
Ethereum Smart Contract Account
Classification and Transaction Prediction

Using the Graph Attention Network

Hankyeong Ko1, Sangji Lee2 and Jungwon Seo3,∗

1Graduate School of Metaverse, Sogang University, 915 Ricci Hall 35
Baekbeom-Ro, Mapo-gu, South Korea
2Data Science·Artificial Intelligence, Sogang University, 307 Adam Schall Hall 35
Baekbeom-Ro,Mapo-gu, Sepul, South Korea
3Department of Computer Science and Engineering, Sogang University, 915 Ricci
Hall 35 Baekbeom-Ro, Mapo-gu, Seoul, South Korea
E-mail: hko920920@sogang.ac.kr; sjlee21@sogang.ac.kr; jungwon@sogang.ac.kr
∗Corresponding Author

Received 23 January 2024; Accepted 19 June 2024

Abstract

This study explores the application of a Graph Attention Networks version 2
(GATv2) model in analyzing the Ethereum blockchain network, addressing
the challenge posed by its inherent anonymity. We constructed a heteroge-
neous graph representation of the network to categorize contract accounts
(CAs) into different decentralized application (DApp) categories, such as
DeFi, gaming, and NFT markets, using transaction history data. Addition-
ally, we developed a link prediction model to forecast transactions between
externally owned accounts (EOAs) and CAs. Our results demonstrated the
effectiveness of the heterogeneous graph model in improving node embed-
ding expressiveness and enhancing transaction prediction accuracy. The study
offers practical tools for analyzing DApp flows within the Web3 ecosystem,
facilitating the automatic prediction of CA service categories and identifying

Journal of Web Engineering, Vol. 23 5, 657–680.
doi: 10.13052/jwe1540-9589.2353
© 2024 River Publishers

658 Hankyeong Ko et al.

active DApp usage. While currently focused on the Ethereum network, future
research could expand to include layer 2 networks like Arbitrum One, Opti-
mism, and Polygon, thereby broadening the scope of analysis in the evolving
blockchain landscape.

Keywords: Blockchain, decentralized application(Dapps), Graph Attention
Networks version 2 (GATv2).

1 Introduction

Blockchain technology was first introduced to the public in 2008 through a
white paper authored by Satoshi Nakamoto [1]. Blockchain technology serves
as a decentralized repository, specifically designed to uphold the integrity and
transparency of data. One of the key features of blockchain is its capacity to
securely store and manage data without relying on centralized authority [2].

With the advent of blockchain technology, cryptocurrencies like Bitcoin
emerged, poised to play a pivotal role in enhancing the security and privacy
of the digital market [3]. The rise of cryptocurrencies has been further accel-
erated by the introduction of smart contracts on the blockchain. Ethereum, in
particular, rediscovered and popularized smart contract technology, enabling
the movement of digital assets based on predefined rules, with automated
execution of functions when specific conditions are met [4]. This intersection
of smart contracts and cryptocurrencies has given birth to the concept of
decentralized finance (DeFi), facilitating the creation of a wide range of
services across various fields, including gaming and banking [5]

The development of DeFi services has spurred the creation of decen-
tralized applications (Dapps) that leverage smart contracts. Dapps ensure
data integrity and transparency by recording transaction histories, facilitated
through user interfaces, directly onto the blockchain via smart contracts [6].
Unlike conventional applications, Dapps are considered to offer enhanced
security against data manipulation and hacking threats. In line with this
assessment, a report by DappRadar, a company specializing in Dapp-related
analytics, revealed that in 2022 the daily user count for Dapps reached 2.4
million, marking a 396% increase from the previous year [7].

The industry encompassing decentralized applications and services, expe-
riencing a swift surge in user adoption, finds representation in the concept of
Web3, which is currently gaining substantial attention and market value [8].
The advancement of blockchain technology has given rise to DeFi applica-
tions and the emergence of concepts like Web3, resulting in a gradual increase

Ethereum Smart Contract Account Classification and Transaction Prediction 659

in the number of blockchain users. For instance, Etherscan, an Ethereum
analysis platforms reported that the number of user wallets surpassed 300
million in the first quarter of 2023 [9], accompanied by a count of over 48
million deployed Ethereum smart contracts [10].

As highlighted earlier, the blockchain market is undergoing rapid trans-
formation, yet there exists a notable gap in research concerning analytics
technologies capable of keeping pace with these changes. Presently, existing
analytics tools in the market are primarily utilized as investment indica-
tors for cryptocurrencies or for monitoring illicit transactions. Furthermore,
blockchain networks, including Ethereum, predominantly operate on an
anonymity-by-default basis, posing challenges in identifying the specific
service account associated with a given smart contract. While Etherscan
offers a labeling service for certain accounts, its reliance on user reports limits
its capacity to swiftly categorize all smart contracts comprehensively.

In this paper, we present a novel solution to address the existing gap in
analytics and account identification technologies that can effectively adapt
to the dynamic blockchain market. Our proposed solution introduces a pre-
diction model. Specifically, we propose a classification model that utilizes
artificial intelligence neural network algorithms to discern the types of smart
contracts based on blockchain transaction data. In our approach, smart con-
tracts are categorized into eight distinct classes, including DeFi, exchange,
game, gambling, marketplace, collectibles, social, and high-risk. We lever-
age the transaction history between anonymous accounts to facilitate the
classification of these smart contracts. Additionally, our approach puts forth
a predictive model designed to anticipate transactions occurring between
specific wallet addresses and smart contracts.

The contribution of this paper is as follows:

• In the context of the privacy-focused Web3 environment, user informa-
tion is typically confined to their assets and transaction history. However,
the transaction prediction model introduced in this paper goes beyond
this limited data scope. It can anticipate the likelihood of a transaction
occurring between a specific individual wallet and a contract account
by taking into account not only the available data but also the contract
account type information derived from the aforementioned contract type
classification model.

