1: Does Prompt Affect LLM Based ARP’s Performance?

Table 4 illustrates the performance of three LLMs in ARP on various prompts.
As described in Section 4.3, the performance analysis consists of objective
and subjective evaluation. In the objective evaluation, we assess how closely
the LLM responds to the human-modified code. “Totally match” indicates
the case where the LLM’s response is identical to the human-modified code.
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Table 4 Performance analysis on various prompts over the three LLMs
# of cases (# of improved cases compare to prior prompt)

Objective Evaluation Subjective Evaluation
Totally Match Task Match Line Match Miss Helpful Not Helpful

Prompt1 1 (−) 5 (−) 0 (−) 52 (−) 1 (−) 57 (−)
Prompt2 3 (↑2) 17 (↑12) 4 (↑4) 34 (↑18) 8 (↑7) 50 (↑7)
Prompt3 2 (↓1) 12 (↓5) 12 (↑8) 32 (↑2) 15 (↑7) 43 (↑7)

(a) Bard

# of cases (# of improved cases compare to prior prompt)
Objective Evaluation Subjective Evaluation

Totally Match Task Match Line Match Miss Helpful Not Helpful
Prompt1 3 (−) 3 (−) 2 (−) 50 (−) 7 (−) 51 (−)
Prompt2 6 (↑3) 9 (↑6) 4 (↑2) 38 (↑12) 18 (↑11) 40 (↑9)
Prompt3 7 (↑1) 16 (↑7) 10 (↑6) 24 (↑14) 26 (↑8) 32 (↑8)

(b) ChatGPT v3.5

# of cases (# of improved cases compare to prior prompt)
Objective Evaluation Subjective Evaluation

Totally Match Task Match Line Match Miss Helpful Not Helpful
Prompt1 1 (−) 0 (−) 4 (−) 53 (−) 4 (−) 54 (−)
Prompt2 3 (↑2) 9 (↑9) 15 (↑11) 31 (↑22) 20 (↑16) 38 (↑16)
Prompt3 7 (↑4) 10 (↑1) 20(↑5) 22 (↑9) 28 (↑8) 30 (↑8)

(c) ChatGPT v4.0

“Task match” and “Line match” indicate the cases where the LLM’s response
is not the same as human-modified code, but it modified the same part
of the human-modified code (i.e., in a task or line). Lastly, “miss” means
LLM’s response modifies parts unrelated to human-modified code. On the
other hand, the subjective evaluation focuses on whether the LLM’s response
proves helpful in addressing the issue.

The first finding is that incorporating more information into the prompt
generates more satisfactory code across all three models. This observation
holds for objective and subjective evaluation indicators, with improvements
evident as the amount of information in the prompt increases (i.e., prompt1
→ prompt2 → prompt3). Even the addition of implicit information about
the issue, as seen in prompt2 where only the issue title is included, results
in significant enhancements in objective and subjective evaluation indica-
tors compared to prompt1. Furthermore, when a detailed description of
the issue (i.e., issue body) is added in prompt2, there is an increase in
both indicators. However, this improvement is relatively less significant than
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--- a/tasks/install.yml 
+++ b/tasks/install.yml 
@@ -2,7 +2,7 @@ 
- name: enable overcommit in sysctl 
   sysctl: 
     name: vm.overcommit_memory 
-    value: 1 
+    value: "1" 
     state: present 
     reload: yes 
     ignoreerrors: yes 

Figure 5 git diff result of case #13.

between prompt1 and prompt2. These results show that specifying the direc-
tion of automatic repairing LLM with additional information is important.
Exceptionally, we can identify that Bard’s objective evaluation performance
degrades between prompt2 and prompt3. This degradation is attributed to
Bard’s token limitation, which restricts the amount of the given prompt. In
the case of prompt3, there were cases where the entire Ansible script could
not be entered in Bard, since the issue report body located in the middle of
the prompt was too long, so it exceeded the token limitation. It prevents Bard
from understanding the information of the entire Ansible script, resulting
in poor performance compared to propmt2. In conclusion, the quantity of
information included in the prompt provided to LLMs significantly influences
their performance in ARP tasks.

