
Web 3.0 Chord DHT Resource Clustering

KaiHsiang Chan∗ and Young Yoon

Department of Computer Engineering, Hongik University, Seoul, South Korea
E-mail: zkdltid.chan@g.hongik.ac.kr; young.yoon@hongik.ac.kr
∗Corresponding Author

Received 15 March 2024; Accepted 19 June 2024

Abstract

This study explores the impact and challenges of new user behaviors in
the Web 3.0 environment on distributed networks. The traditional Chord
algorithm allows nodes to freely join and leave the network by hashing their
IP addresses, and publishing and storing resources through the same hash
function. When the keys of the resources are unique, the resources will be
evenly distributed across each node, thereby achieving load balancing. How-
ever, in cases where many identical resources are published, this method leads
to specific nodes bearing too much load, causing performance bottlenecks and
resource concentration issues. In Web 3.0, when the nodes use the resource’s
topic as the key to publish resources, as the topic’s popularity increases, the
number of nodes using the same key as the publishing node and the nodes
with demand for the topic resources will also increase. In the traditional
Chord algorithm, the same key will be managed by the same node. The node
responsible for the key needs to save the routing information of all related
nodes and cope with a large number of resource requests for it. To address
these issues, this paper proposes a new variant of the Chord algorithm, which
uses two different Chord rings for resource clustering: one based on the
hash of resource names and the other based on the hash of IP addresses.
This method allows us to allocate resources more effectively, ensuring each
node bears a reasonable load share according to capacity. This paper will
present the design principles of this method and validate its effectiveness

Journal of Web Engineering, Vol. 23 5, 699–716.
doi: 10.13052/jwe1540-9589.2355
© 2024 River Publishers



700 K. Chan and Y. Yoon

in improving resource distribution and reducing the problem of single-point
overload through experiments.

Keywords: Chord, DHT, Web 3.0, resource clustering, load balancing.

1 Introduction

With the rise of Web 3.0, distributed systems and peer-to-peer networks have
fundamentally changed how information is stored and retrieved. In the Web
3.0 environment, the rapid development of peer-to-peer (P2P) networks and
decentralized systems has made distributed hash tables (DHT) a key technol-
ogy for implementing efficient, scalable, and fault-tolerant key-value storage
solutions. Early implementations of DHT, such as Chord [10], CAN [8],
Kademlia [5], Pastry [9], and Tapestry [11], laid the groundwork for the
research and application of DHT technology through their unique routing
and data management strategies. Among them, with its simple yet efficient
design, the Chord algorithm attracted particular attention for using consistent
hashing to implement fast key-value lookups and dynamic node join/leave
handling on a virtual ring structure.

However, the evolution of P2P networks in the Web 3.0 environment
has introduced new challenges, such as routing efficiency, data consistency,
system scalability, and load balancing issues when dealing with many dupli-
cate resources. These challenges have prompted improvements to the Chord
algorithm to meet the requirements of current decentralized applications.

This study addresses a key issue in the resource-sharing design of P2P
networks in the Web 3.0 environment: in traditional DHT designs, each node
is randomly assigned a hash interval to manage the data for that interval.
Nodes can find the node corresponding to the resource key value through the
hash function and store the resource information on that node. Other nodes
retrieve the resource information by finding the node corresponding to that
resource key value. When a key value is frequently accessed or published,
the node responsible for that hash interval may face an unfairly high load.
However, this design does not account for the imbalance in resource access
frequency, which may overload some nodes while others remain idle.

To solve this problem, this paper proposes an improved variant of the
Chord algorithm. This variant introduces resource clustering and multiple
Chord ring structures to enhance the system’s load balancing and efficiency.
In this design, resources with the same key values are grouped into the same
cluster, and each cluster operates on a separate Chord ring. Each resource



Web 3.0 Chord DHT Resource Clustering 701

key value will be mapped to a specific cluster, which not only helps alleviate
the problem of single nodes being overloaded by popular key values but also
promotes fairness among nodes and overall system performance. Nodes are
no longer randomly responsible for unrelated key values but join the relevant
cluster based on the resources they wish to publish, thus maintaining the
network of the entire cluster.

This study’s main contribution is proposing a new resource management
mechanism that effectively solves the practical challenges faced by P2P
networks in the Web 3.0 environment and offers new insights for designing
and optimizing future distributed networks.

