
Malware Analysis Through Random
Forest Approach

Ajay Kumar1,∗, Kumar Abhishek1, Shishir Kumar Shandilya2

and Muhammad Rukunuddin Ghalib3

1Department of Computer Science & Engineering, NIT Patna, Bihar, India
2Division Head, Cyber Security and Digital Forensics, Vellore Institute of
Technology, VIT Bhopal University, India
3School of Computer Science and Engineering, Vellore Institute of Technology
(VIT), Vellore, India
E-mail: ajayk.phd18.cs@nitp.ac.in; kumar.abhishek@nitp.ac.in;
shishir.sam@gmail.com; ruk.ghalib@gmail.com
∗Corresponding Author

Received 30 April 2020; Accepted 11 August 2020;
Publication 06 December 2020

Abstract

This paper gives precise and comprehensive detail along with a proposed
system for malware detection using ML and Deep Learning techniques
by integrating both behavior-based detection methods and signature-based
methods. The primary purpose of this paper is (A) Outline difficulty identified
with malware detection. (B) Represent detail and categorized ML technique
for malware detection. (C) Investigating the structure of basic strategies in
malware discovery. (D) Inspecting the essential deep learning approach for
malware detection using a grouping of malware inside the data mining. The
point of interest and downside of various malware detection approaches were
analyzed based on evaluation strategy and their capability. The proposed
model uses random forest for making an end-to-end pipeline for malware
detection. During comparative study with five other state of the art models,
the proposed model obtained accuracy of 99.7% on the dataset. The experi-
mental results show the proposed model outperformed other five state of the

Journal of Web Engineering, Vol. 19 5–6, 795–818.
doi: 10.13052/jwe1540-9589.195610
© 2020 River Publishers

796 A. Kumar et al.

art techniques. This research paper encourages the researcher to think about
the best approach for malware detection.

Keywords: Machine intelligence, deep learning, signature-centric discov-
ery, behavioral-based detection.

1 Introduction

The term malware is a program which developed in order to introduce
malicious harm in the system, Network, or information for personal beneath
[1, 2]. Malware is divided into subgroups depending on their behavior,
which include Worms, Spyware, Botnet, Trojans, Rootkits, Backdoor, and
Virus. Terminology malware detection indicates the method for determin-
ing whether the current program supposed P is malicious or not based on
prior knowledge called Knowledge Store-something that previously known.
Malware examination is arranged into two sub-classes, to be specific Static
analysis(Testing sample is analyzed without its execution concerning with
signature of a program) and Dynamic analysis(Test sample is analyzed by
its execution concerning with behavior of program). Currently, a Machine
learning-based classification approach, used for identifying malicious pro-
grams from being one [3, 4]. There several ML algorithms that perform best
over others based on no of future included and type of data. Malware can be
accessible for rent in the market and are used by cybercriminals to begin
massive attacks like a phishing attack, click fraud, and DoS. Contrasting
and other existing malware, Polymorphic or changeable malware are more
hazardous because, more often than not, it found undetected [5, 6]. Numer-
ous Organization including McAfee, Kaspersky Lab, Microsoft, DELL, and
Social site portal, in particular, Facebook, Twitter, Wikileaks, and numerous
other government companies and organizations of created nations to be spe-
cific FBI, Europol and the UK’s National Wrongdoing Office (NCA) are as
yet proceeding with their fight against the malware worldwide using controls
measure, laws, and other numerous measures.

1.1 Problem Statement

No perfect anti-malware framework is available in the market for advanced
malware discovery. Using ML and Deep Learning classification algorithm on
the malware dataset, we will successfully detect the malware attack. For best
classification accuracy with the help of Windows PE format, we are going

Malware Analysis Through Machine Learning 797

Table 1 Advantage and Disadvantage of Behavior-based malware identification
Advantage Disadvantage
Zero-Day attack detected Complex Execution

Polymorphic attack undetected Execution time rises

Metamorphic attack detected Storage complexity

Detecting new kind of attacks –

Easily detect data-flow dependency –

to choose the most representative subset of the features toward the accurate
classification of the malware Indirectly, supervising users about potential
Malware attack.

