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Abstract

As the number of IoT devices and the volume of data increase, distributed
computing systems have become the primary deployment solution for large-
scale Internet of Things (IoT) environments. Federated learning (FL) is a
collaborative machine learning framework that allows for model training
using data from all participants while protecting their privacy. However,
traditional FL suffers from low computational and communication efficiency
in large-scale hierarchical cloud-edge collaborative IoT systems. Addition-
ally, due to heterogeneity issues, not all IoT devices necessarily benefit
from the global model of traditional FL, but instead require the maintenance
of personalized levels in the global training process. Therefore we extend
FL into a horizontal peer-to-peer (P2P) structure and introduce our P2PFL
framework: efficient peer-to-peer federated learning for users (EPFLU).
EPFLU transitions the paradigms from vertical FL to a horizontal P2P
structure from the user perspective and incorporates personalized enhance-
ment techniques using private information. Through horizontal consensus
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information aggregation and private information supplementation, EPFLU
solves the weakness of traditional FL that dilutes the characteristics of indi-
vidual client data and leads to model deviation. This structural transformation
also significantly alleviates the original communication issues. Additionally,
EPFLU has a customized simulation evaluation framework, and uses the
EUA dataset containing real-world edge server distribution, making it more
suitable for real-world large-scale IoT. Within this framework, we design
two extreme data distribution scenarios and conduct detailed experiments
of EPFLU and selected baselines on the MNIST and CIFAR-10 datasets.
The results demonstrate that the robust and adaptive EPFLU framework can
consistently converge to optimal performance even under challenging data
distribution scenarios. Compared with the traditional FL and selected P2PFL
methods, EPFLU achieves communication time improvements of 39% and
16% respectively.

Keywords: Peer-to-peer federated learning, personalized federated learning,
hierarchical edge computing, edge-cloud environment.

1 Introduction

With the rapid advancement of Internet of Things (IoT) technology, an
increasing number of devices are being connected to the Internet, leading
to the generation of massive volumes of data. However, privacy concerns
and data transmission limitations have made centralized cloud processing
impractical. Federated learning (FL) [17], as a solution, allows participants
to collaboratively train a shared model without sharing data directly.

Although traditional FL has had a revolutionary impact on the IoT, it
encounters challenges in computational and communication efficiency within
hierarchical collaborative systems. Lian et al.’s case study highlighted the
central server as a bottleneck in distributed parallel systems with a large num-
ber of clients [14]. Therefore, in large-scale IoT scenarios involving a large
number of devices, when these devices generate and simultaneously upload
substantial amounts of data traffic, the quality of vertical links (essentially
the upload phase) often becomes the primary source of resource consump-
tion. Existing works attempt to reduce the communication overheads of FL
by distributing computation [18] or reducing aggregation frequencies [15].
However, these methods are still based on traditional vertical aggregation, and
thus the primary cost issues persist. Therefore, traditional FL is not suitable
for current large-scale IoT and hierarchical computing environments.
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Furthermore, the design of hierarchical collaboration systems not only
aims to optimize the system’s interaction and communication capabilities
but also considers enhancing model performance and serviceability from
the user perspective. Users are currently facing a diversity of tasks and
data characteristics, so they have an urgent need for personalized models,
requiring the system to train models according to personal needs to achieve
the best service experience. Although the FL approach excels in privacy
protection by aggregating all user data, it tends to promote a solution that
is universally effective for all participants.In this method it is difficult to
fully utilize the unique information of local data when dealing with highly
heterogeneous data and tasks, thereby leading to insufficient satisfaction of
personalized demands. The aggregated model may perform poorly for some
clients because the comprehensive model actually dilutes the characteristics
of individual models. This phenomenon is called the weakening effect [5].
Therefore, in order to avoid the weakening effect caused by heterogeneity,
it is necessary for the system to introduce personalization technology, retain
private information in the model, and enhance model usability from the user
perspective.

Given these issues, researchers have begun to explore solutions more
suited to the current environment. Peer-to-peer federated learning (P2PFL)
emerges as a potential solution, significantly mitigating the traditional FL
bottleneck of central server dependency and facilitating the direct sharing of
resources and services [2]. As P2PFL promotes direct interactions among
edge devices, this horizontal data exchange paradigm significantly alleviates
the inevitable communication issues of traditional vertical FL designs. With
the incorporation of personalization technologies, the P2PFL framework
enables each client not only to participate in the training of the global model
but also to adjust and optimize their model based on the characteristics
of their local data. This framework not only improves computational and
communication efficiency but also provides a flexible solution for the per-
sonalized needs of users in IoT environments. Because the P2PFL system is
based on direct information exchange between clients, it lacks comprehensive
oversight of global information. Consequently, it is challenging to address
special data distributions in local clients that can affect system training.
Developing personalized models that are both accurate and representative of
the local datasets is particularly difficult under these conditions.

