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Abstract

Web 3.0 is an evolved version of the Web that enables the integration of
applications such as the Internet of Things (IoT) with the Web. It involves the
storage of large data generated by different users and efficient computation
of application and web-related tasks. With the help of edge nodes installed
near the users, the computation load of Web 3.0 will be efficiently managed.
Thus, efficient task offloading and computation become a key concern in edge
computing-enabled Web 3.0. In this paper, a novel algorithm is proposed that
solves the challenges of load imbalance at the edge nodes resulting in large
queue sizes and increased task delays. The proposed technique identifies the
edge nodes with a large network load and pairs them with a lightly loaded
edge node that can handle some of their network load. The edge node pairing
is based on the Gale–Shapley stable matching algorithm. The preference
profile of edge nodes is developed based on factors such as task computation
delay and task transmission delay. Once the pairing is done, the number of
tasks is offloaded as per the computing capacity of the lightly loaded edge
nodes. A detailed simulation-based performance evaluation of the proposed
technique is presented showing a reduction in task delay by 20% and task
deadline miss ratio by 68%.
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1 Introduction

Web 3.0 is an upgrade of the current version of the web to make it compatible
with new applications, data management, and analytic techniques [1–3].
Some of the key features of Web 3.0 are that it will support decentralized
data sharing and intelligent processing of data. Moreover, Web 3.0 will also
enhance security and reliability [4–6].

Web 3.0 can support many new applications such as the Internet of
Things (IoT) that involve storing large amounts of data and computation of
tasks [14, 15]. It will introduce decentralized data computation and manage-
ment using Blockchain and edge computing. Many different types of sensors
can interface with the web using this new version. Also, it will enable new
communication protocols to facilitate IoT communications [7–9].

Web 3.0 will lead to a semantic web that provides more context and
meaning to the current web. Moreover, it will lead to more secure data com-
munications and data storage with the use of decentralized Blockchain-based
identity management, access control, and encryption techniques [10–13].

Edge computing will be central to Web 3.0 as fast task computation and
data storage is a key requirement of next-generation Internet-based applica-
tions [16–18]. Edge nodes will be installed near the end devices to meet the
latency requirements of the Web 3.0-related tasks. However, edge computing-
enabled task computation will bring challenges to Web 3.0. End users prefer
to share their tasks with the nearest edge node due to communication-related
constraints [19,20]. Thus, it is up to the edge layer to collaborate and manage
the task computation load. The goal is to provide a balanced computation load
to each edge server and reduce the task computation delay. The motivation of
this work is to enable offloading of tasks for Web 3.0 using edge computing.

In this paper, the focus is on the problem of collaborative task computa-
tion by the Web 3.0-enabled edge nodes. The main contribution of the paper
is as follows:

• An edge node classification algorithm is proposed to divide the nodes
into two groups based on the number of tasks in the queue, expected
task computation delay, and task deadline. The first group is the heavily
loaded edge nodes and the other is lightly loaded edge nodes.

• To enable collaboration among the edge nodes and balance the com-
putation load, edge nodes are paired to include a heavily loaded node
and a lightly loaded node. The pairing problem is converted to a
graph-matching problem and solved using the Gale–Shapley algorithm.
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• The task offloading between a heavily loaded edge node and a lightly
loaded edge node is performed based on the capacity of the light-loaded
edge node.

• Detailed performance evaluation of the proposed technique as compared
to a nearest task offloading technique and a matching-based task offload-
ing technique is presented. Results highlight that the proposed technique
achieves significant improvement in task delay and task deadline miss
ratio.

The paper is organized as follows. Section 2 provides a brief overview of
current work related to task offloading. Section 3 describes the system model.
Section 4 explains the proposed technique in detail. Section 5 presents the
performance evaluation of the proposed technique. Finally, Section 6 presents
the conclusions.

2 Related Works

The work related to edge computing and task offloading has been going
on for a few years; however, its application to Web 3.0 is relatively new
and there are only a few related works. Table 1 provides a summary of the
literature in this area. In [21], the focus of the work is on digital twin and
edge computing-based Web 3.0. The goal of the work is to enable network
virtualization and network digitization to meet the requirements of Web 3.0.
A task offloading technique is proposed that uses base stations (BS) as edge
servers. A Markov decision process (MDP) and a deep Q-learning-based
technique are utilized to enable efficient task offloading. Simulation results
show reduced task latency using the proposed technique.