1.2 Detection Approaches

Malware identification proof methodologies are isolated into two key classes
that incorporate behavior-based and signature-based procedures.

1.2.1 Behavior-based detection
The primary benefit provides a better understanding of wherewith malware is
made and executed. Malware sample is executed in a sandbox environment
called Dynamic analysis, where both imitating conditions and virtualization
needed, and runtime activity is monitored and recorded.

1.2.2 Signature-centric discovery
One primary benefit comes from their attention to detail since they go behind
all possible execution behavior of a specific archive by checking the sign. The
anti-malware supplier used the evolutionary algorithm surveillance to search
malicious things using the signature. This Malicious thing included in the
existing database (Which contains a vast number of numerous signature)once
they identified by the anti-malware software.

2 Related Works

In the given section, the existing Malware detection is analyzed by utilizing
different assessment factors such as the Classification technique used, Accu-
racy, False positive(FP), Total Dataset used, Data analysis method preferred,
Dataset sources, Site [7].

798 A. Kumar et al.

Table 2 Advantage and Disadvantage of signature-based malware identification
Advantage Disadvantage
Simple Execution Metamorphic attack Undetected

Less Complexity Polymorphic attack undetected

Less Execution Time Zero-day attack undetected

Fast Detection Repeated Huge info in dataset

Detail malware info Collection –

2.1 Analysis of Behavior-based detection

Table 1 shows essential view for each logical research in behavior-based
methodologies. The essential benefit is distinguishing all of the suspicious
activity according to the Programming interface(API calls) considers that
raises the precision of malware detection. The main drawback is its run-
time operating cost. Target Environment includes embedded frameworks,
Windows-based, then smartphones. Majority investigation studies have uti-
lized the Smartphone environment for representing novel malware detection
approach using behavior methodologies. A logical comparison includes clas-
sification or clustering method, data analysis technique, in addition to the
kind of data set with features used and its accuracy.

2.2 Analysis of Signature-based Detection

Table 2 shows an essential view for each logical research in signature-based
methodologies. The essential benefit is it utilizing signature discovery that
declines the system operating cost and execution time for malware detection.
Target Environment includes embedded frameworks, Windows-dependent
then smartphones. Majority investigation studies have utilized the Windows-
based environment for speaking to novel Malware discovery strategy using
signature methodologies. A logical comparison includes classification or
clustering method, data analysis technique, in addition to the kind of data
set with features used and its accuracy.

2.3 Discussion

Behavior-based detection on Window Platform: Table 3 Presents factual
diagram for behavior-based malware detection strategies. The analysis sug-
gested a different detection approach using ML, such as RandomForest(RF),

Malware Analysis Through Machine Learning 799

Table 3 Malware detection algorithm comparison – for window system
Top Accuracy Analysis

Paper Algorithm with Model Features Method
NB [12] RIPPER,Naive-Bayes and Multi

Naive-Bayes classifiers
0.9969 4 Static

LCB [1] Leveraging Compression-based
Graph Mining

0.993 2 Dynamic

NBJ48 [13] Naive Bayses, BaysNet,
IB1,J48,and regression
algorithms for classification

0.993 2 Dynamic

DPI [14] Deep Packet Inspection (OPI)
and IPpacket headers
classification, NLP,
Signalpipeline, J48, Naivebase

0.98 11 Dynamic

SS [15] Sub-SCDG 0.973 3 Dynamic

DTRF [?] Decision tree,Random
Forests,and Support Vector
Machine

0.9719 4 Dynamic

SIA [16] Security importance assessment
for system objects using “No
read down” and “nowrite”

0.9392 3 Dynamic

OOA [17] OOA+CBAA 0.913 455 Hybrid

OC-SVM [18] OC-SVM,Naive Bayses, Logistic
regression, SMO,SVM, Decision
tree,Voted perceptrons

