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Abstract

Collecting personal data from various sources and using it for machine
learning (ML) is prevalent. However, there are increasing concerns about the
monopolization and potential breach of private data by greedy and malicious
organizations. Interest in Web 3.0 systems is on the rise as an alternative.
These systems aim to guarantee the self-sovereignty of personal data in
a decentralized setting. Users can share data with others directly for fair
compensation. Nevertheless, malicious remote users can still violate the
integrity and confidentiality of personal data. Therefore, this paper proposes
a novel method of preventing unwanted leakage and counterfeiting of the
private data lent on the premise of remote users. This paper focuses on the
decentralized nature of Web 3.0 to leverage existing personal storage so
that the burden of collecting secure data is relieved. Data owners create a
lightweight Docker container to encapsulate their private data sources. The
data owners generate another container to be deployed on a remote premise
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for taking and executing any ML algorithms remote users create. Between
the containers forming a distributed trusted execution environment (TEE),
data are read through a secure channel. Since the TEE is strictly controlled
by the data owner, no malicious ML application can leak or breach the private
information. This paper explains the engineering details of how this new
method is realized.

Keywords: Self-sovereignty, trusted execution environment, data sharing,
containers, Web3.0.

1 Introduction

Collecting personal data from various sources and using it for machine
learning (ML) purposes is prevalent. However, there are increasing concerns
about the monopolization and potential breach of private data by greedy
and malicious organizations. As an alternative, interest in Web 3.0 systems
is increasing. Web 3.0 aims to offer more diversified machine learning
approaches with the recent advancements of distributed environment con-
trol algorithms and hardware technologies for creating various personalized
services [1].

Data owners can lend their data directly to others remotely for fair
compensation. However, ensuring the self-sovereignty of data is challeng-
ing [2,3]. Data owners are not free from concerns about unauthorized access,
breach of private information, unwanted leakage, and counterfeit by remote
users.

Data owners can consider several techniques for protecting their data
through de-identification, differential privacy, federated learning, and homo-
morphic encryption [4–7] when sharing their data with remote users. How-
ever, these techniques can cause loss of information and lead to reduced
utilization and lower accuracy of the analysis data, limiting its usefulness
eventually [8, 9]. In particular, unstructured data is challenging to preprocess
and to extract features due to the lack of a clear structure.

Data collection preprocessed with the security measures above can incur
significant communication, storage, and operation costs. Consistent quality
control and scheduling of collected data among ML applications can be non-
trivial, especially in a large-scale environment.

This paper focuses on the decentralized nature of Web 3.0 to leverage
existing personal storage so that the burden of collecting secure data is
relieved. Data owners create a lightweight Docker container to encapsulate
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their private data sources. The data owners generate another container to be
deployed on a remote premise for taking and executing any ML algorithms
remote users create. Between the containers forming a distributed trusted
execution environment (TEE), data are read through a secure channel since
the TEE is strictly controlled by the data owner; even a malicious ML
application is blocked from leaking or breaching private information.

This methodology has two advantages. First, it can avoid complicated
and costly data protection measures by enclosing original data sources and
remote users’ ML applications in a secure environment to preserve privacy
and support highly accurate training through unprocessed data. Second, this
approach can be scalable, as the data can be preprocessed using its distributed
resources without accumulating in central storage.

The rest of the paper is structured as follows: Section 2 introduces related
work; Section 3 presents background knowledge; Section 4 explains the
design of our approach; Section 5 demonstrates a sample operation; finally,
in Section 6, we conclude and discuss future studies.

2 Related Work

In Web 3.0, we envision personal data in various modes (e.g., voice, video,
image, and text) that can be distributed over the network and shared across
remote devices and servers for analytics and machine learning [1, 10].
However, there are concerns about securing the data and preserving privacy.

There are ongoing efforts to address such issues, including de-
identification measures, homomorphic encryption, and distributed learning
models. However, implementing these solutions in real-world settings is
challenging due to the complexity of communication loads and additional
implementation requirements.

