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Abstract

For web security, it’s essential to accurately classify traffic across various
web applications to detect malicious activities lurking within network traffic.
However, the encryption protocols for privacy protection, such as TLS 1.3
and IPSec, make it difficult to apply traditional traffic classification methods
like deep packet inspection (DPI). Recently, the advent of deep learning
has significantly advanced the field of encrypted traffic analysis (ETA),
outperforming traditional traffic analysis approaches. Notably, pre-trained
deep learning based ETA models have demonstrated superior analytical
capabilities. However, the security aspects of these deep learning models
are often overlooked during the design and development process. In this
paper, we conducted adversarial attacks to evaluate the security of pre-trained
ETA models. We targeted ET-BERT, a state-of-the-art model demonstrating
superior performance, to generate adversarial traffic examples. To carry out
the adversarial example generation, we drew inspiration from adversarial
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attacks on discrete data, such as natural language, defining fluency from a
network traffic perspective and proposing a new attack algorithm that can
preserve this fluency. Finally, in our experiments, we showed our target model
is vulnerable to the proposed adversarial attacks.

Keywords: Encrypted traffic analysis, adversarial attacks, pre-trained deep
learning models, bert, web security.

1 Introduction

Network traffic analysis, which identifies and classifies various web appli-
cations or services, is an essential web security technology for detecting
malicious activities and managing services on networks [14, 23]. Traditional
models rely on inspecting traffic packet ports and payload information for
flow and content classification [1, 24]. However, the adoption of encryption
technologies to strengthen security and privacy has rendered these con-
ventional techniques less effective, as attackers can also encrypt malicious
traffic, thus evading traditional traffic analysis methods. As a countermeasure,
extensive research has been conducted on encrypted traffic analysis (ETA)
models that do not rely on port or payload information [17]. With the recent
advancements in deep learning, the primary approach now involves training
models on the statistical features of encrypted traffic for classification tasks.
These models have significantly outperformed their traditional counterparts.

Among various deep learning-based ETA models, those derived from
image recognition, such as convolutional neural networks (CNNs), and
natural language processing, like recurrent neural networks (RNNs), are well-
established [19]. Pre-trained deep learning models for ETA, inspired by the
success of pre-trained AI models such the large language model (LLM),
have exhibited even better performance and robustness across diverse types
of encrypted traffic due to their extensive pre-training. For the convenience
of explanation, the pre-trained ETA model will be referred to as the large
encrypted traffic model (LETM). Despite the powerful performance of deep
learning-based ETA models, the reliability of these models, including the
LETMs, remains a concern, primarily due to their black box nature, which
obscures their inner workings and decision-making processes. Their per-
formance is highly dependent on the training data, raising concerns that
malicious inputs or training could impair their functionality. Thus, the secu-
rity of the models themselves is a critical consideration in the perspective of
web security.
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In this paper, we explore the security of the LETMs against adversarial
attacks. We target encrypted traffic bidirectional encoder representations from
transformer (ET-BERT) [12], a state-of-the-art model demonstrating superior
performance, to generate adversarial traffic examples. Inspired by adversarial
strategies applied to discrete datasets in natural language processing, we
proposed new adversarial attack to preserve the fluency from a network
traffic perspective (i.e., grammar correctness and fluent lexical capacity).
We applied our proposed attack to models that had been fine-tuned for ET-
BERT’s downstream tasks, assessing their performance under adversarial
conditions. Our experimental results showed that the proposed attack suc-
cessfully generate adversarial examples for the fine-tuned ET-BERT models
by altering less than 10% of the original traffic data, while preserving the
fluency of network traffic.

2 Related Works

Traditionally, encrypted traffic analysis utilized algorithms constructed or
trained with machine learning techniques on statistical characteristics for
network security tasks such as application identification, classification, and
malicious activity detection. However, the rapid advancement in deep learn-
ing within machine learning has spurred active research into constructing
deep learning-based ETA models. This section discusses the latest approaches
directly relevant to our study, focusing on deep learning-based ETA tech-
niques and adversarial attacks against ETA models. (For a comprehensive
survey of statistical characteristic-based and machine-learning-based ETA,
see [17].)