Furthermore, through a series of performance comparison experiments,
this study further demonstrates the efficiency advantages of the improved
algorithm over the standard Chord algorithm under different workload
conditions.

The structure of this paper is as follows: Section 2 will introduce related
work to establish the theoretical foundation of this study; Section 3 will
detail our algorithm design and clustering strategy; Section 4 will present
the experimental design and result analysis; finally, Section 5 will discuss the
results and conclude.

2 Related Work

First, we need to understand the Chord algorithm’s fundamental principles
and operating mechanisms, as well as the main challenges encountered in the
current Web 3.0 environment.

2.1 Chord Algorithm

2.1.1 Node identifier
Each node is assigned a unique identifier (ID) in the Chord network. This
ID is generated by applying a consistent hashing function to the node’s IP
address or another unique attribute [4]. This ensures that the distribution of
node IDs is uniform, reducing the hotspot issue.

2.1.2 Hash space
Chord utilizes a circular hash space, ranging from 0 to 2m − 1, where m is
the number of bits in the hash key. This circular space is known as the Chord
ring. Both nodes and key-value pairs are mapped onto this space.



702 K. Chan and Y. Yoon

2.1.3 Node join
When a new node wishes to join the Chord network, it finds its position
in the Chord ring based on its ID. Each node maintains the key-value pairs
between itself and the next node (the first node in the clockwise direction in
the hash space). Adding a new node can lead to the redistribution of key-value
pairs.

2.1.4 Stabilization algorithm
Chord implements a set of stabilization algorithms to manage nodes joining
and leaving. It ensures network stability by regularly sending health check
messages to its successor and updating information about its successor. This
algorithm ensures that the system can quickly reach a new stable state, even
in the face of dynamic node changes.

2.1.5 Key-value pair storage
Each key-value pair is also mapped onto the Chord ring using the same
consistent hashing function. A key-value pair is stored on the first node in
the clockwise direction whose ID is greater than or equal to the key’s hash
value.

2.1.6 Lookup process
When looking up a key, the query starts at any node and is passed along the
Chord ring clockwise until it reaches the node responsible for the key. Chord
optimizes the lookup process with a structure known as a finger table,
significantly reducing the number of hops in the network.

2.1.7 Load balancing
Assuming that keys are unique, the use of consistent hashing means that each
node roughly handles an equal number of key-value pairs, thereby achieving
load balancing.

2.2 Challenges in the Chord Algorithm for Resource
Management

Assuming resources are hashed based on their content, we can ensure the
uniqueness of key-value pairs. However, this method relies on search engines
similar to BitTorrent [1,7], allowing users to locate nodes storing the relevant
resources. While this approach ensures even storage of resources across
nodes, locating specific resources becomes challenging without maintaining



Web 3.0 Chord DHT Resource Clustering 703

a central search engine. This paper aims to address user behaviors in Web 3.0,
in particular, how to effectively search for required resources in the absence
of search engines. Direct hashing based on resource names inevitably leads
to many identical key-value pairs, challenging the load balance achieved by
consistent hashing in the Chord algorithm. An excessive number of identical
key-value pairs can severely burden the node responsible for that hash value,
especially considering the risk of stress testing when a large volume of
requests occurs. We propose a method to cluster identical resource names
to address this issue to improve load distribution.

2.3 Optimization of the Chord Algorithm in Previous Research

The academic community has proposed various strategies for optimizing the
Chord algorithm to enhance system performance and scalability. One strategy
introduces super nodes acting as gateways [2], which help locate and con-
nect other sub-nodes, thus improving the overall network’s availability. This
strategy also involves data sharding across multiple sub-nodes to increase
download speeds. However, this design often requires super nodes to maintain
an extensive list of sub-nodes, which poses an additional burden when a large
and unpredictable number of sub-nodes join. Super-nodes need to record
extensive information to assist in user localization.

Another paper [3] mentions an embedded ring method as an optimization
to address the issue of joining nodes with identical hash values, reducing the
frequency of conflicts when multiple nodes join. The paper describes how
nodes within the entire circle collectively store blockchain blocks, with block
identifiers (IDs) generated by cryptographic hash functions. This ensures
that blocks can be evenly distributed and stored across nodes in the cluster.
While the embedded ring structure is similar to our design, it mainly focuses
on optimizing the conflict time when joining the network and blockchain
applications, differing from our strategy to address uneven data access.