0.835 6 Dynamic

ANN, SVM, J48 decision tree, Naive Bayes(NB) [3, 4, 7, 8]. The top
3 model includes NaiveBayes(NB), Leveraging Compression-based Graph
Mining(LCB) and J48 has the best accuracy 0.9969, 0.993 and 0.983 for
corresponding features 4, 12 and 22 with false-positive rates 0.074, 0.005
etc. The current investigation shows that the highest number of the dataset
used 15000, 7507 with malicious sample 15000(M), 6994(M), and 7158(M)
and clean sample 251(C), 513(C) [9]. The majority detection strategies have
utilized dynamical analysis with 0.778 percent, the hybrid analysis utilized
with 77.8 percent, and the remaining static analysis utilized with 11.11
percent usage [10, 11]. The graph represents the comparison between the
existing model.

800 A. Kumar et al.

Table 4 Malware detection algorithm comparison – for window system
Top Accuracy Analysis

Algorithm with Model Features Method
Leveraging Compression-based Graph Mining [1] 0.993 12 Dynamic

J48(Decision trees),Naive Bayes,SVM,IB,
Collaborative,MCDF [7]

0.989 20

BAYESNET,NAIVE
BAYES,SMO,J48,RANDOM TREE [30]

0.978 6 Static

KNN [31] 0.9766 300 Static

Deep-learning-based Android malware detection
engine [15]

0.9676 192 Hybrid

Naive Bayes,BaysNet, IB1, J48, SVM,
Regression [32]

0.960715 11 Dynamic

SVM Poly Kernel, SVM linear Kernel,k-nearest
neighbour [12]

0.956 65 Dynamic

DBN Deep Learning Model [33] 0.9505 – Hybrid

SVM,Decision Tree [34] 0.85 73 Hybrid

SafeDriod v2.0 [35, 36] 0.7713 – Dynamic

Table 5 Malware detection algorithm comparison – for embedded system
Algorithm Top Accuracy with Model Features Analysis Method
DeepAm learning [37, 38] 0.993 12 Dynamic

2.3.1 Behavior-based detection on Android Platform
Table 4 Presents a factual diagram for all signature and behavior-based
malware detection strategies. The analysis suggested a different detection
approach using ML, such as RandomForest(RF), ANN, SVM, J48 decision
tree, Naive Bayes(NB) [3, 7, 19, 20]. The top 3 model includes Leveraging
Compression-based Graph Mining, SVM, and RANDOM TREE has the
best accuracy 0.993, 0.989, and 0.978 for corresponding features 12, 20,
and 6 with false-positive rates 0.005, 0.988 and 39 [16, 21, 22]. The current
investigation shows that that highest number of the dataset used 7507, A
summation of 135 permits and 210 API requests and 734 with malicious
sample 6994(M),1073 and 231(M) and clean sample 513(C), 904 AND
504(C) [17,23,24]. The majority detection strategies have utilized dynamical
analysis with 40 percent, the hybrid analysis utilized with 30 percent and the
remaining static analysis utilized with 30 percent usage [25–29].

Malware Analysis Through Machine Learning 801

2.3.2 Behavior-based detection on Embedded Platform
The analysis suggested a different detection approach using ML, such as
RandomForest(RF), ANN, SVM, J48 decision tree, Naive Bayes(NB) [39].
The top model includes ’DeepAm learning, and AutoEncoder stacked up
amidst multilayer restricted Boltzmann’ has the best accuracy 0.978 for
corresponding features 5 with false-positive rates 0.05 [40–42]. The current
investigation shows that the highest number of the dataset used 20,000 with
malicious sample 4500(M) and clean sample 4500(C).