As an extension of [25], this study proposes a framework, efficient
peer-to-peer federated learning for users (EPFLU), a P2PFL approach that
considers performance enhancement from the user perspective, to transition
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Figure 1 EPFLU: An efficient P2PFL framework from the user perspective.

the traditional vertical FL to a horizontal P2P structure. This approach,
by supplementing private information after aggregating consensus mod-
els among clients within horizontal networks, offers a more efficient and
personalized method for model training in large-scale IoT from the user
perspective, as shown in Figure 1. An aggregator responsible for model
aggregation on the cloud is maintained, providing foundational FL functions
for P2PFL deployment. EPFLU establishes P2P connections among edge
clients, forming aggregation paths based on a predefined topological strategy,
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thus executing the horizontal transmission and aggregation of consensus
models. Once the global consensus model updates the participating clients,
clients can use private information to enhance the personalization of their
models. We established a comprehensive evaluation simulation framework
and used the EUA dataset, which is based on real-world data sources for edge
server locations, to evaluate both the baselines and our proposed method. The
main contributions of this paper are as follows:

• We propose EPFLU, a robust personalized adaptive method based on
cloud-edge collaboration technology, which improves the personalized
model from the user perspective and is more efficient in training and
communication than traditional FL.

• We adopt a realistic heterogeneous data distribution compared to tradi-
tional data partitioning methods. Then we use the EUA dataset, which
is based on real-world data sources for edge server distribution. These
processes better simulate large-scale IoT scenarios in the real world,
thereby demonstrating the applicability of EPFLU to real environmental
conditions.

• We design a more complex and comprehensive simulation framework
for EPFLU, which considers the communication consumption over
actual distances in addition to model computation. The outstanding
performance of EPFLU is demonstrated through detailed experiments
from the user perspective.

The rest of the paper is organized as follows: Section 2 presents the
related work of this paper, Section 3 introduces the problems and design goal,
Section 4 describes the system design for the EPFLU-P2PFL framework,
Section 5 states the experimental environment, including data preparation
and experimental settings. Section 6 analyzes and discusses the experimental
results, and Section 7 concludes this paper’s work.

2 Related Work

2.1 Federated Learning and Hierarchical Distributed System

The concept of FL has been driving advancements in machine learning,
networking, and communication since its introduction in 2017 [17]. In recent
years, considerable progress has been made in various domains, including
speech processing [31], multimodal learning [6], and AI-driven IoT [1]. FL
has become popular in edge intelligence for its ability to enhance training
effectiveness and privacy among users and clients. FL optimizes resource
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and communication efficiency in cloud-edge systems, particularly in hier-
archical federated architectures. Mills et al. utilized model compression
techniques to further reduce communication resource usage in cloud-edge
systems [18]. Liu et al. studied the joint communication and computation
strategy for IoT devices in hierarchical edge computing systems using game
theory, aiming to enhance system interaction efficiency [16]. Liu et al. also
proposed a hierarchical FL architecture supported by collaborative training
algorithms [15]. However since these optimizations are still completed within
a hierarchical structure, communication issues remain unavoidable. EPFLU
significantly alleviates the overhead associated with vertical communication
by transitioning traditional structures to P2P transmission.

2.2 Personalized Federated Learning in Edge Computing

In the domain of intelligent IoT applications, personalized federated learning
has become a focal point of research. In this context, various techniques
have emerged, including federated transfer learning [4], federated multi-task
learning [24], and federated model distillation [13]. These techniques provide
abundant choices for implementing personalized federated learning in IoT
environments. Wu et al. introduced numerous technologies and provided a
detailed analysis of achieving personalized federated learning goals in IoT
cloud-edge environments [30]. Wang et al. addressed model heterogeneity by
introducing strategies involving common base layers and jointly personalized
layers to enhance model accuracy and speed up training [28]. Mills et al.
utilized trainable parameters in private layers to accelerate model conver-
gence and achieve satisfactory personalized results [19]. Li et al. achieved
edge device personalization by enabling clients to learn personalized models
instead of sharing models, as in classical federated learning [12].

2.3 Distributed P2PFL Architecture

In decentralized environments, traditional FL encounters limitations such as
constrained communication and the unavailability of a fully connected central
server, particularly in P2P networks. Chen et al. introduced a decentralized
global model training protocol [2] and subsequently addressed issues such
as high bandwidth, data privacy, and single point of failure by proposing the
first fine-grained global model training protocol for FL in P2P networks [3].
Sharma et al. presented a compromise solution for extreme FL privacy
infringement and maintaining system integrity and privacy in a completely
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decentralized topology [23]. Roy et al. proposed a concept that enables direct
interaction among participants in a highly dynamic P2P environment without
relying on traditional servers [22]. Most of the previous works focused on
critical issues such as privacy and fault tolerance in P2PFL systems. However,
model performance is significantly impacted when dealing with heteroge-
neous data. Similar to prior research, our EPFLU framework ensures stability
in the system’s transmission and training processes, enhancing convergence
efficiency and reducing communication costs. Additionally, EPFLU enhances
the personalization level of user models based on different users’ private data,
thereby utilizing local data more efficiently from the user perspective.