2.1 Deep-learning-based Encrypted Traffic Analysis

Existing ETA works based on traditional deep-learning models. The advent
of deep learning has significantly improved the analysis and classification
of encrypted network traffic. Deep learning models trained on the structural
and statistical features of encrypted traffic have achieved notable accuracy
in classification. Mohammad et al. [13] explored using CNN models to
analyze encrypted traffic, generating 1D grayscale images of packets for
effective CNN training. This innovative method utilizes CNN’s robust fea-
ture extraction capabilities, adapted to encrypted traffic’s unique challenges.
Auwal Sani et al. [8] employed deep convolutional generative adversarial
networks (DCGAN) for data augmentation in training on encrypted traffic.
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They created a pseudo image matrix incorporating features like packet inter-
arrival times, direction, length, and TCP window size, showcasing generative
models’ potential in enriching training datasets. Additionally, Shen et al. [22]
and Diao et al. [3] used graph neural network (GNN) models to capture
packet interactions, generating graph data representing these interactions.
This approach introduces a novel representation of network traffic through
graph data, proving highly effective for encrypted traffic analysis.

Existing ETA works based on pre-training approaches. The success
of pre-trained LLM models such as bidirectional encoder representations
from transformers (BERTs) and generative pre-trained transformers (GPTs)
in natural language processing has inspired efforts to extend their application,
including encrypted traffic classification. He et al. [6] extracted network
packets, tokenizing the payload in 2 Byte units for BERT model pre-training
and classification. This approach applies NLP methodologies to network
traffic analysis, especially for encrypted data. Hu et al. [7] combined CNN
embeddings of packets and flows with BERT model pre-training, showcasing
an innovative blend of CNN and transformer models for network traffic
understanding. Lin et al. [12] developed ET-BERT, segmenting network
traffic into BURST units and tokenizing these for BERT model pre-training
and classification, establishing a state-of-the-art ETA model with superior
performance.

2.2 Adversarial Attacks on ETA Models

Zhao et al. [26] and Sadeghzadeh et al. [20] proposed GAN-based techniques
for generating adversarial examples against ML/DL-based NIDS, demon-
strating the potential for detection evasion or misclassification. McCarthy
et al. [26] targeted Kitsune, an IoT NIDS built on auto encoders (AE),
with attacks extracting crucial features through saliency maps to generate
adversarial examples, successfully bypassing detection or triggering false
alarms.

Reviewing deep learning-based ETA and adversarial attack technologies,
we note that while various models like CNNs, GANs, and GNNs have
been used, recent studies focus on deep learning models with pre-training
approaches (i.e., development of LETM). However, research on adversarial
attacks specifically targeting LETMs remains scarce. Existing adversarial
attack techniques, typically involving GANs or gradient-based methods, are
not specialized for natural language processing. Therefore, similar to NLP,
these techniques are difficult to apply to LETM, which handles discrete data.
This gap led us to explore adversarial attacks on LETMs.
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3 Adversarial Attacks on LETMs

3.1 Brief Description of Target Model: ET-BERT [12]

ET-BERT is a framework for analyzing encrypted traffic based on the bidirec-
tional encoder representation from transformers (BERT) [2], proposed at the
WWW conference in 2021. The structure of the ET-BERT framework is as
follows: It consists of a Datagram2Token pre-processor, which pre-processes
network traffic into a token format that can be fed into the model, and a pre-
training part that trains a deep learning network composed of bidirectional
transformer blocks using a large volume of unlabeled encrypted traffic data.
Additionally, it features a fine-tuning part that conducts specialized training
for detailed tasks from a downstream task perspective. A brief description of
each component is as follows:

* Datagram2Token pre-processor: This component takes raw network
traffic as input and pre-processes it into flows based on the same IP, port,
and protocol information according to protocol rules. It then arranges
the traffic data in time units and performs tokenization to generate a
format suitable for the pre-training input of the ET-BERT model, a
process called BURST2Token. In BURST2Token, the payload part of
a packet is bisected, and from each part, 256 bytes are extracted to
form sub-BURSTA and sub-BURSTB , thus constructing a BURST =
sub-BURSTA||sub-BURSTB . Then, bigram encoding is applied to the
BURST to create an encrypted traffic corpus. Finally, byte-pair encod-
ing [5] is performed on the encrypted traffic corpus to construct the
vocabulary used by the ET-BERT model.