2.3.3 Signature-based detection on window Platform
Table 5 Presents factual diagram for behavior-based malware detection strate-
gies. The analysis suggested a different detection approach using ML, such
as RandomForest(RF), ANN, SVM, J48 decision tree, Naive Bayes(NB)
[22, 43, 44]. The top 3 model includes Topological feature extraction-
Belief Propagation (BP), MLP, and Density-based K-means has the best
accuracy 0.9999, 0.986 and 0.9836 for corresponding features 20, 40 with
false-positive rates 0.0001, 0.02. The current investigation shows that the
highest number of the dataset used 28760,52,185 and with malicious sample
10760(M), 41265(M), and clean sample 16,800 (C), 10920(unknown sam-
ple). The majority detection strategies have utilized dynamical analysis with
57.14 percent, the hybrid analysis utilized with 42.86 percent.

2.3.4 Signature-based detection on Android Platform
Table 6 Presents factual diagram for all signature-based malware detec-
tion strategies. The analysis suggested a different detection approach using

Table 6 Malware detection algorithm comparison – for windows system
Top Accuracy Analysis

Algorithm with Model Features Method
Topological feature extraction-Belief Propagation
(BP) [14, 24]

0.9999 20 Dynamic

MLP, SVM, NaiVe [38] 0.986 – Hybrid

ANN, Density based K-means [36] 0.9836 40 Hybrid

Naive Bayes and support vector machines [27] 0.968 – Dynamic

ANN, KNN, NaiveBayes, SVM, J-48 [29] 0.9525 4 Hybrid

Bayesian, J-48 [39] 0.95 3 Dynamic

N-grams and improved version of SVM [23] 0.9300 8 Dynamic

802 A. Kumar et al.

Table 7 Malware detection algorithm comparison – for android system
Top Accuracy Analysis

Algorithm with Model Features Method
SVM, Decision Tree [34] 0.85 73 Hybrid

SVM [33] 0.987 19 Hybrid

MKLDroid [] 0.98 5000 Static

NaiveBayes, Decision Trees [28] 0.973 8 Hybrid

MocDroid, Classifier generic Algorithm [31] 0.9515 140 Static

Droid classifier using SVM [40] 0.9433 – Dynamic

DroidNative, CF GO-IL [37] 0.94 194 Dynamic

NaiveBayes, Decision Tree [28] 0.9357 8 Hybrid

KNN [32] 0.9590+-0.015 1000 Hybrid

Table 8 Malware detection algorithm comparison – for embedded system
Top Accuracy Analysis

Algorithm with Model Features Method
KNN, SVM, and Adaboost [41] 0.8470 12 Dynamic

ML, such as RandomForest(RF), ANN, SVM, J48 decision tree, Naive
Bayes(NB). The top 3 model includes Decision Tree, SVM, and MKL-
Droid has the best accuracy for corresponding features 73, 19, and 5000
with false-positive rates 0.0645, 0.17. The current investigation shows that
the highest number of the dataset used 401, 62561 with malicious sample
197(M), 29877+17684(M), and clean sample 204(C),15000(C). The majority
detection strategies have utilized dynamical analysis with 11.11 percent, the
hybrid analysis utilized with 33.33 percent, and the remaining static analysis
utilized with 55.56 percent usage.

2.3.5 Signature-based detection on Embedded Platfrom
The analysis suggested a different detection approach using ML, such as
RandomForest(RF), ANN, SVM, J48 decision tree, Naive Bayes(NB). The
top model includes AdaBoost has the best accuracy 0.8470 for corresponding
features 12 (see Table 7).

3 Proposed System

Table 8 Represents for Malware Analysis using Behavior Approach.

Malware Analysis Through Machine Learning 8031.3 Proposed system

Figure 1.1: Flow Diagram

Figure 1.2: Architecture Diagram

1.3.1.1 Data Collection

Collect and combine data into a single stream from various individual infor-
mation generators. The collector could be a system screen on the edge of a
vast system or the ISP. Contingent upon the extent of the system screen, the
data collection might be various leveled and be comprised of various levels of
the collector at the various edge point. Data collection acts as the first level

Figure 1 Flow diagram.