2.1 De-dentification and Differential Privacy

Differential privacy is a mathematical anonymization technique that guar-
antees the difference between the result of processing personal information
and the result of not using personal information below a certain level. To
prevent abuse of personal information, noise insertion or deletion in pro-
cesses like collecting, storing, processing, and sharing can maintain a certain
level of change in query results due to data transformation, thereby con-
trolling personal information exposure and quantifying the level of privacy
protection [11].
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Various theoretical studies have been conducted. However, the results
have not yet been converted into practical solutions. The U.S. Census Bureau
applied differential privacy to its 2020 census results. However, they argued
that a large portion of the data could not be fundamentally disclosed and that
limited data with privacy information obscured alone was not sufficient to
draw meaningful conclusions [12].

2.2 Homomorphic Encryption

Homomorphic encryption allows data analysis without decryption so that
encrypted data containing sensitive information can reliably be conveyed to
various service environments with little concern about privacy breaches [13,
14]. Content-based publish/subscribe clients exchange messages through bro-
kers by hiding sensitive information through a homomorphic re-encryption
technique [15]. Smart contract [16] fulfillment can be verified with homo-
morphic encryption without revealing the contract details.

However, homomorphic encryption is currently limited regarding sup-
ported mathematical operations, making it difficult to perform large-scale
complex analyses [17–19]. Despite the recent research efforts to improve
accuracy and storage space efficiency, it falls short in supporting complex
machine learning applications.

2.3 Distributed Learning Technology

Recently, various privacy-preserving distributed learning techniques have
been studied, including federated learning [20, 21], which trains using dis-
tributed client-owned data and where a central server merges or aggregates
the entire model, split learning [22], which learns by dividing neural networks
into client and server parts, and combined split-fed learning [23, 24].

As these studies rely on transmitting and updating model parameters or
data over the network, issues of communication load generation and increased
bandwidth usage, security issues for model parameters, and the complexity of
additional implementations for managing network communication and data
transmission still need to be resolved. In addition, due to different com-
putational and communication environments, it is unsuitable for real-time
processing because of network topology and delay-induced asynchronous
communication problems. Communication load costs increase when merging
or aggregating learned models based on local updates to central servers.
Scalability is limited in large environments, and the quality of data collected
from local devices is inconsistent [25].
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3 Background Knowledge

Our method utilizes Docker container technology to create a trusted execution
environment that is logically independent and isolated from the host. We
also implement authentication based on one-time password (OTP) technology
to ensure confidentiality and integrity of shared data. Lastly, our method
adopts HTTPS-based REST API technology for mutually safe and secure
communication.

3.1 Docker-based Trusted Execution Environment

Existing trusted execution environment (TEE) [26, 27] technology provides
physical isolation to ensure a higher level of data integrity and confidentiality
than the rich execution environment(REE) that offers significantly more
features and applications but is vulnerable to attacks [28].

Docker [29] is an open-source virtualization platform for container
creation and management that abstracts the execution environment into con-
tainers, provides them as service units, and optimizes management with
Kubernetes [30]. Docker does not include a separate operating system but
relies on the kernel’s function to isolate resources such as CPU, memory,
block input/output, and network, allowing the operating system to have an
independent process, file system, and network.

A container [31] is a type of software packaged as an image of the
application and operating environment required for the software’s execution
environment. By creating and distributing new images without changing
the execution environment, convenient management, easy expansion, and
lightweight systems are guaranteed to run the same anytime, anywhere, and
provide fundamental isolation.

In the proposed system, a Docker container can construct a logical
TEE through resources isolated from the data user’s host, provide confi-
dentiality and integrity of shared data quickly and continuously in various
environments, and operate and distribute independently. A Docker container
eliminates the need for physical hardware to create a TEE. We chose not to
rely on physical TEE, especially on the remote side, because it is not under the
control of the data owner. Moreover, physical TEE can be limited in memory
in practice.

3.2 REST API

The REST API, proposed by Roy Fielding and based on representational
state transfer (REST), is a software protocol for efficiently managing service
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communication and interaction using HTTP methods such as create, read,
update, and delete. In this model, HTTPS-based REST API communication
authenticates users and ensures secure self-sovereignty for the data owners.