3 Problem and Design Goal

This paper primarily focuses on the challenges of communication and model
personalization within large-scale IoT in real-life scenarios. It emphasizes
the growing need to reduce system communication latency and costs as
the deployment of IoT devices and data accumulation continue to increase.
Simultaneously, the increase in the number of users has led to a growing
demand for personalized solutions. Under the premise of privacy protection,
we identify three core issues: (1) Vertical FL contradiction has efficient
data utilization but leads to inevitable communication delays and losses; (2)
horizontal P2P structure contradiction enables direct data and knowledge
exchange among devices to reduce system communication pressure but lacks
effective data utilization from all global participants; (3) personalization
deficiency allows the heterogeneous data to be held by participants, but is
insufficient to meet their needs for personalized solutions.

Based on these issues, we consider how to build an efficient and secure
aggregation system in large-scale IoT from the perspective of user benefits.
The traditional FL-based cloud-edge hierarchical structure distributes data
and model training tasks across edge devices and aggregates them in the
cloud. We aim to extend the original FL to a horizontal P2P structure to
reduce the communication cost of EPFLU, and further improve the personal-
ization level through model personalization technology. We consider these to
design EPFLU:

(1) Taking advantage of FL and P2P. When building EPFLU, it is nec-
essary to devise a flexible and effective aggregation method, ensuring
secure transmission and orderly aggregation of models and parameters
across different levels, effectively leveraging the advantages of FL and
P2P structure in both vertical and horizontal dimensions.
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(2) Personalized model enhancement. The personalization techniques
employed in EPFLU are designed to better meet users’ needs for per-
sonalized solutions. These techniques ensure that the model can fully
utilize data from all participants while providing personalized model
enhancements for users in heterogeneous data environments.

(3) Privacy protection. User privacy is crucial; the aggregation method in
EPFLU must ensure the privacy and security of user data. In particular,
in the P2P transmission process, both parties in a state of complete trust
will encounter challenges such as data integrity and privacy leakage
during data transmission.

4 System Design for EPFLU – A P2PFL Framework

This section primarily outlines the work we have undertaken to imple-
ment EPFLU. We based our approach on the traditional FL framework and
migrated it to a P2P structure. By separating private parameters and enhanc-
ing model personalization after aggregation, EPFLU achieves horizontal
personalized aggregation and improves communication efficiency.

4.1 Cloud-side and Aggregation Topology Generation Strategy

Based on the vertical FL system, we use the global topology to connect all
participating clients on the edge-side networks. EPFLU applies the model
aggregation and distribution process in a horizontal topological network,
connecting and computing models through predefined strategies, as shown in
Figure 2. The topological information, EPFLU’s strategies, sampling records,
and distance matrix are saved in the coordinator on the cloud. The operation
and execution process of the entire system are controlled by the cloud
coordinator. Since the P2P structure is decentralized, the coordinator is only
responsible for recording and global control according to policies we made
ahead of time, and does not have any computing or aggregating functions. All
calculations will be completed independently by the client model controlled
by the user.

In EPFLU, the system will start running from Algorithm 1, aiming to
build an adaptive and optimal aggregation path. As shown in the P2P section
of the cloud partition in Figure 2, all information recording and system con-
trol during the P2P process are managed by the cloud coordinator, in addition
to the system’s aggregation and personalization technologies. Specifically,
there are four parts: EPFLU will generate a distance matrix based on the
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Figure 2 Functional structure of the cloud-side in the EPFLU-P2PFL framework.

dataset collected from real-world data sources, perform sampling, and gen-
erate the aggregation topology according to the pre-define strategy, store the
results in the aggregation path to determine the subsequent aggregation order,
and simultaneously create a sampling record to document the clients sampled
for the current round.

To simulate client distribution, we generate a distribution matrix
generationMatrix based on the distance matrix for all clients to repre-
sent their relationships, serving as a reference for subsequent transmission
paths. A startingClient will be randomly selected from the center area
within the client distribution matrix as the starting node of this round of
aggregation (line 2). Then, it randomly samples a specified number of
clients as sampledClients for the current aggregation process (line 3).
This sampled number is within the pre-defined strategy. After selecting the
clients, EPFLU establishes connections between the sampled clients. The
connection principle, based on the generationMatrix, employs a traversal
strategy that combines depth-first and breadth-first approaches, prioritizing
connections with closer clients relative to the current client. Once all con-
nections are established and the topology is generated, it is stored as the
aggregationPath (line 4). It is worth noting that, after the aggregation
path is generated, EPFLU will optimize the generated topology. If a newly
sampled client appears in the direct connection between two sampled clients,
the direct connection between the two original clients will be canceled,
and it will be switched to a one-hop connection through the newly sam-
pled client serving as an intermediate bridging client (line 5). Then the
sampledClients and the optimized aggregationPath is returned (line 6).
In this way, EPFLU can ensure a comprehensive and adaptive strategy for
client selection and aggregation path.
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Algorithm 1: Random client sampling and topology generation strategy.