1.3 Proposed system

Figure 1.1: Flow Diagram

Figure 1.2: Architecture Diagram

1.3.1.1 Data Collection

Collect and combine data into a single stream from various individual infor-
mation generators. The collector could be a system screen on the edge of a
vast system or the ISP. Contingent upon the extent of the system screen, the
data collection might be various leveled and be comprised of various levels of
the collector at the various edge point. Data collection acts as the first level

Figure 2 Architecture diagram.

3.1 Architecture

The data generation is all about objects or things that deliver the information
assessed by the detection framework. E.g., there is a system in a network
that generates traffic, which either produces both clean and malicious data
[45–47]. This data generation performs through Cuckoo Sandbox or Honey-
pot, which executing malware in a controlled manner to extricate its behavior

804 A. Kumar et al.

pattern. In a considerable network, there could be tens or many thousands of
information generators.

3.1.1 Data Collection
Collect and combine data into a single stream from various individual infor-
mation generators. The collector could be a system screen on the edge of a
vast system or the ISP. Contingent upon the extent of the system screen, the
data collection might be various leveled and be comprised of various levels
of the collector at the various edge point. Data collection acts as the first level
of filtering information that screens around Cuckoo Sandbox or Honeypot for
e.g., DNS.

3.1.2 Preprocessing
The undesirable information will be anything not required for identification
and will commonly packet payload is removed before going to feature
extraction level [8].

3.1.3 Features Selection
Remove features from data and process it as per ML Algorithm need. Features
selected carefully so that to improve the efficiency and performance of the
model.

3.1.4 Eliminate unwanted data
Lessen the size of data to a certain extent as well as expel conceivable false
positives (FPs) [48]. Most Widely recognized tools such as Whitelists for
evacuating known generous data focus and blacklist for evacuating known
malicious focuses or signature-based channel to expel known and simple to
identify malware.

3.1.5 Detection module
It can act as an anomaly detector that can detect suspicious behavior. In
border case, it will be the ML algorithm mainly supervised or unsupervised
algorithm. In a supervised ML algorithm used basically for labeling sample
or assign it to a specific category basically either clean or malicious. In an
unsupervised ML algorithm, clustering utilized to segregate data. To achieve
higher accuracy and performance, multiple ML modules can be used in
combination. For the classifier, the model should be trained using both clean
and malicious samples. For the clustering algorithm, a new point or data is
incorporated effectively in existing clustered information.

Malware Analysis Through Machine Learning 805

3.1.6 Knowledge Store
They were generally used by a supervised ML algorithm to classify new data
based on existing information. In the anomaly ML identification algorithm,
Past behavior would be a knowledge store that utilized for new data clas-
sification purposes. In the clustering ML identification algorithm, existing
knowledge used for classifying the clean and malicious sample.

3.1.7 Result
Output includes a comparison between various ML models using accuracy,
FP, TP, and performance factor. Top accuracy considers with features for the
corresponding ML algorithm.

4 PE File Structure

PE File format design for executables, Obj.code, DLLs, FON Font records
utilized in 32/64-bit Windows OS (see Figure 3). PE record describes how
the loader outlines the information in memory when preparing the start load.
The data structure of Windows includes DDL deferences, API import and
export table, TLS data, resources dealing data, executables, and powerfully
connected libraries, which is important for window OS loader to deal with

1.4 PE file structure

Past behavior would be a knowledge store that utilized for new data clas-
sification purposes. In the clustering ML identification algorithm, existing
knowledge used for classifying the clean and malicious sample.

1.3.1.7 Result

Output includes a comparison between various ML models using accuracy,
FP, TP, and performance factor. Top accuracy considers with features for the
corresponding ML algorithm.