* Pre-training part: This part involves pre-training the bidirectional
transformer blocks with tokenized encrypted traffic information, utiliz-
ing two learning strategies – the masked BURST model and same-origin
BURST Ppediction – on unlabeled traffic data. The learning strategies
are defined as follows:

– Masked BURST model: A strategy where specific tokens in
the traffic data are probabilistically selected and replaced with
[MASK] tokens, and the model is trained to infer the original
tokens. The loss function for this strategy is defined as LMBM =
−Σk

i=1 log(P (MASKi = tokeni|X̄; θ)).
– Same-origin BURST prediction: A strategy aimed at predict-

ing whether two sub-BURSTs originate from the same source.
The loss function for this strategy is defined as LSBP =
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−Σn
j=1 log(P (yj |Bj ; θ)), where the label yi ∈ [0, 1] (0 repre-

sents the same-origin BURST and 1 represents the different-origin
BURST).

The final pre-training loss function combines the losses from these two
strategies.; L = LMBM + LSBP. Pre-training utilized a total of 30 GB
of unlabeled encrypted traffic data, combining 15 GB from publicly
available datasets (ISCX-VPN [4], CICIDS2017 [21]) and 15 GB from
a dataset collected by the authors, CSTNET.1

* Fine-tuning part: This part involves training optimized for downstream
tasks, differing from the pre-training part as it learns classification on a
packet or flow unit datagram basis rather than on BURST units. Here,
datagrams at the packet or flow unit level are pre-processed into flow
units based on the same IP, port, and protocol information, similar to
the Datagram2Token process, and then tokenization is performed. The
structure of the model is fundamentally the same as in the pre-trained
model, with the output of the node corresponding to the original [CLS]
token fed into a multi-class classifier, and the loss function is defined as
LCE = −ΣN

c=1yi · log(softmax(zi; θ)), where N is the total number of
classes, yi is the one-hot encoded target label vector, and zi represents
the model’s predicted probability for the classes.
Theoretically, fine-tuning can be applied to any network traffic analysis
task, but the authors optimized the training for the following five specific
downstream tasks:

– General encrypted application classification (GEAC): Classifica-
tion on encrypted application traffic under standard encryption
protocols.

– Encrypted malware classification (EMC): Classification on
encrypted traffic consisting of malware and benign applications.

– Encrypted traffic classification on VPN (ETCV): Classification on
encrypted traffic that uses virtual private networks (VPNs).

– Encrypted application classification on Tor (EACT): Classification
on encrypted traffic that uses Onion Router (Tor).

– Encrypted application classification on TLS 1.3 (EAC-1.3): Classi-
fication on encrypted traffic over new encryption protocol TLS 1.3.

The training results of ET-BERT demonstrated an accuracy of over
97% across all five downstream tasks, showcasing superior performance

1The GitHub repository for the datasets, including CSTNET, used in the training of ET-
BERT is available at https://github.com/linwhitehat/ET-BERT/tree/main/datasets.

https://github.com/linwhitehat/ET-BERT/tree/main/datasets
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Table 1 Performance of ET-BERT on five downstream tasks
Tasks Datasets Traffic level Accuracy Precision Recall F1-score

GEAC
Cross-platform (iOS) [18]

Flow 0.9844 0.9701 0.9632 0.9643
Packet 0.9810 0.9757 0.9772 0.9754

Cross-platform (Android) [18]
Flow 0.9865 0.9323 0.9266 0.9246

Packet 0.9728 0.9439 0.9119 0.9206

EMC USTC-TFC [25]
Flow 0.9929 0.9930 0.9930 0.9930

Packet 0.9915 0.9915 0.9916 0.9916

ETCV
ISCX-VPN-Service [4]

Flow 0.9729 0.9756 0.9731 0.9733
Packet 0.9890 0.9891 0.9890 0.9890

ISCX-VPN-App [4]
Flow 0.8519 0.7508 0.7294 0.7306

Packet 0.9962 0.9936 0.9938 0.9937

EACT ISCX-Tor [10]
Flow 0.8311 0.5564 0.6448 0.5886

Packet 0.9921 0.9923 0.9921 0.9921

EAC-1.3 CSTNET-TLS 1.3 [12]
Flow 0.9510 0.9460 0.9419 0.9426

Packet 0.9737 0.9742 0.9742 0.9741

compared to existing deep learning-based ETA models (10 types based
on CNN and 1 type based on LLM). The performance of the fine-tuned
ET-BERT for each task is presented in the Table 1.