This research aims to implement a more decentralized optimization
approach, allowing every node in the network to maintain its performance
while being robust to dynamic changes in other nodes. Specifically, we
hope that nodes can operate independently of the joining or leaving of other
nodes and remain unaffected in their performance even in the face of sud-
denly increased queries for popular keywords based on current events. Such
design considerations aim to provide a more scalable and performance-stable
solution for distributed networks in the Web 3.0 environment.



704 K. Chan and Y. Yoon

3 Method

This study aims to improve the Chord algorithm to address specific chal-
lenges in the Web 3.0 environment, particularly regarding resource manage-
ment and node dynamics. We propose a series of optimization strategies
and conduct related simulation tests to evaluate the effectiveness of these
improvements.

3.1 Two Type Chord Ring

We designed two different types of chord rings: Resource Ring and IP

Ring. This design provides better scalability for resource management and
node organization.

3.1.1 IP ring (IPR)
Like the traditional Chord algorithm, this type of chord ring uses the node’s IP
address as input for hashing to generate a node ID. This node ID determines
the node’s position on the IP ring for organizing nodes. Each cluster based
on specific resources will maintain an independent IP ring. However, unlike
traditional DHT applications, the nodes on the IP ring in this paper do not
need to store the resource information published by other nodes; they only
need to manage the resources published by themselves and internal cluster
information, such as finger table, successors, etc.

3.1.2 Resource ring (RR)
For resource lookup, we require a resource key, which can be any value
uniquely identifying the resource, similar to keywords in a search engine.
This chord ring hashes this resource key to transform it into a cluster ID,
which represents the position of that resource cluster on the resource ring.

This method allows related resources to be effectively aggregated and
managed. However, each cluster ID requires a corresponding node to
maintain it. In our design, we refer to these nodes as leader nodes.
Referencing Figure 1, we can see that each cluster on the resource

ring has an address, which is the IP of the cluster’s leader node.
The leader node is responsible for maintaining important information of
the resource ring, such as finger table, successor list, etc. The
IPR-successor-list is a new structure we have added, which stores the
successor list corresponding to the successor node on the IP ring. We
will discuss this issue further in the next section.

A super node could maintain this information in traditional distributed
systems since the leader node will bear more load. When the leader node



Web 3.0 Chord DHT Resource Clustering 705

Figure 1 The figure illustrates our model architecture, where each cluster ID represents a
cluster, and each IP ring represents the organization of nodes within a cluster. It is observable
that each cluster possesses an address, which is the IP of the leader node of that cluster.

is overloaded, a leader node election mechanism, such as Raft [6] or
Paxos [12], could elect a new leader node. However, this method is unsuit-
able for situations with many sub-nodes due to the massive communication
overhead and the need for a super-node to maintain all sub-node informa-
tion, which would significantly burden the super-node. We will compare the
differences with our method through experiments later.

Utilizing the characteristics of the Chord algorithm, suppose we need
to query if a resource key exists on the resource ring; we only need to
hash this resource key. Referencing Figure 1, through the find successor

function, we can locate the successor node corresponding to this key.
By comparing the cluster ID of this successor node, we can deter-

mine whether this resource key exists in this cluster:

clusterID = hash(resourceKey) (1)

successor = findSuccessor(clusterID) (2)

resourceExist =

{
successor, if clusterID = successor.clusterID,

null
(3)



706 K. Chan and Y. Yoon

Through the return value of resourceExist, we can perform different
operations based on the client’s needs, which include:

• Joining a cluster
• Creating a cluster
• Retrieving resources.

3.1.3 Joining/creating a cluster
For clients intending to share resources, the return value of resourceExist
helps determine whether the key exists on the resource ring. If
resourceExist returns null, it indicates that the key does not exist on the
resource ring. The client will then create a new IP ring and become the
leader node of this cluster, joining the resource ring. If resourceExist
returns a successor, it signifies that the key exists on the resource ring.
The client will join the cluster’s IP ring through the successor node.

Each node can join or create more than one and different clusters based on
its needs. However, as the number of joined clusters increases, the node will
need to maintain information for different clusters. Although this will impact
the node’s performance, it allows it to control its performance impact based
on its choices rather than being affected by changes in the entire network.

3.1.4 Finding resources
For clients looking to find resources, the return value of resourceExist
determines if the key exists on the resource ring. Then, by obtaining the
successor node, which is the current leader node of that cluster, the client
can retrieve information about the resource.