1.4 PE file structure

Figure 1.3: PEFile Structure

PE File format design for executables, Obj.code, DLLs, FON Font records
utilized in 32/64-bit Windows OS (see Figure 1.3). PE record describes how
the loader outlines the information in memory when preparing the start load.
The data structure of Windows includes DDL deferences, API import and
export table, TLS data, resources dealing data, executables, and powerfully
connected libraries, which is important for window OS loader to deal with
executable code. Executable record characterizes the structure of Windows

Figure 3 PEFile structure.

806 A. Kumar et al.

executable code. Executable record characterizes the structure of Windows
executables and powerfully connected libraries (DLLs). It characterizes how
the loader should map the information in memory when a handle is being
stacked. The PE record arrange composed of a definite stream of information.
It starts first from a MS-DOS-header, a genuine mode program-stub, and
a PE-sign. PE file structure continues with a file and an optional header.
After that section header continued with section body. Finishing off the
PE structure with are a couple of different areas of random data, includ-
ing migration data, image table data, line number data, and string table
information.

5 Experimental Setup

In this area, we portray the dataset utilized during investigations, features
selection, and extraction. At that point, we present an assessment of the pro-
posed model, which gives bits of knowledge picked up from the analyses. At
last, we contrast our work, and an ongoing malware detection methodology
talked about in related work. Implementation is available at.1

5.1 PC and Software Requirement

To validate the proposed idea, an experimental environment is expected
with Ubuntu 16.04.5 LTS os running an Intel(R) Core i5 @ 3.2 GigaHertz
processor having four GigaBytes of primary memory, 500 GB of secondary
memory with window professional, Adobe Reader PDF version 11.1.0 for
running Cuckoo Sandbox and python. As dynamic analysis performed on
Cuckoo Sandbox using an Ubuntu system with Windows OS as the base
system. For sandbox need Intel(R) Core i5 @ 3.2 GHz processor with R for
selection of feature and python 2.7 for feature extraction.

5.2 Dataset Information

We gathered 2683 malware sample that covers all the standard malware
classifications and 2501 benign programs for experiments. The malicious
sample collected from VXHeaven, whereas the benign sample gathered from
multiple origins, that includes a clean Windows OS, download.com3, and
onlinedown.net.4. Table Shows dataset used in the Proposed System.

1https://github.com/ajaykumar121182/malware

Malware Analysis Through Machine Learning 807

5.3 Selected PE File Features

Since feature set is too large and some bigger features challenging to oper-
ate on an algorithm [49], feature selection aims to eliminate non-essential
features from features set without affecting the accuracy rate. We extracted
65 features and presented them in a combined matrix. We understood that
the size of the dataset is immense and take around two and a half hour
for the load it. Therefore it is essential to remove non-essential features.
The following are feature selection methodology. Wrapping methodology:-
Wrapping methodology chooses different combinations of features and check
again model. The combination which gives a higher accuracy rate is kept
in a dataset. Filtering methodology:- Filter methodology runs the features
utilizing statistics. Feature with the lower run is eliminated, While features
with high run kept in a dataset. Embedded methodology:- Embedded method-
ology asses the top feature used when the model is applied. After running the
algorithm, we selected Top 20 features are given in Table 9:

Algorithm 1 Feature Selection algorithm for proposed system
1: procedure START(F,Tf) . The F is set of random group of Features and tf is set of top

selected features
2: Tf= ψ and F6= ψ
3: For each fi in F and tfi in Tf
4: Repeat
5: Train−RandomForestfi
6: Weight←MDA(fi) . Apply feature important measure using

MDA−meandecreasesaccuracy
7: if(InitialWeight > Weight) then
8: Remove(fi)
9: Else
10: tfi← fi
11: End if
12: Until all features Fi in F either selected or removed after particular iteration of Random

Forest
13: End For
14: return tf
15: EndProcedure

5.4 Performance Criteria

The following are the essential measurement for malware detection.

• TP:- The TP rate estimates the level of malware tests that are marked
accurately as malware.