Input : totalClients, sampleSize, generationMatrix
Output: sampledClients, aggregationPath

1 Procedure Sample Clients and Generate the Aggregation Path
2 startingClient← selectStartingClient (generationMatrix)
3 sampledClients← sampleClient (totalClients, sampleSize)
4 aggregationPath← genTopo(startingClient, sampledClients,

generationMatrix)
5 aggregationPath← topoOpt(sampledClients, generationMatrix)
6 return sampledClients, aggregationPath
7 end

Figure 3 The edge-side structure of P2P transmission and aggregation with personalization
processes in the EPFLU-P2PFL framework. CM: consensus model, TCM: temporary aggre-
gated consensus model, and PM: personalized model.

4.2 Edge-side and Personalized Aggregation

Once the aggregation path is constructed, the next step is to implement
the model aggregation and personalized processes within the topology.
Regarding the part of model personalization enhancement, we have drawn
inspiration from the approaches of [19] and [20], utilizing the batch normal-
ization (BN) layer as private model parameters to store private information.
EPFLU maintains the level of personalization of the model as it is aggre-
gated by setting private statistics and using private trainable parameters
privateParameters. Due to the difference in aggregation methods from the
vertical FL, where clients upload in parallel and download after aggregation,
the aggregation of the global model in the horizontal P2P structure occurs
sequentially. Consequently, the integration method for the BN layer also
differs. In EPFLU, clients that complete their download in advance during
the aggregation and aggregated model deployment to global clients process
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are enabled to execute the personalization enhancement earlier, as shown in
the process of the sampled list in Figure 3. This is achieved by utilizing
privatized information stored within the privacy model parameters, thereby
the reducing waiting time from the perspective of users. We extend the
separation and supplementary of privacy model parameters into the horizontal
P2P propagation process and have devised a personalization strategy tailored
to EPFLU.

Algorithm 2: Model aggregation and personalized enhancement based on P2P
transmission.
Input : sampledClients, aggregationPath, userModel
Output: updatedUserModel

1 Procedure Local Training and Separate Private Info
2 for each client in sampledClients do
3 localTraining(userModel)
4 userModel’, privateParameters←

separatePrivateParams(userModel)
5 end
6 end
7 Procedure Aggregation and Transmission
8 for each client in aggregationPath do
9 consensusModel← Aggregate(userModel’, aggregationPath)

10 end
11 end
12 Procedure Distribute Consensus Model
13 for each client in sampledClients do
14 userModel← modelCoverage(consensusModel, aggregationPath)
15 end
16 end
17 Procedure User Model Enhancement
18 for each client in sampledClients do
19 updatedUserModel← enhance(userModel, privateParameters)
20 end
21 end
22 return updatedUserModel

Algorithm 2 presents a procedure for personalized model implementation
in EPFLU. The process in Figure 3 shows the detail of how the personal-
ized information is integrated into the P2P horizontal aggregation structure.
Starting with local training by sampledClients, the algorithm then sep-
arates privateParameters for local storage, preparing a local consensus
model Client CM for aggregation (lines 1–6). The sampledClients and
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the aggregationPath are used to aggregate and transfer the consensus
models (lines 7–11), generating a global consensus model Global CM that
includes only consensus information from sampledClients. The model
cumulatively aggregated on the transmission path is a temporary aggregated
consensus model TCM with partial client information. This Global CM is
then deployed back to the sampledClients (lines 12–16). Finally, each
client enhances this consensus model with its own private information stored
by privateParameters (lines 17–21), resulting in a personalized model
Client PM, and this enhanced Client PM will be used as the new local model
for the next round of local training (line 22). The costs of local training, model
transfer, and model aggregation processes are recorded and accumulated for
subsequent use in our simulation evaluation system (see Section 5.2).

5 Experimental Environment

5.1 Real-world EUA Dataset Processing

We utilized a set of EUA datasets derived from real-world data sources [10],
which includes the geographical locations of all cellular base stations in
Australia. In our study, we used the server distribution data from the dataset
and subsequently deployed the data and models at these server locations. We
briefly illustrate the server distribution of the EUA dataset and annotate the
aggregation methods of different algorithms in Figure 4.

To simulate a realistic edge computing distribution environment and con-
trol the sampling, we randomly selected a geographical range with a latitude
range of −33.5 to −33 and a longitude range of 140 to 150. Within this range,

Figure 4 Example of EUA dataset edge server distribution and algorithms.
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there are a total of 664 client nodes, slightly exceeding our target number
of sampled clients of 500. It is a reasonable sampling range that prevents
issues resulting from a region that is too large, which could cause excessive
distances between some clients, and from a region that is too small, which
could lead to redundant sampling. It is important to note that the EUA dataset
itself does not distinguish between cloud and edge servers. In traditional FL
methods, the cloud server’s role is to be the aggregator, aggregating sub-
models from clients. Therefore, we selected the server closest to the center of
this range as the aggregator, as shown on the left side of the cloud partition
in Figure 2. We assume this server does not participate in training but only in
the aggregation process, acting as the cloud server for selected FL algorithms.
For the sake of logical consistency, we will continue to use the terms cloud
server and edge clients in subsequent discussions.