3.1.5 Leader Node Change
3.1.5.1 IPR-successor-list
In our dual-ring design, besides maintaining the successor list of the
resource ring, as mentioned earlier, we added a successor list for
the IP ring called IPR-successor-list. It will be updated with the
Chord algorithm’s stabilization algorithm, where the resource

ring’s leader node requests the successor to update its successor

list on the IP ring. This IPR-successor-list will be crucial when
changing the leader node during node exits and polling.

3.1.6 Leader node exit
In the typical Chord algorithm, the stabilization algorithm regularly
checks the node’s successor to ensure network stability. If a node finds its



Web 3.0 Chord DHT Resource Clustering 707

successor unresponsive, it will update its successor using the successor
list. However, due to our dual-ring design, we cannot use this method for
updating the resource ring’s successor, as the successor would be
identified as the next cluster’s leader node, leading to the loss of the leader
node and the cluster being split and inaccessible.

Figure 2 shows this scenario: suppose the leader node of our C4

cluster discovers that its successor (i.e., C5) is inoperative. If it updates
its successor based on the successor list of the resource Rring,

(a) ping failed

(b) successor update failed

Figure 2 Leader node failure with successor list.



708 K. Chan and Y. Yoon

(a) ping failed

(b) successor update success

Figure 3 Leader node failure with IPR successor list.

as illustrated in Figure 2(b), the successor would be identified as the C6

cluster. Consequently, the C5 cluster, having lost its leader node, would
become fragmented and could not be accessed correctly.

Therefore, through the IPR-successor-list, our leader node can
notify the next node in this list, and the notified node will become the new
leader node of the cluster, ensuring the entire cluster’s stability, as shown in
Figure 3.



Web 3.0 Chord DHT Resource Clustering 709

3.1.7 Leader node polling
The leader node plays a crucial role in the network, especially in resource
retrieval. To distribute traffic evenly across all nodes in the cluster and
achieve load balancing, after implementing the leader node exit mecha-
nism by setting parameters, we only need the leader node to return an
exit message during the resource ring’s predecessor ping at specific
intervals. The predecessor node can find a new leader node using the
IPR-successor-list. Additionally, when the leader node experiences high
traffic, it can autonomously change the leader node in the same way.

3.1.8 Handling non-leader node exits
When a non-leader node plans to exit, we use the stability strategy from the
standard Chord algorithm to handle it.

4 Experiment

This section evaluates the effectiveness of our solution on balancing the load
among Web 3.0 Chord nodes.

First, we simulated scenarios in which both the traditional Chord and the
Web 3.0 Chord algorithms handle the publication of resources with a large
number of identical resource keys. This allowed us to observe the overhead
on different nodes in both algorithms (the leader and non-leader nodes in
the Web 3.0 Chord IP ring and the responsible and successor nodes in the
traditional Chord). Finally, we performed a cross-comparison of the results
from both algorithms.

Subsequently, we periodically queried the same resource to verify if it
effectively allowed all nodes in the IP ring to receive requests, thereby evenly
distributing the network request load.

Our tests were conducted on a MacBook M1 Pro, which features an Apple
M1 Pro chip with a 10-core CPU and 16GB of unified memory. The Chord
algorithm was implemented using Golang. Each node was run as a separate
process on this system.

4.1 Memory Usage Evaluation

In traditional applications of the Chord algorithm, when a node publishes a
key-value pair, this pair is stored on the node’s successor. We will compare
our design with the traditional Chord algorithm to prove that it effectively



710 K. Chan and Y. Yoon

reduces the single-point overload issue. In this experiment, we assume there
are 2000 nodes possessing a resource called A.

In the traditional Chord algorithm, through the hash function, we can
identify a corresponding successor node, which will be responsible for
assisting in storing the routing information of the node owning the A
resource. In our Web 3.0 Chord design, we similarly use A as the resource
key to join the cluster.

In the traditional Chord algorithm, we select a random node within the
ring, as well as the successor node responsible for storing the A resource, as
our observation subjects and observe the memory usage of these two nodes.
Figure 5 illustrates the memory cost difference between the successor storing
the A resource and a random node within the ring. Since the successor node
will store a large amount of information, it will incur increased memory costs,
while the memory cost of a random node within the ring will remain at a lower
level.