808 A. Kumar et al.

Table 9 Data set structure
PEfile Structure Random Forest Gradient Boosting
IMAGE DOS HEADER IMAGE DOS HEADER

e-csum, e data, e oemid
E ifanew,e ip

E ifanew,e ip

FILE HEADER Filesize,fileinfo, fk char12 Filesize,fileinfo,fH char2

OPTIONAL HEADER MajorlinkerVersion,
MinoprlinkerVersion,
AddressofEntryPoint

AddressOfEntryPoint,
sussections,
packer typeNETExecuta

• FP:- The FP rate measures the number of authenticating sample that is
erroneously marked as malware.

• FN:- The FN rate measures the number of malware tests erroneously
marked as clean

• TN:- The TN rate measures the number of clean samples that are
accurately marked as clean.

• Sensitivity:- The Sensitivity estimates fraction of authenticating mal-
ware sample that is marked accurately as malware.

Sensitivity = TP/(TP + FN) (1)

• Specificity:- The Specificity estimates the fraction of authenticating
clean sample that is marked accurately as clean.

Specificity = TN/(TN + FP) (2)

• Accuracy-: The final accuracy to detect malware and clean sample
accurately

Accuracy = (TP + TN)/(TP + TN + FP + FN) (3)

5.5 Algorithm

• Probability of targeted malware calculated using following equation

P (M,m) =

M∑
n=i

P (i).E(i) (4)

E(M) =
c∑

n=i

−P (i)log2pi (5)

Malware Analysis Through Machine Learning 809

Algorithm 2 Training algorithm
1: procedure START(S,R) . The S is set of malware and clean sample and R is set of

decision tree
2: D= ψ and S6= ψ
3: For each Di in D and Si in S
4: Repeat
5: Features-Value > 0
6: Loading dataset into tree
7: Repeat-1
8: MaxInformationGain← 0
9: Split←ψ
10: p← Probability(Features− values) . Probability refers to the level of uncertainty

in the data content
11: For all Features-values f in Si do
12: IGi← InformationGain(f, p)
13: if(IGi > MaxInformationGain) then
14: MaxInformationGain← IGi
15: Split← f
16: End if
17: End For
18: Partition(Si,Ri,Split)
19: Until-1 all partition completed
20: Until complete dataset get partitioned into random forest
21: End For
22: return R
23: EndProcedure

• The information gain is difference between initial probability and the
proportional sum of the probability of branches InformationGain(M,m)
= E(M)-P(M, m)

5.6 Model Evaluation

Firstly we extracted feature through dynamic analysis and prepared Malware
dataset accordingly ML and Deep learning Model needs. We set binary value
1 for the malicious sample and 0 for the clean sample. This Binary vector will
be acting as input to varied ML classifying algorithm (see Figure 1).

We utilized the python anaconda navigator platform for training and
testing samples on ML and deep learning algorithms. This platform pro-
vided various interesting tools such as pre-processing, clustering, regression,
classification, visualization, and association rules (see Figure 2). We fetched
binary vector of all data into a table labeled as a sample dataset. We optimized

810 A. Kumar et al.

Table 10 Comparison table for proposed system over existing system for windows platform
Algorithm Top Accuracy Feature FP
Random Forest 0.997 20 0.07