• The adoption of our proposed model enables the prediction of which
wallet, among anonymous users, is most likely to engage in transactions
with specific contracts. When put into practical use, this capability could

660 Hankyeong Ko et al.

pave the way for the implementation of customized recommendation
features akin to those offered by popular application marketplaces like
Google Play Store and Apple Store. This, in turn, has the potential to
significantly boost business expansion within the Web3 industry Dapps.

• Furthermore, leveraging this model for the analysis of Dapp users in the
Web3 industry can provide valuable insights into current industry trends
and user usage patterns. From a business perspective, harnessing this
data is expected to yield substantial benefits, including improved user
retention and the attraction of new users.

This paper is structured as follows: in Section 2, we delve into the
prerequisites for modeling, while Section 3 provides an overview of related
research. Section 4 details the design of our model, elaborating on the
node-embedding model’s structure that we employ consistently throughout
our study and its application in training the account type classification and
transaction prediction models. Moving on to Section 5, we outline our
approach to preparing experimental data, training under varying conditions,
and conducting comparative evaluations of performance.

2 Preliminaries

2.1 Ethereum Account

In the Ethereum network, transactions are primarily associated with accounts,
which are categorized into two main types [11]. The first is the externally
owned account (EOA), a fundamental account type managed via a private
key, enabling it to initiate or receive transactions. The second type is contract
accounts (CAs), which are under the control of contract code. An account
comprises several components, including a nonce representing the cumulative
transaction count, the current Ethereum balance, contract code (present only
in CAs), and a storage field. The presence or absence of contract code is a key
distinguishing factor for identifying the account type. Additionally, the initial
transaction for a CA is the deployment transaction, allowing the deployer
EOA to be traced through its transaction history.

2.2 Graph Attention Network

Graphs are data structures that represent objects and their interconnections
using nodes and edges, respectively. Their versatility in modeling vari-
ous complex systems, including social networks, protein interactions, and

Ethereum Smart Contract Account Classification and Transaction Prediction 661

physics, has led to extensive research across multiple domains. Consequently,
graph neural networks, a deep learning framework tailored for graph-based
data, have garnered considerable attention [12].

The graph attention network (GAT) [13] is an architecture that employs
a self-attention mechanism for node classification in graph-structured data.
The attention mechanism focuses on the most pertinent aspects of input
data, regardless of their size or scale. The transformer [14], another model
that utilizes self-attention to compute a single sequence representation, has
demonstrated significant performance improvements over traditional mod-
els employing recurrent or convolutional neural networks, particularly in
machine transaction.

Similar to the graph convolutional network (GCN), GAT leverages infor-
mation from neighboring nodes but places more emphasis on nodes with
fewer neighbors by assigning them higher weights. What sets GAP apart from
GCN is its consideration of node features in weight calculations, as illustrated
in Equation (1).

e(hi, hj) = LeakyReLU(aT · [Whi
∥Whj

]) (1)

The GATv2 model has been introduced as an enhancement to the original
GAT [15]. The GAT score function can be simplified to a single linear layer
since it comprises a weight matrix W and an attention mechanism a, which
serves as a feedforward neural network. To address this limitation, GATv2
repositions a so that it operates after the nonlinear function LeakyReLU, and
subsequently, a multi-layer perceptron (MLP) is applied to calculate the score
value for each query–key pair connecting the node representations hi, hj ,
followed by W . The score function of GATv2 is depicted in Equation (2).

e(hi, hj) = aTLeakyReLU(W · [hi∥hj]) (2)

3 Related Work

In this section, we will review the current state of the art in transaction analyt-
ics. Previous research in this field can be broadly categorized into two main
types. Firstly, there is transaction analysis and prediction research [16, 17],
which involves the application of machine learning algorithms to analyze
and forecast transactions. This type of research has gained momentum with
the rise of cryptocurrency investments and the exploitation of anonymity.
Secondly, we have research that integrates graph representation, which has
emerged as a prominent trend in recent years [18–20].

662 Hankyeong Ko et al.

Harlev et al. [16] utilized the gradient boosting technique to categorize
anonymous accounts in Bitcoin transaction logs into 10 distinct categories,
including exchanges, hot wallets, mining pools, and scams. Hu et al. [17]
introduced a model for classifying Ethereum smart contracts into six types,
using criteria from DappRader, a Dapp information platform. They applied
the LSTM algorithm to analyze time series data on transaction occurrence
frequencies and the flow of holding by type. Furthermore, they conducted
experiments to apply this model to outlier detection tasks by type.

Although machine learning research using transaction data [16, 17] has
proposed account type classification models to aid in the detection of
phishing accounts and abnormal transactions, these models have certain
limitations that hinder their applicability in the analysis of users in the Web3
environment.

Beres et al. [18] conducted experiments on Ethereum user identification
using node embeddings. They established connections (predictions) between
addresses believed to belong to the same user based on various paths, such as
Twitter, ENS, and DAOs. They suggested that their model could be employed
to tract the flow of Ethereum through mixers like Tornado Cash. Huang et
al [19] introduced a classification model for Ethereum accounts, known as
GCN for Ethereum with Heterophily (EH-GCN), which employs the graph
convolution network (GCN) algorithm. They utilized a large-scale dataset of
Ethereum transactions and identified a high degree of heterophily in network
relationships. To account for this, they applied high-order neighbor-based
sampling and embedding. Each account was presented as a node, and edges
between nodes were created based on transactions within two hops. Node fea-
tures for training included balance, transaction frequency, and quantity. Liu
et al. [20] proposed a filter and augment graph neural network (FA-GNN) for
classifying Ethereum network accounts. This model draws inspiration from
the GraphSAGE approach. For learning large-scale graphs, FA-GNN incor-
porates neighbor sampling and information aggregation from these neighbors
as node embedding features, significantly enhancing learning performance.

While prior research using graphs [18–20] has primarily represented
and learned homogeneous graphs, treating nodes and edges, i.e. accounts
and transaction types, as equivalent, this approach faces limitations when
applied to the analysis of Web3 users. In Web3, user analysis requires a
heterogeneous graph structure that distinguishes between different node types
(EOA, CA) and edge types (normal, internal).