3.2 Attack Methodology

In this paper, we perform adversarial attacks targeting ET-BERT trained
to identify and classify applications within encrypted traffic. Our proposed
attack generates adversarial examples that lead to misclassification during
the execution of downstream tasks, following the model’s training. These
adversarial examples are designed to:

1. Mirror the characteristics of genuine network traffic, in terms of patterns
and statistical properties.

2. Conform to the requisite structure and rules for input into the ETA
model.

We established these characteristics based on the properties typical of
adversarial examples in natural language processing models. Adversarial
examples typically involve data alterations that are imperceptible to humans
but deleterious to the performance of the trained model. Unlike continuous
data, whose significance may be influenced by quantity, the data utilized
in natural language processing is discrete and categorical, bearing semantic
value influenced by its inherent meaning.

To attain the adversarial example generation goal, we create semantically
identical and grammatically correct examples that can adversely affect the
results of natural language processing models while preserving linguistic
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fluency. In this context, we reconceptualize fluency in terms of network
traffic, aiming to generate adversarial examples that induce misclassification
in application classification tasks by the ETA model.

Fluency in terms of network traffic. Network traffic data consists of
binary sequences constructed in accordance with communication protocols,
forming a language not readily comprehensible to humans. Thus, it lacks
explicit semantic content accessible to human readers. However, the ability
to enact networking functions defined by network packet data implies that
the data harbors implicit semantic content intelligible to machines (i.e.,
network devices and applications). In this light, vocabulary can be likened to
commands within TCP/IP, TLS protocols, and so on. Furthermore, to transmit
commands effectively over a network, source, destination, and content (pay-
load) must adhere to stringent rules akin to grammatical structures in human
languages.

With the aforementioned conception of network traffic fluency, we define
a target LLM-based model, analyze it in terms of semantic and syntactic
elements peculiar to network traffic, and undertake adversarial attacks predi-
cated on these analyses. The subsequent section provides a detailed account
of this process.

3.3 Generation of Adversarial Examples Against ET-BERT

The adversarial attacks on ET-BERT described in the previous section target
the model trained for downstream tasks in the fine-tuning part, aiming to
generate traffic examples that preserve fluency from a network traffic per-
spective. We have designed an adversarial attack algorithm that maintains
network traffic fluency in terms of grammar correctness and fluent lexical
capacity, based on an analysis of the dataset pre-processing and ET-BERT’s
learning process. A detailed explanation is as follows.

Grammarly correctness. To figure out the impact of arbitrary modifi-
cations on the data input to the fine-tuned model, let’s first examine the
generating steps for the ET-BERT fine-tuning dataset. The generation steps
involves the following detailed tasks to convert the raw traffic data into token
form.

1. Raw traffic files are segregated into individual pcap files based on the
flow, defined by having the same IP, port, and protocol. During this
process, packets irrelevant to specific content transmission, such as
those from the address resolution protocol (ARP) and the dynamic host
configuration protocol (DHCP), are excluded.
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2. For each packet in the saved flow-specific pcap files, the header infor-
mation comprising a total of 38 bytes, including the Ethernet header
(14 bytes), IP header (20 bytes), and the source and destination port in
TCP header (4 bytes), is removed. Subsequently, if the model for fine-
tuning operates at the flow-level, data is extracted from 5 consecutive
pre-processed packets within the flow, taking 128 bytes from each and
concatenating them to form a single datagram. If the model for fine-
tuning operates at the packet-level, 128 bytes of data are extracted from
a single pre-processed packet to form a datagram.

3. Finally, Bigram encoding is performed on the constructed datagram to
form the datagram used for training, and each datagram is labeled to
create the dataset.