The work in [22] proposes a task offloading mechanism for UAV and edge
computing-based Web 3.0 networks. The goal of the work is to introduce reli-
able and secure computing for UAV networks. To enable this goal, a federated
reinforcement learning (RL) based technique is proposed that improves the
metric termed secure calculation capacity.

In [23], a Web 3.0-based Internet of Vehicles is considered. The key idea
of the work is to enable efficient placement of edge servers which has a sub-
stantial impact on the task computation. The security of users is considered
while making task-offloading decisions. Malicious users are identified using
an anomaly detection algorithm. The proposed technique achieves improved
task delay.
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Table 1 Summary of related works

Reference Network Key Idea Results

[21]

Web 3.0

Digital twin

Edge computing

Network virtualization

Network digitization

Task offloading to BS

Markov decision process

Deep Q-learning

Reduced task delay

[22]

Web 3.0

UAVs

Edge computing

Reliable computing

Secure computing

Federated RL

Secure calculation capacity

[23]
Web 3.0

Internet of Vehicles

Placement of edge servers

Security consideration

Anomaly detection

Improved task delay

[24]
IoT network

Fog computing

Virtual resource units

Stable matching

Task deadline based allocation

Improved resource utilization

[25]
Vehicular network

Edge computing

Greedy matching

Vehicle mobility

Vehicle connectivity

Kuhn–Munkras algorithm

Improved task delay

The work in [24] is focused on IoT networks and fog computing. The
proposal introduces the idea of using adaptive virtual resource units at the
fog nodes. A matching-based technique is used to map IoT tasks and fog
node resources. A task deadline is considered to utilize the virtual resource
units. The work achieves improved resource allocation of the fog node
capacity.

In [25], a vehicular network-based edge computing scenario is con-
sidered. A greedy matching technique is proposed that considers vehicle
mobility and vehicle connectivity to allocate tasks at the edge nodes. A stable
matching-based Kuhn–Munkras algorithm is used for task allocation. The
work improves the delay of the tasks.
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Figure 1 System model of edge computing enabled Web 3.0.

3 System Model

The considered system model in this paper is shown in Figure 1. There are
two major layers in the system. The first is the user layer which generates data
and tasks for computation whereas the second layer is the edge layer which
comprises several edge servers that compute web-related tasks on behalf of
users. The users transmit their tasks to the nearest edge server for computation
purposes. The transmission between the user and the edge server is enabled
using 5G communications. Similarly, tasks can be transmitted between edge
nodes and this is also achieved using 5G communications.

Each edge server has a computation capacity which is measured in terms
of two important metrics. The first metric is the number of bits per cycle (C)
a CPU can process. The second metric is the speed of the CPU in terms of
cycles per second (S). Thus, a task that is forwarded to the edge server takes
Tcomp time for computation given as follows:

Tcomp =
B

S × C
(1)

where B is the size of the task in bits.
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The incoming tasks at the edge server are placed in a queue for process-
ing. Each edge server processes tasks one by one. This means that the task
that is received earlier and placed at the top of the queue is processed first.

4 Proposed Technique

The goal of the proposed technique is to use collaboration among edge nodes
to improve the task computing delay. To achieve this goal, a collaborative
algorithm is proposed in this paper.

4.1 Edge Nodes Classification

Each edge node is classified as a heavy or light node depending on its
computation capacity and the current size of its queue. Let Q be the number
of tasks in the queue waiting for computation, then the computation time
required for the last task in the queue can be given as:

T last
comp =

Q+1∑
n=1

Bn × 1

S × C
. (2)

Here Q + 1 is used to consider Q tasks in the queue and 1 task which is
under computation. The size of each task Bn can vary.

The vth edge node Ev is classified as light if it can compute all the tasks
within the queue within the task deadline Td.

Ev =

{
Light, T last

comp ≤ Td

Heavy, otherwise
(3)

4.2 Collaborative Pairing using Stable Matching Algorithm

The proposed technique develops a collaboration mechanism among the edge
nodes. The key idea is to pair each heavy edge node with a light edge
node such that the latter can assist the former in computing tasks in its
queue. To efficiently pair the edge nodes, the given problem is converted to a
stable matching problem. The Gale–Shapley algorithm for stable matching
is utilized to find a stable pairing among edge nodes, where each pair
contains one node from a heavy and light group. The proposed algorithm
runs in a centralized manner and one of the edge nodes acts as a server, thus
maintaining data of all IoT nodes and edge nodes. The server edge node also
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Figure 2 Preference profile of heavy and light edge nodes.

runs the classification algorithm as well as the task offloading technique. The
algorithm is presented in Algorithm 1

4.2.1 Preference Profile
To apply the stable matching algorithm, the preference profile of each edge
node in the heavy group towards every other edge node in the light group and
vice versa is required, as shown in the bi-partite graph of Figure 2.