Therefore, in this paper, we introduce a model designed for the analysis
of Dapp users in Web3, an expanding industry. Our approach extends beyond

Ethereum Smart Contract Account Classification and Transaction Prediction 663

mere techniques for detecting phishing accounts and abnormal transactions.
Moreover, our model is capable of representing data in the form of a hetero-
geneous graph, effectively differentiating between node and edge type (EOA,
CA, normal, internal) and using them as input data, resulting in improved
performance.

4 Approach

Section 2 discussed that Ethereum on-chain data encompasses numerous
accounts and transaction occurrences, with distinct types for both accounts
and transactions. This data structure lends itself well to representation as a
heterogeneous graph, where accounts serve as nodes, and the transactions
connecting these accounts are represented as edges. In this study, we leverage
node embedding models using graph neural networks to construct and experi-
ment with two models introduced in the Section 1. The first model focuses on
identifying CA types, akin to a node classification task in graph analysis. The
second problem involves predicting whether a transaction will occur between
an EOA and a CA, which can be framed as a link prediction task.

4.1 Node Embedding Model

The models utilized in this research are founded on node embeddings
employing the GATv2 algorithm, tailored for heterogeneous graphs. The
process involves converting a dataset containing node and edge information
into graph objects and subsequently generating the final embeddings through
a graph neural network. An overview of this overall structure is illustrated in
Figure 1.

Initially, a dataset containing node and edge information is provided as
input to construct a graph. The node dataset (V) encompasses node types
and node attribute details, while the edge dataset (E) encompasses type and
attribute information for each edge. This information is utilized to generate a
heterogeneous graph denoted as G(V,E, T).

Figure 1 Structure of the node embedding model (herto-GATv2).

664 Hankyeong Ko et al.

If the graph is initially directed, it is transformed into an undirected (bi-
directional) graph to facilitate subsequent message passing. Consequently,
each vi in the node set V is represented as a vector of attributes, and each ej
in the edge set E is represented as a vector of edge attributes. Subsequently,
a type mapping function denoted as ϕ(v) : V → TV and ϕ(e) : E → TE is
employed to distinguish the type of each node and edge.

In this study, we denote the ith type of a node as T i
V and the Ti and jth

edge type as T j
E . If it is a homogeneous graph with no type distinction, it is

labeled as |TV |+ |TE | = 2, and if it is a heterogeneous graph, it is labeled as
|TV |+ |TE | > 2.

The resulting heterogeneous graph is passed through l layers of the
GATv2 neural network to output node embeddings. In this study, the number
of layers is 3. Since GATv2 is basically a homogeneous graph-based algo-
rithm, to apply it to heterogeneous graphs, separate neural networks must be
constructed and trained for each node and edge type.

This means that each type performs message passing through the GATv2
layer independently. On the other hand, traditional GAT and GATv2 use
only node features. However, for the Ethereum on-chain data covered in this
study, we assumed that information from edges, which represents transac-
tions history, would also have an important impact on learning performance.
Therefore, we included it in the calculation of attention scores and message
updates.

Therefore, in our model, we calculate the attention score αij for nodes
V i, V j and the edge eij between them in the GATv2 layer, as shown in
Equation (3). Then, in layer l, we construct a message function as shown in
Equation 4 to update the state value hil of node V i.

aij =
exp(aTLeakyReLU(Wϕ(vi)

·hi+Wϕ(vj)
·hj+Wϕ(eij)

·eij))∑
k∈N(i) exp(a

TLeakyReLU(Wϕ(vi)
·hi+Wϕ(vj)

·hj+Wϕ(eij)
·eij))

(3)

hli =
∑

j∈N(i)

aijWϕ(j)h
l−1
j (4)

If different types have different feature sizes, the input dimensions will
follow the feature size of that type, but the final output dimension size will be
the same for all. The output values H1

1 , H
1
2 , . . . ,H

|TE |
|TV | from all three GATv2

layers are then summed together for each node type Tv to obtain the final
|TV | node embedding matrix O1, O2, . . . , O|TV |. From this point on, the node

Ethereum Smart Contract Account Classification and Transaction Prediction 665

embedding model described above will be referred to as hetero-GATv2 in
this paper to distinguish it from other existing algorithms.

4.2 Contract Account Type Classification Model

After graphically representing Ethereum on-chain data, we can apply hetero-
GATv2 to create a model for classifying contract account types. Ethereum
technically divides accounts (nodes) into EOAs and CAs, and transactions
(edges) into general and internal transactions, including message calls to
contract accounts. This structure can be utilized to form a heterogeneous
graph.

Using this data hetero-GATv2 creates a node embedding for each EOA
and CA, utilizing the embedding matrix OCA specifically for the CA type
nodes that we aim to predict. The dimensionality of this embedding is
determined by the number of types we want to classify.

During the training process, we employed Adam as the optimization
function and cross entropy loss as the loss function. To address potential class
imbalance issues, we assigned weights to each class, ensuring that minority
classes receive more significant updates during the parameter update process
via the loss function.

4.3 Transaction Occurrence Prediction Model

From a graph perspective, predicting transaction occurrences can be framed
as a link prediction task. Link prediction focuses on predicting the presence
or absence of links (edges) in a network, rather than assigning labels to nodes.
This task differs from node classification in terms of training objectives and
methodologies. While various frameworks exist for link prediction, this study
utilizes matrix factorization as its basis.

The graph is structured as a bipartite graph, with node types organized as
EOA and CA. However, the scope is limited to edges originating from EOA
and leading to CA. Node embeddings for this graph are generated by first
creating initial embedding matrices for each node type. These node features
are linearly combined, and message passing is independently performed for
each node and edge type, employing hetero-GATv2. Consequently, new
embedding matrices of dimension k are produced, denoted as OEOA and
OCA for EOA and CA, respectively.