The first step in the fine-tuning dataset creation process simply sorts
packets by flow, thus not altering the shape of data within the packet. Hence,
from a network grammar perspective, the first step need not be considered.
Subsequent to this, the second step involves packet header delimitation,
where headers below the TCP layer, including the source and destination port
information, are removed. Therefore, any arbitrary network routing format
and source/destination information can be written within the Ethernet and IP
headers below the TCP layer without issue. Furthermore, if arbitrary modifi-
cations occur in the header information following the TCP header’s sequence
number or in the payload, it is considered a TCP payload data error, which
is handled at the transport layer through error detection or retransmission
or is resolved at the application layer through error processing. In other
words, they are considered manageable errors that do not cause problems in
transmission or reception by network devices and can be processed normally.
The final third step involves applying Bigram encoding to the datagrams to
create the dataset, transforming them into a format suitable for ET-BERT
input. When creating adversarial examples, it is possible to generate such
examples without preserving the Bigram encoding format; however, from the
perspective of the ET-BERT model, this could be considered grammatically
incorrect data. Therefore, based on the analysis of the fine-tuning dataset cre-
ation process, we construct attacks that generate adversarial traffic examples
through payload modifications while preserving the Bigram encoding format.

Fluent lexical capacity. In addition to the grammar correctness char-
acteristics previously discussed, the fluency of network traffic should also
satisfy semantic similarity. While adversarial examples in natural lan-
guage processing can be created using semantically similar synonyms or
antonyms, generating semantically identical traffic in network traffic analysis
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Figure 1 The proposed adversarial attack against the fine-tuned ET-BERT.

is challenging since humans cannot directly discern meaning from traffic
data. In other words, constructing packets that differ in data values but still
enable the same operation to be performed is a difficult problem, especially
with encrypted traffic. As an alternative solution to this problem, we devised
an approach to generate adversarial examples based on patterns frequently
appearing in actual network traffic, utilizing the vocabulary of the pre-
trained ET-BERT, which forms the basis for the fine-tuning of ET-BERT.
As explained in Section 3.1, the pre-trained ET-BERT employs a vocabulary
composed of patterns that frequently occur in traffic for its training on the
encrypted traffic corpus. Thus, this vocabulary can be considered ET-BERT’s
lexical capacity. By using patterns existing in the vocabulary to generate
adversarial examples, we aimed to produce network traffic that bears similar
patterns to actual network traffic.

Considering the grammar correctness and fluent lexical capacity we have
discussed so far, we propose an attack that generates adversarial examples by
preserving the Bigram encoding format and finding replacement keywords
within ET-BERT’s vocabulary, as illustrated in Figure 1. The detailed attack
algorithm is as Algorithm 1. The proposed attack has been modified to reflect
the grammatical characteristics of ET-BERT based on the adversarial attack
algorithm for the BERT model presented in [9].

Given a datagram sentence X = x1, x2, ..., xn and a target model F , the
problem of our adversarial attack algorithm is to find a modified X ′ from
parts of X such that F (X) ̸= F (X ′). Here, X ′ must be contextually similar
to X such that the similarity of the results performed by word embedding is
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Algorithm 1 Proposed adversarial encrypted traffic example generation algo-
rithm for fine-tuned ET-BERT
Input: A burst sample X = {x1, x2, ..., xn}, the corresponding ground truth label Y , target
model F ′, word embedding similarity function WordSim, sentence similarity threshold ϵ,
word embeddings database over the vocabulary V ocab.
Output: Adversarial example Xadv

1: for each word xi in X do
2: Compute the importance score Ixi = F (X)− F (X\xi

)
3: end for
4:
5: Create a set W of all words xi ∈ X sorted by the descending order of their importance

score Ixi .
6: Initiate the set of candidates C by extracting the full tokens in Vocab such that each token

t matches the regular expression pattern for 4-digit hexadecimal numbers.
7: BigramC← {}
8: for ck ∈ C do do ▷ Transformation with Bigram Encoding Rule
9: X ′ ← Replace wi with ck in X
10: if i > 0 then
11: ckpre ← the first two digits of xi−1||the first two digits of ck
12: Replace xi−1 with ckpre in X ′

13: end if
14: if i < len(X)− 1 then
15: ckpost ← the last two digits of ck||the last two digits of xi+1

16: Replace xi+1 with ckpost in X ′

17: end if
18: ifWordSim(X ′, X) > ϵ then
19: Add the sequence of tokens {ckpre , ck, ckpost} to the set BigramC.
20: (Note that ckpre or ckpre may not exist according to the index i.)
21: Yk ← F (X ′)
22: end if
23: end for
24: if there exists ck whose prediction result Yk ̸= Y then
25: In BigramC, only keep the candidate sequences {ckpre , ck, ckpost} whose prediction

result Yk ̸= Y
26: {c∗kpre , c∗k, c

∗
kpost} ← argmaxc∈BigramCSim(X,X{xi−1,xi,xi+1}→{ckpre ,ck,ckpost})