For the heavy edge nodes, the preference profile towards light edge nodes
is calculated based on the following two factors:

• Transmission delay to transmit a task from the heavy edge node toward
the light edge node.

• Total computation time to compute all the tasks in the queue (T last
comp) of

the light edge node.

The transmission delay is calculated using task size and data rate as
follows:

Ttrans =
B

R
(4)

and the data rate for 5G wireless communications can be calculated from the
Shannon equation.

Thus, the heavy edge nodes utilize the sum of Equations (2) and (4) to
calculate their preference ranking towards light edge nodes. The reason for
using this preference profile is that heavy edge nodes prefer to collaborate
with light edge nodes that are closer to them, have a good wireless channel
link, and are lightly loaded with computation tasks.

On the other hand, light edge nodes utilize a measure of load on the heavy
edge node, i.e., T last

comp, to evaluate the preferences. The reason is that a light



688 Mohammed Alkhathami

edge node will prefer to collaborate with a heavy edge node that has a lesser
computational load so that it may receive fewer tasks for computation. This
way the light edge node will save its processor utilization.

Algorithm 1: Proposed collaborative pairing technique of edge nodes

1 Classify edge nodes into heavy and light using equation 3
2 Find preference ranking of heavy edge nodes towards light edge nodes using

equations 2 and 4
3 Find preference ranking of light edge nodes towards heavy edge nodes using

equation 2
4 Initially, each heavy and light edge node is free
5 while a single heavy edge node vh is free do
6 vl = highest ranked light edge node in the preference ranking of heavy edge

node for which proposal has not been sent
7 if vl is free then
8 collaboration between heavy edge node vh and vl is finalized
9 end

10 else
11 if vl prefers vh to its current collaborative heavy edge node v′h then
12 collaboration between heavy edge node vh and vl is finalized
13 Make v′h free
14 end
15 else
16 Proposal is not accepted and no change in status
17 end
18 end
19 end
20 Find computing space available in the light edge node using the difference of Td and

T last
comp

21 Transmit the tasks to the light edge node

4.3 Stable Matching Algorithm

Once the preference profile is finalized, the stable matching algorithm is
run by a central controller. As shown in Algorithm 1, each heavy edge
node proposes to the light edge node which is in first rank in its preference
profile. This process is continued till the time all edge nodes are matched
and collaboration between them is finalized. It should be noted that during
the algorithm, the light edge nodes may break their current collaboration in
case they receive a proposal from a better heavy edge node. At the end of
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Table 2 Details of simulation parameters

Simulation parameter Value

Number of edge nodes 200

Number of user nodes 500–1500

Task size B 10–40 Mbits

Bits per cycle of CPU C 0.001

Speed of CPU S 5–10 GHz

Average queue size of edge node 2–8

Task deadline 50s

Data rate 20 Mbps

the algorithm, a one-to-one matching between heavy and light edge nodes is
achieved and a stable pairing is obtained.

4.4 Task Transmission from Heavy to Light Edge Nodes

Finally, once the pairs are formed, the heavy edge node transmits some of its
tasks to the light edge nodes. To calculate the number of tasks to be offloaded,
the heavy edge node first calculates the tasks that cannot be computed within
the deadline requirements. These tasks are marked for transmission to the
collaborative light edge node. After this, the difference between Td and T last

comp

of the light edge node is evaluated. This difference indicates how much
computing space is available in the light edge node. Then, the heavy edge
node transmits the tasks as per the computing space of the light edge node.

5 Results

The performance evaluation of the proposed technique is conducted in MAT-
LAB software. The simulation parameters are listed in Table 2. The number
of edge nodes is taken as 200. The number of user nodes is considered to
be varying from 500–1500. Each user node generates one Web 3.0-related
task for computation to the edge nodes. The task size B is varied from 10–40
Mbits. The bits per cycle of CPU C is taken as 0.001. The speed of CPU S is
taken as 5–10 GHz. The average queue size of edge nodes is taken as 2–8 s.
The task deadline is taken as 50 s. The data rate is taken as 20 Mbps.
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Figure 3 Task delay at different values of task size.