The desired output from the link prediction model corresponds to the
presence of an edge from a specific EOA to a CA. This is a binary

666 Hankyeong Ko et al.

classification problem. To achieve this we compute a vector for each
dimension, as shown in Equation (5), through inner product, followed by
summation. ∑

i=k

(oEOAi)T · oCAi (5)

Binary cross entropy is employed as the loss function, with logic applied
to determine whether the value represents the true label comprising actual
negative and positive edges. The objective is to minimize the error. Given that
the input graph is relatively larger than the node classification problem, even
with edge sampling, training occurs on the entire graph containing all nodes.
Therefore, stochastic gradient descent is chosen as the optimization algorithm
to alleviate computational burden and expedite the learning process.

5 Experiments

5.1 Data Collection and Pre-processing

To obtain label values for address and type classification, we leveraged two
primary data sources: the Ethereum transaction tracking site Etherscan and
the DApp information service DappRader. Etherscan’s Label Word Cloud
provides label values for officially verified CAs in Etherscan. It allows us
to associate a specific CA with the corresponding DApp, but it does not
categorize the type of DApp (e.g., financial, gaming). On the other hand,
DappRadar offers category information categorized by the service itself, but
it can only be checked by searching for a specific CA address value.

In this study, we adopted a two-step approach. First, we crawled the
CA addresses identified in the Etherscan Label Word Cloud. Subsequently,
we individually queried these addresses in the DappRadar API to collect
category information, which would serve as labels for the classification task.
Among the categories provided by DappRadar, we excluded CAs categorized
as “other”, as this category was deemed ambiguous.

For CAs with identified categories, we employed the Etherscan API to
identify the EOAs that deployed them. Transaction data generated by the
collected CAs was sourced from the Ethereum public dataset available on
Google Cloud Platform’s BigQuery. We extracted transaction data spanning
two and a half years, from January 2021 to June 2023, during a period of rapid
growth in Dapp user numbers. Additionally, we queried both the identified
CAs and all EOAs with a history of invoking them at the time of extraction.

Ethereum Smart Contract Account Classification and Transaction Prediction 667

Figure 2 Data collection process.

Table 1 Account table
Field name Description
ADDR Address
TYPE Account type (EOA, CA)
ETH BALANCE Ethereum balance
VALUE ETH FROM Value transferred from Ethereum
VALUE ETH TO Value transferred to Ethereum
TRANS CNT FROM Transaction count from (sending)
TRANS CNT TO Transaction count to (receiving)
FRST TX TS First transaction timestamp
DAPP ID DApp ID (if related to CA)
DAPP NM DApp Name (if related to CA)
DAPP CATEGORY DApp category (if related to CA)
DAPP DEPLOYER DApp deployer (if related to CA)

Table 2 Transaction table
Field Name Description
ADDR 1 Address of sender
ADDR 2 Address of receiver
TYPE 1 Type of sender’s account
TYPE 2 Type of receiver’s account
IS DEPLOYER TRANS Transaction by CA deployer
VALUE ETH Value in Ethereum
TRANS CNT Transaction count between ADDR 1 and ADDR 2

Figure 2 provides a summarized overview of the entire data collection
process as described above.

Following the aforementioned procedure, we successfully generated
two tables: the account table, which houses information about individual
accounts, and the transaction table, which records details about transactions
transpiring between two accounts. These tables are depicted in Tables 1 and 2,
respectively.

668 Hankyeong Ko et al.

The data contained in the account table serves as node features in the
graph, while the transaction table provides information for the edge fea-
tures. It’s worth noting that in Table 2, the transaction table presents an
aggregation of transactions between two unique accounts. Unlike previous
research focused on detecting phishing accounts, we aggregate transaction
hashes without distinguishing between them for several reasons.

Previous studies primarily dealt with data from a small number of EOAs
that had been identified. In contrast, the data collected for this study was
primarily based on contract accounts (CAs), resulting in a significantly larger
number of EOAs and transactions associated with their invocations. Given the
research’s objective, which centered on understanding the nature of contract
accounts and identifying whether transactions occurred between them (i.e.,
the relationship), we believed that aggregating information between accounts
would yield meaningful insights, obviating the need to discern individual
transaction patterns.

Consequently, our data collection effort amassed a total of 32,666,765
accounts comprising 32,663,595 EOAs and 3170 CAs. These accounts
engaged in a total of 81,220,508 transaction pairs

Before converting the collected data into graph objects, we conducted
pre-processing to explore, analyze, and transform the data into a suitable
format for model training. Initially, we removed the DAAP ID and DAAP NM
columns from the account table since they were deemed unnecessary for
training purposes. Additionally, we excluded the FRST TX TS column from
the account table, which signifies the initial transactions of the account. For
contract accounts (CA), we also eliminated the contract code deployment
time. These datetime values were originally stored as datetime types during
data collection, and we subsequently converted them into numeric variables
in UNIX units. This transformation allowed us to represent account activity
chronologically, with higher values indicating closer proximity to the recent
extraction time and lower values indicating older accounts.

To encode the categorical variable associated with CA categories, we
employed two distinct methods. First, for use as labels in the node classifi-
cation problem, we generated eight features through one-hot encoding, each
corresponding to a specific category, as detailed in Table 3. Here’s a brief
description of the categories:

Table 3 Number of accounts per CA category
Defi Exchanges Games Gambling Marketplace High-risk Social Collectibles
1164 1784 120 26 92 6 45 63

Ethereum Smart Contract Account Classification and Transaction Prediction 669

• DeFi: Contract accounts linked to decentralized exchange products,
including services like staking, deposits, and swaps within a specific
platform.

• Exchanges: Contract accounts affiliated with decentralized exchange
services

• Games: Contract accounts categorized under gaming-related Dapps.
• Gambling: Contract accounts associated with gambling-related Dapps.
• Marketplace: Contract accounts involved in NFT exchanges, such as

Opensea and Blur.
• Collectibles: Contract accounts tied to NFT projects like MAYC.
• Contract accounts related to other decentralized social applications.
• High-risk: Contract accounts identified as fraudulent or high-risk.