Through the dataset processing, we obtained the distance matrix based
on real-world data sources for subsequent use, representing the actual dis-
tribution of cloud server and edge clients, as mentioned in Section 4. This
distance matrix provides reliable foundational data for the performance test
of EPFLU, enhancing the authenticity of our experiments.

5.2 Simulation Framework Suitable for an EPFLU-P2PFL System

To make EPFLU more realistic, we developed a communication model for
detailed simulation of real-world scenarios, enabling accurate assessment
of the communication overhead. Our simulation framework considers the
specific conditions of wireless communication environments [27] and factors
such as bandwidth, channel gain, transmitter power, and noise power present
in existing hierarchical FL systems [15]. Additionally, we paid particular
attention to the path loss of wireless signals in urban environments. Previous
research mainly focused on computational delay and cost without considering
the propagation and attenuation of wireless signals. In real-world scenarios,
this is critically important because the communication relationships between
the cloud and the edge, as well as between edge devices, are non-negligible.
Therefore, we adopt the Hata model suitable for urban areas [8] and the
free space path loss (FSPL) model [7] to estimate communication losses. In
EPFLU, a simplified urban environment path loss model is defined by the
following equation:

PLd = 20 · log10 f + 20 · log10(4π/c), (1)

PL = PLd + 10 · n · log10(d). (2)
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Here, PLd(dB) is the reference path loss at distance d(m), which is calcu-
lated based on the FSPL formula, f(Hz) denotes the frequency of the signal,
and c(m/s) typically refers to the speed of signal propagation in free space.
PL represents the general path loss, which is determined by the reference
path loss at d(m) and the path loss index n in different environments.

To align with real-world scenarios and adapt to different communication
environments, especially in cloud-edge communication scenarios, we intro-
duce a dynamic multiplier Dmulti to adjust the communication latency to the
cloud and edge in EPFLU. When it comes to interactions between servers,
we use the term Latency(s) which is a part of the overall communication
time that needs to be evaluated later. In our simulations, we choose to base
Dmulti on the average distance between edge nodes Davg to evaluate the
communication latency to the cloud:

Dmulti = Basemulti ·
(

Davg

Refdistance

)
, (3)

where Basemulti is the base value of the dynamic multiplier, adjusted
according to the communication situation between the cloud and edge under
different environments, and Refdistance is a reference distance used to
standardize the distance ratio.

Integrating path loss and the dynamic multiplier, the communication
latency Lcom(s) and energy consumption Ecom(J) can be calculated through
the following equations:

G = g0 × 10−
PL
10 + EL, (4)

Lcom = Dmulti ·
S

B · log2(1 + G·P
N )

, (5)

Ecom = P · Lcom. (6)

Here, G represents the adjusted channel gain, calculated by converting
the path loss PL from decibel units back to linear units using the reference
gain g0. To simulate the impact of distance on loss, EPFLU adds an extra
loss value extra loss (EL) and introduces a minimum gain value to prevent G
from being too small to be calculated. S(bits) represents the size of the model
being uploaded, B(Hz) represents the communication bandwidth, P(Watt) is
the transmitter power, and N(Watt) is the noise power.

In addition to the design for communication time and energy consump-
tion, EPFLU also accounts for the aspects of local computation time and
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energy consumption [15], enabling a comprehensive evaluation of EPFLU’s
overall performance and energy efficiency. The local computation time is
calculated using timelocal =

ccpu·Dlocal

fcpu
, where Dlocal(bits) represents the

amount of data processed in a single local iteration, ccpu(cycles/bit) denotes
the number of CPU cycles required to process data, and fcpu(GHz) is the
CPU cycle frequency. The calculation for local computation energy is given
by energylocal = α

2 · (ccpu · Dlocal · f2
cpu), with α indicating the effective

capacitance, which is the energy required per CPU cycle. In addition, since
the size of the models and parameters changes before and after aggregation,
we added a re-measurement of the updated parts on top of the original com-
munication transmission considerations in EPFLU. EPFLU recalculates the
size of the models and parameters after aggregation and uses the updated sizes
when the models return to the clients (both the complete model for FL and
the temporary model for P2PFL) to ensure the accuracy of our experiment.
Thus, by integrating both communication and local computation in terms of
time and energy consumption calculations, it can provide a comprehensive
evaluation framework for the performance and energy efficiency of IoT
devices when performing tasks.

5.3 Experimental Settings

The system environment of all simulations1 is Windows 11, Intel(R)
Core(TM) i7-9700K CPU @ 3.60GHz, 32.0GB of RAM, NVIDIA GeForce
RTX 2070. The deep learning environment configuration is PyTorch1.7.0-
cuda11.0.