The second finding highlights a limitation of LLMs ability to predict
the presence of defects in a given Ansible script when provided with only
the script information (i.e., prompt1), with some exceptions. Figure 5 shows
the git diff result of case # 13, where the three LLM models modified the
defective Ansible script to match the human-modified code precisely. In this
case, the issue stemmed from a discrepancy in data types. Ansible script
basically uses the String type as a variable. However, 1 (i.e., int type) is
entered in the defective script, so the developer changed 1 as Int type into
“1” as String type to resolve the issue. However, it is important to note
that most cases involved issues not related to syntax errors in the script but
specific conditions during script execution. Thus, it is essential to incorporate
information about the specific conditions causing the issue into the prompt to
address these cases (i.e., through prompt2 or prompt3). In conclusion, LLMs
have limitations in predicting whether a given Ansible script contains defects
when provided with script information alone. It is also imperative to include
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issue reports that provide context about the specific conditions leading to the
issues.

The third finding is that it is difficult to directly apply LLM-based APR on
Ansible script because only 28% (7 cases) are modified to be the same as the
human-modified code, even when prompt3 is applied. In addition, in the case
of subjective evaluation, the code generated by both versions of ChatGPT
only helps with solving bugs in about 44% (26 cases) and 48% (28 cases) of
all cases. However, the above findings indicate the potential for performance
enhancement based on the format of the prompt and the information included.
Consequently, there are plans for further research to improve performance by
augmenting the prompt with additional information, such as utilizing few-
shot learning, which involves providing examples of fixing similar issues.

In conclusion, we confirm that the performance of LLM varies depending
on the given prompt, with more information provided in the prompt yielding
better performance. However, further research is needed to enhance the
quality of LLM’s response. Furthermore, in subsequent analysis, we apply
the subjective evaluation, which shows the difference in performance more
clearly than the objective evaluation, and prompt3, which consistently shows
the best performance among other prompts.

5.2 RQ2: Does Different LLM Show Similar Performance?

Table 5 summarizes the performance of each model, focusing on subjective
indicators when using prompt3. As shown in the table, Bard’s performance is
lower than the other two versions of ChatGPT, with no significant disparity
between the performance of the two ChatGPT versions. These results indicate
that ChatGPTs comprehend Ansible scripts better than Bard and offer helpful
responses in solving issues. However, it is important to note that model
configuration and training data for all three models are private; analysis
of the above performance differences cannot be performed. Nonetheless,
considering that Ansible has a relatively simple structure compared to the
other PL, it is reasonable to speculate that the amount of Ansible script in
each training data may influence the models’ performance.

Figure 8 shows a Venn diagram of cases where each model provides
helpful responses for solving an issue. First, the three models provide helpful

Table 5 LLM’s performance on subjective indicator using prompt3
Bard ChatGPT v3.5 ChatGPT v4.0

Helpful/Not Helpful 15/43 26/32 28/30
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Figure 6 Venn diagram of cases where LLMs provide helpful responses.

Table 6 LLMs’ performance analysis on various types of case
Helpful/Not helpful (Total case)

Modification Addition Single Line Multi Line Single Task Multi Task

Bard 6/24 9/19 5/ 14 10/29 9/26 6/17

(30) (28) (19) (39) (35) (23)

ChatGPTv3.5 12/18 14/14 6/13 18/21 14/21 12/11

(30) (28) (19) (39) (35) (23)

ChatGPTv4.0 16/14 12/16 9/10 19/20 18/17 10/13

(30) (28) (19) (39) (35) (23)

responses for issue resolution in 41 of the 58 cases (i.e., 70%). Though the
problem of determining which LLM model’s response is accurate remains,
these results highlight the promise of LLM-based APR for Ansible scripts.
Second, the models that provided helpful responses differ across the collected
cases, even with the same prompt. There are cases where Bard, which shows
relatively lower performance than the two versions of ChatGPT, provides
more helpful responses than them, and similar patterns emerge with the
two ChatGPT versions that show comparable performance between them.
In addition, the cases in which the three models provided helpful responses in
common were 13% (i.e., 8 cases) of the total. Based on these facts, providing
prompts tailored to each model is essential because each model interprets
a given prompt and responds differently. Finally, to check the differences
between cases where responses are commonly helpful (i.e., 8 cases) and
responses are not helpful (i.e., 17 cases), we analyze the characteristics of
the given prompts, and the results will be discussed in Sector 5.