These one-hot encoded features served as labels for the node classification
problem and as training inputs for edge prediction in the link prediction
problem. For the link prediction task, we employed frequency encoding to
create a single features, CATEGORY FREQ, which captured the frequency
of each category. This approach was adopted to prevent potential overfitting
due to high dimensionality.

The original distributions of continuous variable such as ETH BALANCE,
VALUE ETH FROM, VALUE ETH TO, TRANS CNT FROM, TRANS CNT
TO, FRST TX TS, CATEGORY FREQ, as well as numerical variables like
VALUE ETH and TRANS CNT in the transaction table displayed signifi-
cant skewness towards one side, as depicted on the left side of Figure 3.
To mitigate this skewness, we applied a power transformation. However,
since certain variables contained zero values, we opted for the Yeo-Johnson
transformation instead of the Box-Cox transformation to accommodate these
cases. As a result, the distribution were adjusted to a more normalized
appearance, as illustrated on the right side of the figure.

Subsequently, we divided the data into training, validation, and test
datasets. For the CA account classification task, we utilized the CA accounts

Figure 3 Existing distribution of numerical variables (left) and Yeo-Johnson transformation
results (right).

670 Hankyeong Ko et al.

from the account table as the foundation for partitioning into node units
intended for use as nodes in the graph. We distributed the data across these
datasets in an 8:1:1 ratio. Recognizing the imbalanced data distribution across
labels, as indicated in Table 3, we employed a stratified sampling technique
to ensure representation of all categories in the three datasets.Conversely, for
the transaction prediction model, we did not factor in categories, as all nodes
were incorporated in each dataset. Instead, we divided the data into a 7:1:2
ratio, with the ratios being based on call transactions originating from EOAs
to CAs.

5.2 Graphing and Neighborhood Sampling

We leveraged the PyTorch Geometric (PyG) library to construct a graph
object based on the pre-processed data. In this graph, each node represents
an account, while the edges correspond to transactions occurring between
these accounts. To facilitate the use of the proposed model, we categorized
node types into EOA and CA, following the TYPE column in Table 1, and
designated the edge types as TYPE 1 and TYPE 2, as defined in Table 2. Each
edge represents a directed connection, originating from ADDR 1 (source
node) and terminating at ADDR 2 (target node).

The node attributes are derived from ETH BALANCE, VALUE ETH
FROM, VALUE ETH TO, TRANS CNT FROM, TRANS CNT TO and FIRST
TX TS, as presented in Table 1. Furthermore, we included VALUE ETH and
TRANS CNT from Table 2 as edge attributes, which were used as features
from model training. For the transaction prediction model, we introduced an
additional category feature for CA-type nodes, supplementing the existing
seven features used in model training. To mitigate potential overfitting risks,
given the unbalanced distribution of each class, we employed a frequency
encoding method (CATEGORY FREQ) instead of one-hot encoding to avoid
significant dimensionality expansion in the input data.

Consequently, the number of features for EOA nodes total seven, while
CA nodes encompass eight features. This discrepancy does not impact the
learning process, as the heterogeneous graph treats them as distinct node
types. The structural layout of the resulting heterogeneous graph is depicted
in Figure 4.

The training dataset produces a rather sizable graph, making full-batch
training unfeasible. As a solution, we adopted the neighbor sampling tech-
nique. For the CA type classification model, we sampled the target nodes,
specifically CA type nodes, and their adjacent neighbors in line with the node

Ethereum Smart Contract Account Classification and Transaction Prediction 671

Figure 4 A heterogeneous graph representation of the Ethereum network.

classification task. Reflecting the graph configuration, where the median CA
degree stood at 132, with the 1st quartile at 3000, the 34th quartile at 3000,
and the 90th percentile at 3283, we undermined the number of neighbors
sampled for training the CA accounts classification model within this range.

Conversely, for the transaction prediction model, we sampled neighbors
based on call-type edge originating from EOA to CA since these are the link
predictors. Regarding this type of edge, the EOA median degree amounted
to 12, the 1st quartile to 2, and the 3rd quartile to 230, implying that the
number of neighbors sampled for transaction prediction was relatively small.
The NeighborLoader and LinkNeighborLoader, both provided by PyG, were
employed to implement the actual sampling process.

Concerning the LinkNeighborLoader, we upheld a 1:1 ratio by masking
the actual edges between two nodes as 1 if they existed (positive edges) and
0 if they didn’t (negative edges). To encompass transactions from as many
distinct CA categories as possible, we prioritized sampling according to the
number, giving preference to edges in the minority category. In the following
section, we compare the performance of sampling under varying conditions
and provide details of the outcomes.

5.3 Comparison and Evaluation Methods

In the CA type classification model, we assess performance by compar-
ing whether the node embedding model hetero-GATv2 for heterogeneous
graphs outperforms the existing homogeneous graph-based GATv2 model.
The homogeneous graph used as a comparison benchmark can be con-
structed by removing only the type information of nodes and edges from the
heterogeneous graph generated in Section 2.

672 Hankyeong Ko et al.

Figure 5 Comparison of homo-GATv2 and hetero-GATv2 in contract account type
classification.

The GATv2 configuration comprises three layers to create an environment
as similar as possible to hetero-GATv2. To distinguish this comparative
model, we will refer to it as homo-GAT . The message passing of homo-
GAT and hetero-GATv2 for the collected on-chain data graph in Figure 4
is organized as illustrated in Figure 5. To identify the appropriate sampling
level, we adjust the number of neighbors to be sampled when comparing the
two models and examine its impact on prediction performance.