5.3.1 Datasets and model settings
EPFLU can be applied to various tasks and scenarios, but to better control
variables, we use the most typical classification task in this experiment to
better align with the baselines we select. EPFLU employs two datasets,
namely MNIST [11] and CIFAR-10 [9]. Given that CIFAR-10 is more
suited to machine learning tasks, EPFLU will utilize it to evaluate model
performance and convergence. Performance evaluation involves comparing
the final personalized performance of the model once it has reached stable
convergence. For the performance evaluation, we select a simple CNN struc-
ture. Given that our simulation framework considers not only the time and

1For detailed model and parameter setting, data distribution operations, and complete
experimental records, please visit https://github.com/XiangchiSong/JWE EPFLU.

https://github.com/XiangchiSong/JWE_EPFLU
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energy consumption of local data computation but also the time and energy
consumption of the communication process, EPFLU uses models with sim-
pler structures to reduce the cost of the transmission process and to facilitate
this process. Since MNIST has a simpler structure and lower computational
requirements, it will be used to evaluate communication and computational
consumption. Here, the evaluation metric compares the communication and
computational consumption when reaching a preset test accuracy threshold.
For the evaluation of communication and computational consumption, we
utilize a classification structure comprising a fully connected (FC) layer,
a batch normalization (BN) layer which will keep the private parameters,
another FC layer, and a Softmax activation output.

Since most real-world scenarios are heterogeneous, the basic indepen-
dent and identically distributed (IID) and non-IID distributions are rarely
encountered. We consider the extreme data distribution scenarios that better
reflect the actual situation: imbalanced-non-IID and imbalanced-mixed-IID.
Initially, we sort the labels and assign them identical indices to ensure
the consistency of data classes between the training sets and test sets for
subsequent personalized accuracy testing. The data distribution in EPFLU
is based on the unbalanced setting because the amount of data owned by
users in real scenarios varies. This is achieved by dividing the dataset into
shards and then randomly selecting at least 1 shard and at most 2 shards
for each client. In EPFLU, non-IID conditions are achieved by splitting
the dataset and randomly allocating different classes to each client. Mixed-
IID conditions are established by setting a ratio of IID clients, which
have access to all data classes, and to non-IID clients, with a predefined
ratio of 1:1 in EPFLU. It is noteworthy that in the mixed-IID setting, the
number of shards selected for clients is not controlled for IID or non-IID
types, thus both IID and non-IID clients will have different amounts of
data.

5.3.2 Evaluation metrics
In our evaluation of EPFLU, we focus on two main aspects: task performance,
and computational and communication consumption.

Performance evaluations are centered on the user perspective, hence we
use private test sets available on user clients to ensure user-centric accuracy.
We ensure that each user u has its own private test set Testu with the
same data distribution as the training set. For each user u, test accuracy
is calculated using Testu after personalized enhancements. The final user
model Test Accuracy for each iteration is determined by averaging the test
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accuracies across all participating users (N ). The formula is as follows:

Accuracyu =
Number of correct predictions by the model in Testu

Total number of samples in Testu
, (7)

Test Accuracy =
1

N

N∑
u=1

Accuracyu. (8)

By establishing this metric, the aforementioned evaluation metrics can be
represented by the user model accuracy: the result of the performance evalu-
ation is the accuracy of the user model after personalized enhancement, and
the result of the computational and communication consumption evaluation is
the time and energy consumption of the system when the user model accuracy
in the task reaches the preset test accuracy threshold.

5.3.3 Baseline selection
EPFLU evaluates its approach against three baselines, including the basic
version of FL, the FL method with personalized processing, and a P2PFL
algorithm.

The first is vertical-FL (FedAvg), a classic FL architecture [17] that
facilitates model sharing among different clients through vertical aggregation,
without the direct exchange of data. The process of system operation can
refer to the partition part of FL in Figure 2. The model transmitted here is the
complete model of the client. We use this most basic method for subsequent
convergence and accuracy testing of EPFLU.

The second is vertical-adaptive federated optimization (FedAdam), which
combines the original Adam optimization [21] and MTFL(FedAdam) [19]
vertical model aggregation algorithms. FedAdam achieves personalization of
user models through adaptive parameters. The process of system operation
can refer to the partition part of FL in Figure 2. However only the local
consensus model is aggregated and distributed between the edge and cloud,
and all private parameters are retained locally. Since both algorithms use
personalized processing, the effect of the horizontal P2P structure is tested
by comparing with this approach.