3.3 One-time Password

OTP [32] generates a unique password that can only be used once for
security against authentication value leakage. OTP synchronization methods
are mainly used as request–response, event synchronization, and time syn-
chronization combinations. Synchronization based on time or events is the
most prevalent approach. In the proposed model, OTP limits access to data.
Different encryption and authentication security keys are assigned to indi-
vidual users to ensure secure communication, confidentiality, and integrity of
shared data.

4 System Design

This section presents a data-sharing system that provides owners with self-
sovereignty of distributed data to ensure owners’ rights and interests.
Our system has the following unique features:

• First, to prevent the abuse of data and the monopolization of collected
data, a TEE is created to realize a secure space that is logically isolated
and independent from the data user’s host.

• Second, through Docker container technology configuration, installation
efforts on the remote side for data deployment and analytics operation
are minimized.

• Third, secure communication channels are being established, and data
access control policies (ACPs) are being enforced to block access
attempts by malicious users.

• Lastly, time-based OTP and HTTPS-based REST API technologies are
being used to provide detailed user permissions.

4.1 Architecture and Interoperation Between Data Owners and
Users

Our system comprises several modules, as illustrated in Figure 1. We describe
the interaction based on the containers specified as follows (the symbol ⊕
denotes XOR operation):

• User Docker container and owner Docker container: UDC, ODC
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Figure 1 Components of our system.

• Data user identification information: IDuser′s

• OTP seed by data user: SEEDuser′s

• Data access policy: ACPCRUD(C: create, R: read, U: edit, D: delete)
• User OTP: OTPuser′s = H(SEEDuser′s ⊕ TimeStamp)
• Encryption keys: SKeyuser′s enc = GEN KEY (V erifyOTPuser′s)
• Decryption keys: SKeyuser′s dec = GEN KEY (OTPuser′s)
• Network file system: NFS

The communication module uses HTTPS-based REST API to establish
a secure connection between data owners and data users. The authentication
module uses IDuser′s, OTPUser′s, and ACPCRUD to manage user authen-
tication and access rights. The encryption module provides encryption and
decryption algorithms that ensure the confidentiality and integrity of data
by using different security keys for each user. The data-sharing module
provides network-sharing capabilities. The storage module manages sensitive
information such as IDuser′s, SEEDuser′s, and ACPCRUD.
Our system has two types of containers: User Docker container (UDC)
and owner Docker container (ODC). These containers interact, as shown in
Figure 2.

4.2 Implementation

The model consists of four stages: initialization for data sharing, user authen-
tication, data sharing, and termination. Each stage operates within the UDC
and ODC, a logically independent, trusted execution environment.
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Figure 2 Interaction between data owner and data users.

Figure 3 Initialization procedure

ODC first initiates HTTPS-based REST interface communication with
the UDC. The UDC can employ AI-driven techniques to detect malware in
the ML binaries and filter out malicious network packets to prevent data
leakage [33]. It stores ML algorithms to leverage shared data as internal
storage. Following the initialization, an ML is constructed with the data from
ODC as training data. Figure 3 shows the detailed processing.

UDC and ODC perform user authentication as shown in Figures 4 and 5.
The UDC calculates OTPuser′s using the pre-stored IDuser′s, SEEDuser′s,
and the current time and transmits authentication request information
(IDuser′s, OTPuser′s) to the ODC for user authentication.

OTPuser′s = H(SEEDuser′s ⊕ TimeStamp). (1)
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Figure 4 UDC’s user authentication processing.

When the ODC receives a user authentication request from the UDC,
it uses IDuser′s to query the repository for SEEDuser′s and ACPCRUD,
uses SEEDUser′s and the current time to calculate V erifyOTPUser′s, and
Authenticate users using the calculated V erifyOTPUser′s and the received
OTPUser′s and control access to data based on the inquired ACPCRUD.