Table 6 shows the subjective evaluation results of the three models’
performance across various types of cases when using prompt3. Similar to
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Table 2, Bard does not outperform ChatGPT in any case. In addition, there
are no notable differences between the two versions of ChatGPT depending
on the type of case. However, ChatGPT v4.0 outperforms ChatGPT v 3.5,
except in cases where code additions are required (i.e., Addition) or modified
parts are distributed across multiple tasks (i.e., Multi-Task). Consequently,
ChatGPT v4.0 outperforms other models, while there are no significant
differences in the performance among models depending on the type of case.

In conclusion, among the three models, ChatGPT v4.0 is better than
the others. Moreover, we can confirm that LLM-based ARP on Ansible
is promising, although further investigation is necessary to determine the
optimal model providing the most accurate responses.

6 Discussion

In this section, we analyze the relationship between the constituent elements
of the prompt and the level of satisfaction of the responses provided by LLM.
As explained in Section 3.2, Prompt3 consists of a defective Ansible script,
an issue report title, and an issue report body. Given that the issue report
title occupies a relatively minor portion of the prompt compared to the other
components, we analyze the impact of the issue report body and defective
Ansible script on the satisfaction levels associated with LLM responses.

Figure 7 is a dot graph showing cases where the three models provide
helpful responses in common and cases where they do not (i.e., 8 cases
and 17 cases in Section 4.3, respectively), according to the number of lines

 
Figure 7 Correlation between the elements of the prompt and satisfaction of the response.
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in the issue report body and the number of lines of the defective Ansible
script. In the figure, regarding the number of lines of the defective Ansible
script in the prompt, no discernible correlation is evident between it and the
satisfaction level of the response. On the other hand, a significant correlation
emerges between the length of the issue report body and the satisfaction
level of the response. In cases where helpful responses were obtained (i.e.,
Orange dot in the figure), the number of lines in the issue report body
is relatively small (i.e., 9∼36 lines). It indicates that the number of lines
in the issue report, which LLM relies on to determine how to resolve the
issue, has more influence than the line of Ansible script requiring correction.
Additionally, if the issue report body in the middle of the prompt is too long, it
exceeds the number of tokens LLM can remember while writing the response.
Consequently, this leads to a decline in LLM performance because it loses the
information necessary for reference during response generation.

In order to address this issue, we expect that satisfaction with LLM’s
response can be increased by providing a summary of the issue report body
rather than providing it as is. As illustrated in Figure 8, we outline future work
for an automated framework for Ansible. Figure 8(a) shows the currently
applied framework, where an overly lengthy issue report body adversely
affects response quality. On the other hand, Figure 8(b) shows our future

 
 

(a) Present work 

(b) Future work 

Figure 8 Frameworks of present and future work.
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work’s framework, which incorporates an additional LLM tasked with sum-
marizing the issue report body. Through this approach, we aim to generate
more effective prompts and enhance the performance of LLM-based APR for
Ansible.

7 Threats to Validity

Internal Validity is the inconsistency of Bard and ChatGPTs’ responses to
the same question. The evaluation results could depend on repeated trials.
To mitigate this threat, the three raters confirmed the results of the other
raters through cross-validation, and we removed cases that did not match the
evaluation results.

External Validity is that the small number of raters and cases (i.e., three
raters and 58 cases, respectively, may limit the generalizability of our find-
ings. To mitigate this threat, we applied Krippendorff’s α to select only cases
where the three evaluators were unanimous, and through this, we tried to
overcome the small number of cases and raters. In future work, we plan to
improve external Validity by involving more raters and cases.

8 Conclusion

Edge-Cloud system has a massively distributed infrastructure, and IaC is a
crucial tool that helps deploy and manage the infrastructure of the edge-cloud
system effectively. Ansible is one of the popular IaC tools; as Ansible is a
set of code, its code quality influences the quality of the service delivered
by the Edge-cloud system. We focused on LLM-based ARP to ensure the
quality of the Ansible script. However, prior LLM-based APR studies have
concentrated on widely used Programming Languages (PL), such as Java
and C. Hence, this study evaluated the performance of LLM-based ARP on
Ansible for the first time to confirm its applicability to Ansible. We assessed
the performance of three LLMs with three types of prompts on 58 Ansible
script revision cases. The results show that the LLMs provide d helpful
responses in 70% of cases, which is promising, but further research is needed
to apply it in practice.

In future work, we plan to apply few-shot learning in the prompt, which
gives hints for issue resolution. Additionally, we plan to use an additional
LLM that summarizes the overly extensive information in the prompt, which
prevents LLMs from losing the information.
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