27: Xadv ← Replace {xi−1, xi, xi+1} with {ckpre , ck, ckpost} in Xadv

28: returnXadv

29: end if
30: return None

greater than ϵ (i.e., WordSim(X,X ′) > ϵ). To solve the defined problem,
we calculate the word importance score Ixi for each word in X and store
the words in W in descending order of their influence on the model’s output
when modified (lines 1–5). Here, Ixi [11] is defined by the difference in F ’s



760 Byoungjin Seok and Kiwook Sohn

output for X and for the sentence X\xi
, which xi has been deleted, such

that Ixi = F (X)−F (X\xi
). Subsequently, we construct the set of candidate

words C by extracting tokens from ET-BERT’s vocabulary that are composed
of four hexadecimal digits (line 6). Using the tokens in the candidate set, we
modify words in X to form X ′ and calculate the model output Yk = F (X ′)
for X ′ that satisfies WordSim(X,X ′) > ϵ (lines 7–23). Here, to satisfy the
characteristics of Bigram Encoding, the first two digits of the candidate token
ck are reflected in the word preceding the target word, and the last two digits
are reflected in the word following the target word (lines 10–17). Among the
results of the preceding processes, the one with the highest similarity and
satisfying Yk ̸= Y is returned as the adversarial example Xadv.

4 Experiments

4.1 Implementation

We have practically implemented the proposed adversarial attack using the
TextAttack library. TextAttack is a Python library framework introduced by
Morris et al. [16] that allows for the implementation of adversarial attacks
on trained models. To implement an adversarial attack with TextAttack,
one must write an attack recipe that describes the attack’s objective and
method. An attack recipe consists of a (search method) for finding tar-
get words for replacement, a (goal function) that serves as the attack’s
objective function, a (transformation) method for word replacement, and
(constraints) that the outcome of the replacement must satisfy. The attack
recipe for Algorithm 1 is as follows.

Attack(

(search_method): GreedyWordSwapWIR(delete)

(goal_function): UntargetedClassification

(transformation): CustomWordSwapEmbedding

(constraints):

(0): WordEmbeddingDistance(

(embedding): WordEmbedding

(min_cos_sim): 0.9

(cased): False

(include_unknown_words): True

(compare_against_original): True)

(1): RepeatModification

(2): StopwordModification

)
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Here, CustomWordSwapEmbedding is implemented to replace target
words according to the bigram encoding rules using four-digit hexadecimal
numbers from the encrypted traffic vocabulary (Algorithm 1 lines 8–23). The
implementation can be found in our Github repository.2

4.2 Experimental Settings

We constructed fine-tuned ET-BERT models for three tasks (EMC, ETCV,
and EAC-1.3) and conducted adversarial attacks on them. We could not
perform the same fine-tuning for the remaining two tasks (GEAC and EACT)
among the five tasks proposed in [12] because the datasets required for
fine-tuning these two downstream tasks were not disclosed in the authors’
Github repository. Attempts to compile datasets for these tasks with data
from other sources failed due to the pre-processing code released by the
authors not handling numerous errors effectively, thus constructing com-
pletely identical datasets was challenging. Therefore, we resorted to using the
pre-processed downstream datasets (USTC-TFC, ISCX-VPN-Service, ISCX-
VPN-App) provided by the authors to build the fine-tuned ET-BERT models
for our adversarial attack experiments.

For the experiments, adversarial examples were generated from 100
samples extracted from each downstream dataset, with the threshold ϵ for
WordSim set to 0.9. Moreover, the experiments were performed in an
environment featuring an Intel Xeon Gold 6230R CPU @ 2.10GHz and a
single NVIDIA GeForce RTX 3090 GPU.