V erifyOTPuser′s = H(stored SEEDuser′s ⊕ TimeStamp) (2)

User′s ACPR = R : Read. (3)

The ODC activates the NFS server to share data with authenticated users
and creates an encryption key using the V erifyOTPuser′s. It encrypts the
data to be shared and delivers the shared data information(name, size, access
rights) and NFS access information to the UDC.

SKeyuser′s enc = GEN Key(V erifyOTPuser′s) (4)

EncryptedData = ESKeyuser′s enc
(Data) (5)
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Figure 5 ODC’s user authentication processing.

The UDC receives an authentication result from the ODC and calculates
a decryption key.

SKeyuser′s dec = GEN Key(OTPuser′s) (6)

DecryptedData = DSKeyuser′s (EncryptedData). (7)

Following user authentication, the UDC connects to the ODC’s NFS
server to decrypt the encrypted shared data and execute the ML algorithm.
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Figure 6 Data sharing processing.

Figure 7 Termination procedure.

The result is checked inside the Docker and delivered safely to the host.
Figure 6 shows the detailed processing.

When the UDC completes its operation or receives a data usage com-
pletion notification from the ODC, NFS information, decryption keys, and
ML models are removed from the container. Figure 7 shows the detailed
processing.
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Figure 8 Authentication information registration.

Table 1 Setup of containers for testing

Docker container environment

Operating system Ubuntu 22.04

Programming language Go 1.21.6, Echo(v4)

File system NFS

Shared directory /mnt/nfs share

Figure 9 The UDC generates OTPuser′s and SKeyuser′s dec.

5 Demonstration

We demonstrate a sample operation between the data owner and a user. For
this demonstration, we set IDuser′s, SEEDuser′s, and ACPCRUD, as shown
in Figure 8.

The environment is shown in Table 1.
Figure 9 shows that UDC generates OTPuser′s unique for each user using

SEEDuser′s and the current time, and SKeyuser′s dec for data decryption.
Figure 10 shows that the ODC generates V erifyOTPuser′s unique for

each user using SEEDuser′s and the current time, and SKeyuser′s enc for
data encryption.

Figure 11 shows the results of a typical NFS packet dump with data
exposed and a packet dump of a proposed model with encrypted data.

Figure 12 shows that once the data usage is complete, the NFS link is
disconnected, rendering the data inaccessible within the Docker container.
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Figure 10 The ODC generates V erifyOTPuser′s and SKeyuser′s enc.

Figure 11 NFS packet dump.

Figure 12 Disconnected NFS link.

Figure 13 demonstrates that when the proposed system is terminated,
the NFS information, decryption key, and ML algorithm information are
initialized, and the data is not stored.

Figure 14 shows that NFS mount procedures use the highest latency in
UDC procedures.

Figure 15 shows that NFS mount procedures use the highest latency in
ODC procedures.
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Figure 13 Initialized host’s data.

Figure 14 Latency by UDC’s procedure.

Figure 15 Latency by ODC’s procedure.

6 Conclusion

This paper presented the self-sovereignty of data shared securely on the
remote host within a logically isolated Docker container. Data stored in the
NFS server on the owner-side Docker container (ODC) is encrypted on-
demand with a time-based pseudo-random number as an OTP. The encrypted
data is transferred via the REST interface to the user-side Docker container
(UDC) for ML model training. Only the ML modeling outcome is returned
to the UDC host, and the rest of the information, such as the OTP-based
decryption keys, NFS information, and training data from ODC are removed.
Upon completion of the data usage, ODC deactivates NFS. This methodology
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allows data owners to lend their data to remote users without concerns about
privacy breaches and integrity violations.

In this paper, logical TEE for realizing a reliable execution environment
with only software without hardware support is limited to Docker containers.
In future work, we plan to apply various logical TEEs, such as KVM (kernel-
based virtual machine), microkernels, and sandboxing, and minimize the
latency of interaction procedures between data owners and data users. The
right to access the data must be detailed to manage the owner’s auton-
omy over the data in detail. Security and privacy infringement research is
needed to minimize the threat of malicious ML algorithms that leak sensitive
information out of the container-based logical trust environment.
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