Next, we observe the leader node in our Web 3.0 Chord design compared
to any leader node on the resource ring of a sample cluster. Figure 4 shows
the memory costs for the Web 3.0 Chord. Even as the number of nodes in the
cluster increases, the memory costs for the leader node and any sample leader
node on the resource ring remain similar. However, due to the dual-ring

Figure 4 Web 3.0 Chord memory usage (2000 nodes in cluster(A) vs. 1 node in clus-
ter(sample)).



Web 3.0 Chord DHT Resource Clustering 711

Figure 5 Traditional Chord algorithm memory usage (2000 resource in successor node vs.
0 resource in sample node).

Figure 6 Traditional Chord algorithm vs. Web 3.0 Chord memory usage comparison.

structure, the basic memory cost of the leader node will be slightly higher
than that of the traditional Chord algorithm before a large amount of data is
added, as the leader node needs to maintain information about both rings.

Finally, through Figure 6, we can compare the memory cost differences
between the traditional Chord algorithm and our dual-ring design.



712 K. Chan and Y. Yoon

Table 1 Node received request counts
Req. Cnt. Req. Cnt. Req. Cnt. Req. Cnt.

Node id (10 nodes) (30 nodes) (50 nodes) (100 nodes)
node1 62 19 16 9
node2 64 20 12 8
node3 60 16 8 5
... ... ... ... ...
node10 60 16 8 4
node30 – 16 8 5
node50 – – 8 5
node100 – – – 5

Note: Req. Cnt. Stands for Request Count.

4.2 Evaluation on Query Request Balancing

In this study, we established a scenario to observe the number of query
requests received by each node and its memory usage when different numbers
of nodes (namely, 10, 30, 50, and 100) join a cluster. This experimental setup
is designed to simulate the querying behavior of many users for the same
specific resource in a distributed system and its impact on the system. To
simulate a realistic situation, we assume this operation will result in a memory
consumption of 300 KB per node. This memory consumption is intended
to reflect the resource occupancy during the data loading and computation
process to handle query requests. Moreover, we introduced a one second
processing delay to simulate the computational delay and data exchange time
during the query processing. Finally, we set up a polling of the leader node in
the cluster every 30 seconds. Users will make query requests for resource A
to any node on the entire resource ring.

As shown in Table 1, with the increase of nodes, the requests are evenly
distributed among the nodes. For node1, in the case of 10 nodes, it received
62 requests, while in the case of 100 nodes, it received 9 requests.

Figure 7 shows the change in memory usage of a single node as the
number of nodes increases. Through simulating memory consumption, it is
clear that as the number of nodes within the cluster increases, the number of
requests received decreases, and the memory cost of maintaining the Chord
ring does not increase with the addition of nodes.



Web 3.0 Chord DHT Resource Clustering 713

Figure 7 Web 3.0 Chord memory usage.

5 Conclusion

New user behaviors in the Web 3.0 environment inevitably lead to uneven
resource distribution. For instance, with the advent of new technologies like
artificial intelligence and blockchain, a vast amount of resources on the same
topics will be published or queried, which can cause specific nodes to be
overloaded when using traditional Chord algorithms. This paper proposes a
new Chord DHT design aimed at solving the issue of load balancing in the
Web 3.0 environment. While the leader node incurs some additional load to
maintain two distinct Chord rings, our experiments have demonstrated that
through a polling mechanism of the leader node, our design allows nodes to
take turns sharing the load.

However, although our design has achieved significant results in bal-
ancing the load with a large volume of identical resources, there is still
room for improvement in handling massive concurrent queries and during



714 K. Chan and Y. Yoon

the transition of leader nodes. Future research could further explore how to
optimize the management strategy of leader nodes to enhance the system’s
performance and stability.

With ongoing optimization and improvement, we believe this design will
provide strong technical support for building a more efficient and reliable
infrastructure for Web 3.0.

Acknowledgments

This work was supported by 2024 Hongik University Innovation Support
Program Fund and 2024 Hongik University Research Fund, by the MSIT
(Ministry of Science and ICT), Korea under the ITRC (Information Technol-
ogy Research Center) support program (RS-2023-00259099) supervised by
the IITP (Institute for Information & Communications Technology Planning
& Evaluation, by the National Research Foundation of Korea (NRF) grant
funded by the Korea government (MSIT) (No. RS-2023-00240211).