Apart from accuracy, a commonly used classification metric, we employ
the F1 score, precision, and recall to evaluate the two models. Accuracy
gauges overall model performance, while the other three metrics are eval-
uated in two ways. First, we utilize the widely used macro method, allowing
us to evaluate performance under the assumption that all classes carry equal
importance. Second, given the unbalanced distribution of classification label
values in the collected dataset in Table 3, we also apply the weighted method,
which assigns weights in proportion to the actual number of classes (support).
According to this calculation, classification performance for classes with a
larger number of labels, such as DeFi and Exchanges, is considered more
significant.

For the transaction prediction model, we compare the predictive per-
formance of the model trained with and without the CA category values
classified by the CA-type classification model as new node features to ascer-
tain whether information not present in the existing on-chain data enhances
prediction performance. Node embeddings for each type of EOA and CA
were obtained through matrix factorization to conduct link predication.

The message passing configuration of hetero-GATv2 for the collected
on-chain data graph in Figure 4 is displayed in Figure 6. In the previous

Ethereum Smart Contract Account Classification and Transaction Prediction 673

Figure 6 Node embedding with hetero-GATv2 in transaction prediction.

experiment with the contract account type classification model, we exclu-
sively employed the hetero-GATv2 model as the comparison with hetero-
GATv2 indicated that hetero-GATv2 offers superior node embedding
expressiveness.

Transaction prediction models are evaluated using accuracy, precision,
recall, and AUC metrics. Accuracy provides insight into overall predictive
model performance. However, transaction prediction models function as
binary classifiers, and we calculate the AUC as a suitable metric for them. The
area under curve (AUC) represents the area beneath the receiver operating
characteristic (ROC) curve. The ROC curve illustrates the trade-off between
the false positive rate (FPR) and the true positive rate (TPR) as the threshold
is adjusted, with higher values closer to 1, indicating better overall model
performance across the threshold adjustment range.

5.4 Evaluation of the Contract Type Classification Model

We conducted a performance comparison between the homo-GATv2 and
hetero-GATv2 models for various combinations, varying the number of
neighbors to sample. We aimed to keep the model parameters as similar as
possible to test each model in an identical environment. For the sampling
process, we considered up to 3 hops for each of the following neighbor

674 Hankyeong Ko et al.

Table 4 Comparison of homo-GATv2 and hetero-GATv2 classification models

Sample size
Accuracy F1 score (macro/weighted) Precision (macro/weighted) Recall (macro/weighted)

Homo Hetero Homo Hetero Homo Hetero Homo Hetero
5 0.63 0.79 0.23 / 0.61 0.61 / 0.78 0.27 / 0.65 0.61 / 0.78 0.24 / 0.63 0.62 / 0.79
10 0.67 0.81 0.27 / 0.65 0.70 / 0.81 0.31 / 0.73 0.76 / 0.81 0.28 / 0.67 0.67 / 0.81

100 0.73 0.83 0.37 / 0.71 0.75 / 0.83 0.41 / 0.75 0.82 / 0.85 0.36 / 0.73 0.75 / 0.83
300 0.74 0.86 0.56 / 0.74 0.68 / 0.86 0.65 / 0.76 0.70 / 0.86 0.54 / 0.74 0.68 / 0.86
500 0.73 0.86 0.48 / 0.72 0.70 / 0.86 0.49 / 0.75 0.71 / 0.86 0.49 / 0.73 0.72 / 0.86

1,000 0.70 0.84 0.53 / 0.70 0.68 / 0.84 0.58 / 0.72 0.69 / 0.84 0.51 / 0.70 0.67 / 0.84
3,000 0.71 0.88 0.44 / 0.70 0.66 / 0.88 0.44 / 0.72 0.66 / 0.88 0.45 / 0.71 0.64 / 0.88
5,000 0.73 0.86 0.51 / 0.72 0.69 / 0.85 0.52 / 0.74 0.69 / 0.86 0.52 / 0.73 0.69 / 0.86

Table 5 Configure optimal model parameters with hyperparameter tuning

Parameter name Configuration value

Sample size 500 * 3 hops
Batch size 128
Hidden layer dimension 32
Batch normalization Yes
Dropout 0.1
Number of epochs 100
Learning rate 0.01
Weight decay 0.001

numbers: 5, 10, 100, 300, 500, 1000, and 3000, taking into account the
degree distribution of CAs. The batch size was fixed at 128. We employed
three stacked 16-dimensional hidden layers and omitted batch normalization
or dropout. The model learning rate was set to 0.01, and the weight decay
value was set to 0.001.

Table 4 displays the performance metrics for both models as a function of
the neighborhood sample size. The results indicate that hetero-GATv2 out-
performs homo-GATv2 across all metrics, with larger sample sizes slightly
enhancing these metrics. However, for sample sizes exceeding 300, the over-
all improvement is marginal. Based on these findings, we can conclude that
representing Ethereum network data as a heterogeneous graph enhances the
representation of node embeddings compared to a homogeneous graph.

To utilize the results of the CA classification model as training features
in the transaction prediction model, we conducted hyperparameter tuning to
enhance performance. In each training iteration, we compared the outcomes
with the validation dataset and identified that the optimal performance was
attained with the conditions detailed in Table 5. These settings led to signifi-
cant improvements in unweighted F1 score, precision, and recall metrics, as
demonstrated in Table 6, compared to the results presented in Table 4.

Ethereum Smart Contract Account Classification and Transaction Prediction 675

Table 6 Evaluated optimal classification model performance (validation, test datasets).
Dataset Accuracy F1 score (macro/weighted) Precision (macro/weighted) Recall (macro/weighted)

Validation dataset 0.88 0.81/0.85 0.85/0.88 0.80/0.88
Test dataset 0.86 0.74/0.86 0.76/0.86 0.74/0.86

Table 7 Comparison of model performance with and without CA categories

Model Accuracy Precision Recall AUC

GATv2 w/o category 0.73 0.77 0.73 0.87
GATv2 w/ category 0.77 0.80 0.77 0.88
GATv2 w/ category (predicted) 0.76 0.79 0.77 0.88

5.5 Link Prediction Model Evaluation

We trained two models, one using only balance and transaction history in
the Ethereum network (GATv2 w/o category) and another model with CA
category information included (GATv2 w/ category) to investigate whether
CA category information enhances performance. GATv2 w/ category uses
the previously collected CA category features, which are the actual label
values, for making predictions. Specifically, we replaced only the CAs that
were part of the test dataset during the training of the node classification
model with the CA category values predicted by the hetero-GATv2 model.
We then made predictions on the test dataset for link prediction to compare
performance with the previous two models (GATv2 w/category (predicted)).
The performance metrics for the three models are presented in Table 7.