The performance of the proposed technique is compared against two other
techniques from the literature:

• Nearest offloading technique in which user nodes transmit their task to
the nearest edge node.

• Matching-based offloading technique in which user nodes transmit
their task to the edge node considering channel quality, and available
capacity of the edge node [24].

The performance evaluation is conducted based on two key metrics as
follows:

• Task delay is the total time taken to transmit the task to the edge node
and compute the task. It also includes the wait time required by the tasks
in the queue of the edge node. Moreover, the proposed technique also
includes the transmission time of the task from one edge node to the
other.

• Task deadline miss ratio is the ratio of tasks that are not computed
within their deadline, i.e., tasks whose task delay is greater than 50 s.

Unless otherwise stated, the following parameters are taken as default for
the simulation. The task size B is equal to 30 Mbits. The speed of CPU S is
taken as 5 GHz.
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Figure 4 Task deadline miss ratio at different values of task size.

In Figure 3, the performance of the three techniques is presented at
different task sizes. The results show that the proposed technique incurs the
least amount of task delay at all task size values. As an example, at 30 Mbits,
the proposed technique computes all tasks within 32 s. In comparison, the
nearest task offloading technique requires 39.1 s and the matching-based task
offloading needs 36 s to compute all the tasks. The reduction in task delay
achieved by the proposed technique is due to the cooperative task offloading
among the edge nodes which balances the network load. The edge nodes with
a large task queue size offload their tasks to the lightly loaded edge nodes.

To investigate the impact of task sizes on the tasks that miss their
deadlines, the plot is presented in Figure 4. It can be seen that the nearest
task offloading can result in more than 11% of the tasks being computed
beyond the deadline. On the other hand, matching-based task offloading can
reduce this percentage to 7%. However, due to the absence of collaboration
between edge nodes, this percentage is still very high. By using the proposed
technique, this percentage can be reduced to 3%, thus resulting in an efficient
task computation algorithm.

The task delay of edge nodes at different processor speeds is shown in
Figure 5. Three different processor speeds of edge nodes are used varying
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Figure 5 Task delay at different values of processor speed.

from 5–10 GHz. For all three techniques, the task delay is reduced with the
increase in processor speeds. The proposed technique is the best-performing
algorithm among the three due to its collaboration approach, thus resulting
in task delay between 15.5 and 33 at different processor speeds. On the other
hand, both other techniques result in a 3–7% increase in task delay.

The task deadline miss ratio at different values of processor speed is pre-
sented in Figure 6. The proposed technique results in 3–6% fewer number of
tasks that lose their deadlines. In particular, at the processor speed of 5 GHz,
the nearest task offloading causes 6.5% of the tasks to miss their deadline.
This number is reduced to 4.8% by the matching-based task offloading.

To evaluate the impact of the queue size at the edge nodes, the result is
presented in Figure 7. At low queue size values, the performance improve-
ment of the proposed technique is only slightly better than the other
techniques. This is because only a few tasks need shifting to the other
collaborative edge nodes in this case. On the other hand, as the queue size
grows, the performance gain of the proposed technique is much greater. For
example, at a queue size of 7, the task delay is reduced by 7 s as compared to
the other techniques.
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Figure 6 Task deadline miss ratio at different values of processor speed.

Figure 7 Task delay at different values of edge node queue size.
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Figure 8 Task deadline miss ratio at different values of edge node queue size.

The task deadline miss ratio at different values of edge node queue size is
shown in Figure 8. It can be seen that as the number of tasks in the queue
of the edge node is increased, the task deadline miss ratio of the nearest
offloading technique is significantly increased. The number reaches up to
12.5% at the queue size of 7. However, the proposed technique manages to
keep the deadline miss ratio to less than 4% at the highest queue size of 7.

6 Conclusion

In this paper, a novel collaborative task offloading technique is proposed
for edge computing-enabled Web 3.0 applications. The proposed technique
classifies the edge nodes into heavy-loaded and light-loaded categories based
on the network load and queue size. The work further develops a stable
matching-based algorithm to find collaborative edge node pairs consisting of
a heavy-loaded and light-loaded edge node. The tasks are offloaded from the
heavily loaded edge nodes to their correspondingly allocated lightly loaded
edge nodes. The performance evaluation of the proposed technique shows
that it can reduce the task delay by 20% and task deadline miss ratio by 68%.
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