The third is horizontal-privacy-preserving training (PPT), a P2PFL proto-
col [2] that transmits and updates local model parameters using a single-hop
P2P approach. We have omitted the original use of symmetric cryptographic
systems in PPT, which ensures secure communication between network
nodes, to maintain the accuracy of the comparative experiments. The P2P
partition of Figure 2 shows the structure of PPT. All clients conduct local
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training in each round, but only a subset of clients sampled by the coordinator
participate in the aggregation for this round (as the topology indicated by
the red lines in Figure 1). Subsequently, the model accumulated at the last
client on the route serves as the global model for the next round. Since
both algorithms are horizontal structures, EPFLU is compared with this to
reflect the effectiveness of retaining personalized parameters and performing
personalized enhancement.

6 Experiment Result, Analysis and Discussion

To mitigate the randomness of client sampling we conducted independent
repeated experiments. We performed random sampling and conducted five
times, taking the average of these results as the final outcome. Additionally,
by controlling the seed, we could ensure that the sampling behavior for
different algorithms within each sub-experiment was consistent, while client
sampling differed across sub-experiments. This process guarantees that all
variables, except for algorithm behavior, remain consistent in each exper-
iment, and that the sampling behavior is not repeated across independent
experiments.

6.1 Performance

We analyzed the performance of various models based on the CIFAR-10
dataset, divided into imbalanced-non-IID and imbalanced-mixed-IID data
distribution scenarios, as shown in Figure 5. After fine-tuning the hyper-
parameters under this setting, all four algorithms finished convergence and

(a) Imbalanced-Non-IID (b) Imbalanced-Mixed-IID

Figure 5 A performance comparison of models based on the CIFAR-10 dataset. The number
of clients is 500, the sampling rate is 0.3, and iterations are intercepted to the stable perfor-
mance position of 150 rounds.
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Table 1 Comparison of different Algs for personalized test accuracy (%)

Methods
Imbalanced-non-IID Imbalanced-mixed-IID

C = 0.3 C = 0.5 C = 0.7 C = 0.3 C = 0.5 C = 0.7

FedAvg 62.8 63.1 63.3 62.5 62.4 63.1
FedAdam 63.9 63.3 62.9 63.1 63.5 63.9
PPT 64.4 62.8 63.1 63.1 64.0 63.4
EPFLU 65.9 64.7 64.0 65.3 64.4 63.3

achieved an accuracy of over 60%. FedAvg performs aggregation after all
models are trained and uploaded, achieving the fastest initial convergence
speed. Along with PPT, both methods stabilize at around 20 iterations and
gradually reach their peak. In PPT, since there is no central server, aggre-
gation starts with training and there is no need to wait for all models to
be uploaded. Although only clients are sampled for aggregation, all clients
must participate during training, so the convergence speed is faster. FedAdam
introduces a personalized process based on FedAvg, and ultimately achieves
higher performance than FedAvg. However, since EPFLU adopts a P2PFL
approach based on personalized information supplementation, the conver-
gence speed is initially slower than that of centralized federated aggregation.
Under these two extreme data heterogeneity scenarios, EPFLU performs the
best. EPFLU is about 3% higher than traditional FedAvg in both scenarios,
and 3% higher than all baselines in Figure 5b. From the results, we found that
the personalization techniques used by FedAdam and EPFLU did not directly
accelerate model convergence. On the contrary, the negative effect was
that the separation and supplementation of personalized parameters slightly
slowed down the convergence speed. However, this ultimately benefited the
performance of the users’ personalized models.

We also tested the impact of different sampling rates (C = 0.3, 0.5, 0.7)
on personalized accuracy in large-scale distributed environments. As shown
in Table 1, EPFLU mostly achieved the best performance in both data
distribution scenarios. However, FedAdam slightly outperformed EPFLU
with a sampling rate of C = 0.7 in the imbalanced-mixed-IID scenario,
demonstrating FedAdam’s excellent performance in large-scale distributed
systems [19].

6.2 Communication and Computational Consumption

For the comparison of communication and computational consumption, we
selected the imbalanced-mixed-IID scenario, which is more challenging
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(a) Time Consumption (b) Energy Consumption

Figure 6 A comparison of communication and computational consumption based on the
MNIST dataset in the imbalanced-mixed-IID scenario. The units of communication and
computation are seconds and Joules respectively. The accuracy threshold to stop accumulation
is set to 95% and other settings are the same as before.

since it has more complex data heterogeneity than imbalanced-non-IID. We
consider the aggregation process complete from the time the initial model
preparation begins until the accuracy is above the threshold. These results in
Figure 6 are the cumulative communication and computational consumption.
In Figure 6a and Figure 6b, it is not surprising that the basic FedAvg has the
highest communication and computational consumption. FedAdam achieves
relatively satisfactory results, saving 32% compared to the traditional FL.
Furthermore, FedAdam even exhibits lower consumption than PPT. The
reason is that although PPT has lower communication costs between edge
clients, FedAdam’s superior learning performance results in faster conver-
gence, achieving the required accuracy in fewer iterations. This indicates that
the benefits of reducing the number of iterations outweigh the communication
savings brought by the different aggregation algorithms. However, EPFLU
demonstrates its superiority by applying the personalization process to the
horizontal P2P structure. EPFLU mitigates model degradation caused by data
heterogeneity through the transfer of consensus models by P2P topology
implemented among edge clients, ultimately achieving rapid convergence and
efficient communication. This leads to substantial savings in communication
resources and time. From the results in Figure 6a compared to the selected
P2PFL method (PPT), EPFLU reduces the communication time to reach
model personalization convergence by 16%. Furthermore, compared to the
traditional FL method (FedAvg) and advanced FL method (FedAdam), the
horizontal P2P transmission strategy provides EPFLU with a communication
time improvement of 39% and 11%, respectively.
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6.3 Limitation Discussion