For category information, we sampled transactions from EOAs to CAs
up to 3 hops in batches of 5, taking into account that EOAs have varying
degrees, ranging from 2 to 230 (median 12). To prevent model overfitting,
we added batch regularization and applied a dropout rate of 0.6. Both models
used a learning rate of 0.001 and a weight decay parameter of 0.01. Since this
is a binary classification task where the model predicts whether a transaction
will occur or not, we assessed and compared performance using accuracy and
AUC metrics. We observed that including category values improved accuracy,
precision, and recall by approximately 2–3%, while the difference in the AUC
metric was minimal, less than 1%.

Furthermore, we tested the GATv2 w/ category model with a dataset that
had been partially imputed with values predicted by the best classification
model obtained through hyperparameter tuning (as described in Table 5). We
found that there was no significant difference in performance compared to
using the actual category values. Thus, for certain CAs, utilizing category

676 Hankyeong Ko et al.

predictions outperformed the model trained solely using existing transaction
data.

6 Conclusions

In this research, we conducted a comprehensive examination of an account
classification model and a predictive transaction occurrence model within
the realm of computer science. Our primary objective was to address the
challenge of limited analysis resulting from the inherent anonymity of
blockchain technology. To achieve this, we focused on the Ethereum network,
a prominent blockchain platform boasting a vast user base and extensive net-
work activity. Our data collection efforts encompassed both account-related
information and transaction data.

Given the coexistence of individual users and decentralized applications
(DApps) within the Ethereum ecosystem, characterized by the continuous
flow of internal and external transactions among accounts, we devised a
model based on the Graph Attention Networks version 2 (GATv2). This graph
neural network algorithm proved ideal for our purpose, as we structured the
Ethereum network as a heterogeneous graph – a representation well-suited
for our analytical goals.

Our research encompassed two primary tasks. Firstly, in the node classifi-
cation task, we undertook the categorization of contract accounts (CAs) into
various DApp categories, including but not limited to DeFi (decentralized
finance), gaming, and NFT (non-fungible token) markets. This categorization
relied on an analysis of transaction histories among accounts. Subsequently,
we ventured into predicting the likelihood of transactions between externally
owned accounts (EOAs) and contract accounts (CAs) through a process
known as link prediction.

The outcomes of our experiments provided compelling insights. We
demonstrated the capability to discern the nature of DApps by leveraging
account balance and transaction data exclusively. Particularly noteworthy was
our use of a heterogeneous graph model, which, when compared to prior
studies rooted in homogeneous graph-based approaches, exhibited enhanced
node embedding expressiveness – a pivotal contribution to on-chain data
analysis. Furthermore, our research affirmed the value of incorporating DApp
category information obtained through the CA type classification model.
This inclusion led to improved accuracy in predicting transactions between
accounts. It underscores the potential to derive meaningful insights from

Ethereum Smart Contract Account Classification and Transaction Prediction 677

publicly accessible on-chain data while opening avenues for generating new
variables to enrich subsequent model training efforts.

Our models offer a practical utility in categorizing DApp flows, present-
ing an invaluable tool for the analysis of DApp users from the perspective
of the burgeoning Web3 ecosystem. For instance, our classification model
empowers the automatic prediction of a specific CA’s service category, obvi-
ating the need for manual investigation. This feature complements existing
transaction lookup services like Etherscan by enhancing their historical con-
text. From a business standpoint, this predictive capability aids in swiftly
identifying heavily utilized DApps by anonymous users, identified solely by
their hash value addresses. Additionally, these insights enable the construc-
tion of predictive models to determine which users are most likely to engage
with a particular CA.

It is worth noting that our research is currently limited to the Ethereum
network. Nevertheless, the blockchain landscape is evolving, with the emer-
gence of layer 2 networks such as Arbitrum One, Optimism, and Polygon –
each offering solutions to Ethereum’s high gas costs and slow transaction
speeds. These networks host several active DApp projects, each with its
own distinctive attributes. Operating on the same Ethereum virtual machine
(EVM), users can access them with a single wallet address. Future research
initiatives may consider expanding our analysis to encompass transactions
from layer 2 networks, thereby further enhancing performance and facilitat-
ing comprehensive analysis within the broader blockchain ecosystem

Acknowledgement

This research was supported by the MSIT (Ministry of Science and ICT),
Korea, under the ITRC (Information Technology Research Center) support
program (IITP-2024-RS-2023-00259099) supervised by the IITP (Institute
for Information & Communications Technology Planning & Evaluation).
This research was supported by the 2024 MSIT(Ministry of Science and
ICT), Korea, under the Graduate School of Metaverse Convergence support
program(IITP-2024-RS-2022-00156318) supervised by the IITP(Institute
for Information & Communications Technology Planning & Evaluation).
This work was supported by Institute of Information & communications
Technology Planning & Evaluation (IITP) grant funded by the Korea
government (MSIT) (RS-2024-00397538, Development of public opinion
polling technology based on web3 that ensures fairness, anonymity, and
transparency, 33%).

678 Hankyeong Ko et al.

References

[1] Nakamoto, S. (2008). Bitcoin: A Peer-to-Peer Electronic Cash System.
[2] Q. Ynag, Y. Zhao, H. Huang, Z. Zheng, “Fusing blockchain and AI with

metaverse: A survey”, 2022, arXiv:2201.03201.
[3] T.R. Gadekallu, Q.-V. Pham, D.C. Nguyen, P.K.R. Maddikunta, N.