4.3 Experimental Results

The results of the proposed adversarial attacks on the EMC, ETCV, and
EAC-1.3 tasks are shown in Tables 2 and 3. Table 2 presents the generated
adversarial examples (perturbed traffic data) and the corresponding classifi-
cation results. The generated adversarial examples cause the model’s output
to shift from the original labels to different ones. For instance, in the EAC-
1.3 Task, altering the first two words in the first traffic example changes the
classification from class 68, which was predicted with 100% probability, to
class 52 with a 49% probability. This indicates that although the attack model
could clearly determine the original data, it failed to classify the adversarial
examples with high certainty. In the case of ISCX-VPN-App in the ETCV

2The GitHub repository for our implementations of the proposed adversarial attacks is
available at https://github.com/BJSeok/AdversarialAttacksET-BERT.

https://github.com/BJSeok/AdversarialAttacksET-BERT
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Table 2 Examples of perturbed traffic data of three downstream tasks (EMC, ETCV, and
EAC)

Tasks Datasets Original data Label (prob.) Perturbed data Label (prob.)

EMC USTC-TFC

e240 4067 67c0 c032 32e9 e967 67bf
bfe4 e4f4 f480 8018 1821 21f0 f077
77a0 a000 0000 0001 0101 0108 080a
0a06 06c5 c561 61bc bcf5 f573 73aa
aada da01 0100 0059 597d 7d12 1266
667b 7b40 4053 5306 0647 4745 451e
1e65 654c 4c05 056a 6a50 5074 744a
4a7e 7e79 7901 0100 0000 0000 0000
0000 0000 0000 0000 0000 004a 4a9c
9cc1

17 (100%)

e240 405b 5bc0 c032 32e9 e967 67bf
bfe4 e4f4 f480 80d7 d721 21f0 f077
77a0 a01b 1b00 0001 0101 0108 0827
2706 06c5 c561 61bc bcf5 f573 73aa
aada da01 0100 0059 597d 7d12 1266
667b 7bec ec53 5306 0671 7145 451e
1e65 654c 4c05 056a 6a50 5074 7452
527e 7e79 7901 0100 0000 0000 0000
0000 0000 0000 0000 0000 004a 4a9c
9cc1

8 (93%)

ETCV

ISCX-VPN-Service

12d4 d400 0000 0001 0101 0108 080a
0a6e 6e29 29be bed0 d000 0015 1506
0632 3217 1703 0303 0300 002a 2a9f
9f0a 0a03 0392 921f 1fc4 c457 57a4
a414 14c4 c47e 7e9e 9eb1 b10e 0e59
59ae aeae aef4 f405 050f 0fed edc0
c019 1963 63cc ccec ec8d 8d1c 1cdc
dc23 2324 24b0 b022 220a 0a71 7103
030e 0e94 9407 0733 3399 9925

6 (100%)

12d4 d400 0000 0001 0101 0108 080a
0a1a 1a29 29be bed0 d000 0015 1506
0632 3217 1703 0303 0300 002a 2a9f
9f0a 0a03 0392 921f 1fc4 c457 57a4
a414 14c4 c47e 7e9e 9eb1 b10e 0e59
59ae aeae aef4 f405 050f 0fed edc0
c019 1963 63cc ccec ec8d 8d1c 1cdc
dc23 2324 24b0 b022 220a 0a71 7103
030e 0e94 9407 0733 3399 9925

8 (100%)

ISCX-VPN-App

1191 9155 5530 303e 3e31 316a 6a78
78d7 d798 9850 5010 1000 00ed edf4
f471 7100 0000 00cc cc24 245f 5f16
166b 6b52 525e 5e2c 2cd2 d2df dfdc
dc7d 7de7 e712 12bf bf02 020d 0d18
1834 3442 4202 02a9 a93d 3dd0 d070
70ff ff0e 0e18 1819 1934 34e0 e0b0
b0f4 f4cb cb1f 1fa5 a5de de3e 3e13
1366 6637 378b 8bb9 b928 28dd dd9e
9e81

11 (100%)

1191 9155 5530 303e 3e31 316a 6a78
78d7 d798 9850 5010 1014 14ed edf4
f471 7100 0000 00cc cc24 245f 5f16
166b 6b52 525e 5e2c 2cd2 d2df dfdc
dc7d 7de7 e712 12bf bf02 020d 0d18
1834 3442 4202 02a9 a93d 3dd0 d070
70ff ff0e 0e18 1819 1934 34e0 e0b0
b0f4 f4cb cb1f 1fa5 a5de de3e 3e13
1366 6637 378b 8bb9 b928 28dd dd9e
9e81