The main limitation of this work is the performance fluctuations caused by
data heterogeneity. Due to EPFLU’s use of random sampling and sequential
horizontal aggregation, it is difficult to predict the data distribution of the
next client. Therefore, when aggregating with clients with abnormal data
distribution, the convergence process may pause and even have a negative
impact on the final model. Since personalized accuracy evaluation occurs on
the user client, when the model is aggregated with updates from the next
client with extreme data distribution, the presence of this kind of client that
is unknown to the previous clients will significantly increase the training
and testing losses of the user personalized model, leading to stagnation
or even degradation in the convergence process. A potential solution is to
improve sampling behavior, such as adjusting the client selection strategy
based on learned client correlations [26] or dynamically altering the selection
probability of specific clients according to the aggregation progress [29],
to address the convergence problem in heterogeneous scenarios. Given our
limited knowledge of the characteristics of local data stored on edge devices
in real-world scenarios, it is a challenging task to design a dynamic adjust-
ment strategy that maximizes the use of client data without compromising
privacy, while balancing various influencing factors, and making it suitable
for real-world applications.

7 Conclusion

This paper introduces EPFLU, a P2PFL framework, as a robust solution to
enhance communication and computational efficiency in large-scale hierar-
chical IoT systems within edge-cloud environments. By transitioning from
traditional vertical FL to the horizontal P2P structure, EPFLU not only avoids
the communication bottlenecks of traditional FL but also incorporates person-
alized enhancement processes supplemented by private information, designed
to meet the model needs of clients from the user perspective. We conducted
extensive evaluations on the MNIST and CIFAR-10 datasets using the EUA
dataset, which is based on real-world edge server locations. The results
indicate that EPFLU achieves personalized model accuracy that mostly out-
performed the baselines, while significantly excelling in communication and
computational consumption, especially under challenging data distribution
scenarios. We also found that the communication process is the bottleneck
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of large-scale IoT systems, and EPFLU also has limitations in this regard.
In the future, we will focus on adapting the network topology according to
changes in network conditions, ensuring P2P interactions between clients
with minimal communication consumption, and considering improving the
client sampling problem mentioned above.
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[11] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner.
Gradient-based learning applied to document recognition. Proceedings
of the IEEE, 86(11):2278–2324, 1998.

[12] Ang Li, Jingwei Sun, Binghui Wang, Lin Duan, Sicheng Li, Yiran Chen,
and Hai Li. Lotteryfl: Empower edge intelligence with personalized
and communication-efficient federated learning. In 2021 IEEE/ACM
Symposium on Edge Computing (SEC), pages 68–79. IEEE, 2021.

[13] Daliang Li and Junpu Wang. Fedmd: Heterogenous federated learning
via model distillation. arXiv preprint arXiv:1910.03581, 2019.

[14] Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, and
Ji Liu. Can decentralized algorithms outperform centralized algorithms?
a case study for decentralized parallel stochastic gradient descent.
Advances in neural information processing systems, 30, 2017.

[15] Lumin Liu, Jun Zhang, SH Song, and Khaled B Letaief. Client-
edge-cloud hierarchical federated learning. In ICC 2020-2020 IEEE
international conference on communications (ICC), pages 1–6. IEEE,
2020.

[16] Tianyi Liu, Ruyu Luo, Fangmin Xu, Chaoqiong Fan, and Chenglin
Zhao. Distributed learning based joint communication and computation
strategy of iot devices in smart cities. Sensors, 20(4):973, 2020.

[17] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. Communication-efficient learning of deep net-
works from decentralized data. In Artificial intelligence and statistics,
pages 1273–1282. PMLR, 2017.



1080 Xiangchi Song et al.

[18] Jed Mills, Jia Hu, and Geyong Min. Communication-efficient federated
learning for wireless edge intelligence in iot. IEEE Internet of Things
Journal, 7(7):5986–5994, 2019.

[19] Jed Mills, Jia Hu, and Geyong Min. Multi-task federated learning for
personalised deep neural networks in edge computing. IEEE Transac-
tions on Parallel and Distributed Systems, 33(3):630–641, 2021.

[20] Pramod Kaushik Mudrakarta, Mark Sandler, Andrey Zhmoginov, and
Andrew Howard. K for the price of 1: Parameter-efficient multi-task and
transfer learning. arXiv preprint arXiv:1810.10703, 2018.

[21] SashankJ. Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett,
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