Deepa, B. Prabadevi, P.N. Pathirana, J. Zhao, W.-J. Hwang, “Blockchain
for edge of things: Applications, opportunities, and challenges”, IEEE
Internet Things J. 9 (2) (2022) pp. 964—988

[4] A.A. Zarir, G.A. Oliva, Z.M. Jiang, A.E. Hassan, “Developing cost-
effective blockchain-powered applications: A case study of the gas
usage of smart contract transactions in the ethereum blockchain plat-
form”, ACM Trans. Softw. Eng. Methodol. (TOSEM) 30 (3) (2021)
pp. 1—38.

[5] T. Min and W. Cai, “Portrait of decentralized application users: an
overview based on large-scale Ethereum data,” CCF Transactions on
Pervasive Computing and Interaction 4.2, pp. 124–141, 2022.

[6] H. Garg, M. Singh, V. Sharma and M. Agarwal, “Decentralized Applica-
tion (DAPP) to enable E-voting system using Blockchain Technology,”
2022 Second International Conference on Computer Science, Engineer-
ing and Applications (ICCSEA), Gunupur, India, 2022, pp. 1–6.

[7] Available online: https://www.coinlive.com/ko/news/Report-DApp-dai
ly-users-surge-to-2-4M-in-Q1 (accessed on 22 January 2024).

[8] Russell Belk, Mariam Humayun, Myriam Brouard, “Money, posses-
sions, and ownership in the Metaverse: NFTs, cryptocurrencies, Web3
and Wild Markets”, Journal of Business Research, Volume 153, 2022,
pp. 198–205.

[9] Available online: https://etherscan.io/charts (accessed on 22 January
2024).

[10] Available online: https://dune.com/hagaetc/contracts-deployed-on-eth
ereum-per-month (accessed on 22 January 2024).

[11] V. Buterin, “Ethereum: A Next-Generation Smart Contract and Decen-
tralized Application Platform,” white paper, 2014.

[12] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang and Z. Liu, “Graph neural
networks: A review of methods and applications,” AI open, vol. 1,
pp. 57–81, 2020.

[13] V. Petar, G. Cucurull, A. Casanova, A. Romeo, P. Lio and Y. Bengio,
“Graph Attention Networks,” Proc. of ICLR, 2018.

https://www.coinlive.com/ko/news/Report-DApp-daily-users-surge-to-2-4M-in-Q1
https://www.coinlive.com/ko/news/Report-DApp-daily-users-surge-to-2-4M-in-Q1
https://etherscan.io/charts
https://dune.com/hagaetc/contracts-deployed-on-ethereum-per-month
https://dune.com/hagaetc/contracts-deployed-on-ethereum-per-month

Ethereum Smart Contract Account Classification and Transaction Prediction 679

[14] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser and I. Polosukhin, “Attention Is All You Need,” Advances in
neural information processing systems, 30, 2017.

[15] S. Brody, U. Alon and E. Yahav, “How Attentive Are Graph Neural
Networks?,” Proc. of ICLR, 2022.

[16] M. A. Harlev, H. S. Yin, K. C. Langenheldt, R. R. Mukkamala and R.
Vatrapu, “Breaking Bad: De-Anonymising Entity Types on the Bitcoin
Blockchain Using Supervised Machine Learning,” Proc. 51st Hawaii
Int. Conf. Syst. Sci., 2018.

[17] Hu, T., Liu, X., Chen, T., Zhang, X., Huang, X., Niu, W., Lu, J.,
Zhou, K., & Liu, Y. (2021). “Transaction-based classification and detec-
tion approach for Ethereum smart contract”, Inf. Process. Manag., 58,
102462.

[18] F. Beres, I. A. Seres and M. Quintyne-Collins, “Blockchain is Watching
You: Profiling and Deanonymizing Ethereum Users,” 2021 IEEE inter-
national conference on decentralized applications and infrastructures
(DAPPS), 2021.

[19] T. Huang, D. Lin and J. Wu, “Ethereum Account Classification Based
on Graph Convolutional Network,” IEEE Transactions on Circuits and
Systems II: Express Briefs 69.5, 2022.

[20] J. Liu, J. Zheng and J. Wu, “FA-GNN: Filter and Augment Graph Neural
Networks for Account Classification in Ethereum,” IEEE Transactions
on Network Science and Engineering 9.4.

Biographies

Hankyeong Ko is a Ph.D. candidate at Sogang Univeristy, majoring in Meta-
verse Engineering & Blockchain. He obtained a Master’s degree in Metaverse
Engineering from Sogang University, with a specialization in Metaverse

680 Hankyeong Ko et al.

Engineering & Blockchain. Additionally, he holds a Bachelor’s degree in
Business Administration from The Catholic University of Korea, where he
graduated in September 2018.

Sangji Lee obtained a Master’s degree in Data Science: Artificial Intelli-
gence from Sogang University and is currently working on a cryptocurrency
exchange in South Korea. Additionally, she has studied at the Sungshin
Women’s University with a major in Business Administration and a minor
in Information System.

Jungwon Seo is a Ph.D. candidate at Sogang Univeristy, majoring in Soft-
ware Engineering & Blockchain. He obtained a Master’s degree in Computer
Science & Engineering from Sogang University in March 2020, with a
major in Software Engineering & Blockchain. Additionally, he has studied
at the State University of New York at Buffalo in the Business Department,
graduating in May 2016 with a major in Management Information Systems.

	Introduction
	Preliminaries
	Ethereum Account
	Graph Attention Network

	Related Work
	Approach
	Node Embedding Model
	Contract Account Type Classification Model
	Transaction Occurrence Prediction Model

	Experiments
	Data Collection and Pre-processing
	Graphing and Neighborhood Sampling
	Comparison and Evaluation Methods
	Evaluation of the Contract Type Classification Model
	Link Prediction Model Evaluation

	Conclusions