References

[1] Beth Cohen.Incentives build robustness in bit-torrent. 2003.
[2] Mirko D’Angelo and Mauro Caporuscio. Sa-chord: A self-adaptive p2p

overlay network. In 2018 IEEE 3rd International Workshops on Foun-
dations and Applications of Self* Systems (FAS*W), pages 118–123,
2018.

[3] Xie Jiagui, Li Zhiping, Gao Likun, and Nie Fanjie. Dht cluster node
join improvement and load balancing. In 2021 IEEE International
Conference on Electronic Technology, Communication and Information
(ICETCI), pages 650–654, 2021.

[4] David Karger, Eric Lehman, Tom Leighton, Matthew Levine, Daniel
Lewin, and Rina Panigrahy. Consistent hashing and random trees: Dis-
tributed caching protocols for relieving hot spots on the world wide web.
Proceedings of the twenty-ninth annual ACM symposium on Theory of
computing. ACM STOC, 02 2001.

[5] Petar Maymounkov and David Mazières. Kademlia: A peer-to-peer
information system based on the xor metric. In Peter Druschel, Frans
Kaashoek, and Antony Rowstron, editors, Peer-to-Peer Systems, pages
53–65, Berlin, Heidelberg, 2002. Springer Berlin Heidelberg.

[6] Diego Ongaro and John Ousterhout. In search of an understandable
consensus algorithm. In Proceedings of the 2014 USENIX Conference



Web 3.0 Chord DHT Resource Clustering 715

on USENIX Annual Technical Conference, USENIX ATC’14, page
305–320, USA, 2014. USENIX Association.

[7] Johan Pouwelse, Paweł Garbacki, Dick Epema, and Henk Sips. The Bit-
Torrent p2p file-sharing system: Measurements and analysis. In Miguel
Castro and Robbert van Renesse, editors, Peer-to-Peer Systems IV, pages
205–216, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[8] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott
Shenker. A scalable content-addressable network. SIGCOMM Comput.
Commun. Rev., 31(4):161–172, Aug 2001.

[9] Antony Rowstron and Peter Druschel. Pastry: Scalable, decentralized
object location, and routing for large-scale peer-to-peer systems. In
Rachid Guerraoui, editor, Middleware 2001, pages 329–350, Berlin,
Heidelberg, 2001. Springer Berlin Heidelberg.

[10] I. Stoica, R. Morris, D. Liben-Nowell, D.R. Karger, M.F. Kaashoek,
F. Dabek, and H. Balakrishnan. Chord: a scalable peer-to-peer lookup
protocol for internet applications. IEEE/ACM Transactions on Network-
ing, 11(1):17–32, 2003.

[11] B.Y. Zhao, Ling Huang, J. Stribling, S.C. Rhea, A.D. Joseph, and
J.D. Kubiatowicz. Tapestry: a resilient global-scale overlay for ser-
vice deployment. IEEE Journal on Selected Areas in Communications,
22(1):41–53, 2004.

[12] Álvaro Garcı́a-Pérez, Alexey Gotsman, Yuri Meshman, and Ilya Sergey.
Paxos consensus, deconstructed and abstracted (extended version),
2018.



716 K. Chan and Y. Yoon

Biographies

KaiHsiang Chan is currently a master’s student in computer engineering at
Hongik University, having enrolled in 2022. His research focuses on the areas
of Web 3.0 and distributed systems.

Young Yoon is an associate professor of computer engineering at Hongik
University and the CTO of Neouly Incorporated. His research interests
include distributed systems, middleware, cyber security, AI applications, and
emerging Web 3.0 themes. Yoon earned his B.A. and M.Sc. in computer
sciences at the University of Texas at Austin in 2003 and 2006, respectively.
He earned his Ph.D. in computer engineering at the University of Toronto in
2013.


	Introduction
	Related Work
	Chord Algorithm
	Node identifier
	Hash space
	Node join
	Stabilization algorithm
	Key-value pair storage
	Lookup process
	Load balancing

	Challenges in the Chord Algorithm for Resource Management
	Optimization of the Chord Algorithm in Previous Research

	Method
	Two Type Chord Ring
	IP ring (IPR)
	Resource ring (RR)
	Joining/creating a cluster
	Finding resources
	Leader Node Change
	IPR-successor-list

	Leader node exit
	Leader node polling
	Handling non-leader node exits


	Experiment
	Memory Usage Evaluation
	Evaluation on Query Request Balancing

	Conclusion