2 (96%)

EAC-1.3 CSTNET-TLS 1.3

e57a 7af9 f9d8 d828 2874 74fb fb4c
4ca4 a4af af80 8018 1801 01f5 f5f1
f112 1200 0000 0001 0101 0108 080a
0aad ad90 9064 6433 334d 4d8d 8d2b
2b08 0835 35eb eb46 462a 2a9b 9b2a
2a90 90a9 a97e 7e96 968d 8d4c 4c82
826a 6a6b 6b5a 5a88 888b 8b70 708a
8ad4 d4dd dd16 1697 97dc dc6c 6c88
8843 43a3 a3d1 d1f9 f929 29d6 d6ee
eeb7

68 (100%)

e501 01f9 f9d8 d828 2874 74fb fb4c
4ca4 a4af af80 8018 1801 01f5 f5f1
f112 1200 0000 0001 0101 0108 080a
0aad ad90 9064 6433 334d 4d8d 8d2b
2b08 0835 35eb eb46 462a 2a9b 9b2a
2a90 90a9 a97e 7e96 968d 8d4c 4c82
826a 6a6b 6b5a 5a88 888b 8b70 708a
8ad4 d4dd dd16 1697 97dc dc6c 6c88
8843 43a3 a3d1 d1f9 f929 29d6 d6ee
eeb7

52 (49%)

Table 3 Adversarial attack results on different tasks
Tasks Datasets Success rate Avg perturbed word % Avg # of queries
EMC USTC-TFC 96% 7.5% 767.32

ETCV
ISCX-VPN-Service 99% 8.14% 964.8

ISCX-VPN-App 100% 5.28% 535.49
EAC-1.3 CSTNET-TLS 1.3 97% 3.43% 317.1

Task, there were even adversarial examples that presented a 100% probability
for the changed class.

Table 3 provides a summary of the adversarial attacks on 100 samples
across four datasets corresponding to the three tasks. As can be seen, all three
tasks were susceptible to adversarial attacks with a success rate exceeding
96%, and notably, the adversarial attacks on the ISCX-VPN-App samples
achieved a 100% success rate. In terms of attack difficulty, the proportion of
words perturbed in the datagram sentence was mostly less than 9%, indicating
that attacks could lead to misclassification with only minor alterations to the
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original sentence, with the average number of queries being less than 965.
Specifically, for the CSTNET-TLS 1.3 dataset, a very slight word change of
3.43% was sufficient for misclassification, with the average number of queries
to generate adversarial examples being the lowest at 317.1.

5 Conclusion

In this paper, we performed adversarial attacks on encrypted traffic analysis
models based on large language models, and the target model is the ET-
BERT model, a state-of-the-art encrypted traffic model founded on the BERT
model. To carry out adversarial attacks on the fine-tuned ET-BERT model
that processes network traffic in text form, this paper defines fluency from the
perspective of network traffic. The fluency means having patterns similar to
actual network traffic while preserving network protocol rules and the data
processing form of the ET-BERT model. To generate adversarial examples
that preserve such network traffic fluency, we proposes an algorithm that
performs sentence manipulation according to the rules of Bigram encoding,
which is the data processing form handled by the fine-tuned ET-BERT model,
by finding replacement words within the encrypted traffic vocabulary of the
pre-trained ET-BERT model. The proposed algorithm is designed to preserve
both the data processing form and lexical capacity of ET-BERT, thus main-
taining grammar correctness and fluent lexical capacity from the perspective
of network traffic. The proposed attack was experimentally evaluated on the
fine-tuned ET-BERT models trained with datasets USTC-TFC, ISCX-VPN-
App, ISCX-VPN-Service, and CSTNET-TLS 1.3, and the results indicated
that it was possible to generate adversarial examples with a success rate of
over 96%. As demonstrated by the results of this paper, LLM-based ETA
models are vulnerable to adversarial attacks. This indicates a potential vul-
nerability to zero-day attacks, malicious data transmission, and other security
concerns from a network security perspective, necessitating immediate coun-
termeasures. In this regard, we plan to conduct future research on enhancing
the robustness of LLM-based ETA models through additional training against
adversarial examples or employing GAN-based training strategies.
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