Gradient Boosting 0.994 20 0.02

DeepLearning Convolution 0.90215605751 65 –

Naive-Bayes 0.9969 4 0.074

Leveraging Compression 0.993 12 0.005

NBJ48 0.983 22 –

features by using information gain with a specific threshold. To validate the
accuracy, we used a cross-validation technique. We compare and presented
the result for corresponding ML and deep learning algorithms using FP,
TN, TP, F, Sensitivity, and Predictive. We tested 5184 malware samples
with 65 and 20 features. We found RF model show highest accuracy for
20 features with TP = 528, FP = 7, TN = 500, FN, Sensitivity = 0.9862
and Predictability = 0.9862, accuracy = 0.9866 Followed by model Gradient
Boosting with accuracy TP = 533, TN = 506, FP = 2 and FN = 1, Sensitiv-
ity = 0.9980, Specificity = 0.9963, Precision = 0.9961 for 20 features and
precision model with accuracy 0.9971. The graph represents the comparison
of the Recommended Model with the current system model. We found
some malware samples unable to identify which indicate some drawbacks of
Dynamic analysis. Also, this malware sample hides their behavior even after
executing in the virtual environment through a code obfuscation technique
using polymorphism and metamorphism. We also concluded that prediction
accuracy for malware detection is different for different ML and Deep learn-
ing algorithms. We understood that quantity of features selection affects the
precision of the detection system, which is valuable insight logic for the
researcher. We improved the performance of the ML model and algorithm
by considering the top 20 features (see Table 10). This discovery helps the
researcher to think deeply about malware analysis.

6 Concluding Remarks and Subsequent Works

The research, as mentioned earlier, has highlighted in comprehensive detail
along with gaps which highlighted various past implemented malware detec-
tion model for the respective platform such as window, Android, and embed-
ded platform. This survey detail compares various Ml And deep learning

Malware Analysis Through Machine Learning 811

techniques that help malware researchers to think over gaps trough mean-
ingful insight. The proposed behavior structure represents the way malware
detection commonly carry out. Based on research investigation, we found
that the implemented proposed model, along with the Feature Optimization
technique, improves the classification accuracy rate of malware detection
over existing models. Top accuracy for window-based platform includes
0.997 with 20 features for the Random Forest model. The features selection
technique required malware research effort, not an utterly automated process.
The dynamic analysis not covering all malware. Some malware seems to eas-
ily escape as a clean sample in the virtual environment by executing them-self
passively. Feature optimization results in partial perceive malware behavior.
So some false malware count as a clean sample with an increasing malicious
rate, it an enormous task to maintain malicious sample at voluminous level.
To investigate this ML model to optimized feature selection without being
lost any crucial information in order to improve performance and accuracy.
To process multiple malware model in Parallel manner in order to perform
detection at a larger-scale level.

6.1 Dataset

Dataset and scripts for reproducing the results were uploaded at Github
repository – https://github.com/ajaykumar121182/malware.

References

[1] Dali Zhu, Hao Jin, Ying Yang, Di Wu, and Weiyi Chen. Deepflow:
Deep learning-based malware detection by mining android application
for abnormal usage of sensitive data. In 2017 IEEE symposium on
computers and communications (ISCC), pages 438–443. IEEE, 2017.

[2] Abhijeet Thakare, Euijong Lee, Ajay Kumar, Valmik B Nikam, and
Young-Gab Kim. Parbac: Priority-attribute-based rbac model for azure
iot cloud. IEEE Internet of Things Journal, 7(4):2890–2900, 2020.

[3] Mayur Rahul, Narendra Kohli, Rashi Agarwal, and Sanju Mishra. Facial
expression recognition using geometric features and modified hidden
markov model. International Journal of Grid and Utility Computing,
10(5):488–496, 2019.

[4] Devottam Gaurav, Sanju Mishra Tiwari, Ayush Goyal, Niketa Gandhi,
and Ajith Abraham. Machine intelligence-based algorithms for spam
filtering on document labeling. Soft Computing, pages 1–14, 2019.

https://github.com/ajaykumar121182/malware

812 A. Kumar et al.

[5] Zahoor-Ur Rehman, Sidra Nasim Khan, Khan Muhammad, Jong Weon
Lee, Zhihan Lv, Sung Wook Baik, Peer Azmat Shah, Khalid Awan,
and Irfan Mehmood. Machine learning-assisted signature and heuristic-
based detection of malwares in android devices. Computers & Electrical
Engineering, 69:828–841, 2018.

[6] Ajay Kumar, Kumar Abhishek, Amit Kumar Singh, Pranav Nerurkar,
Madhav Chandane, Sunil Bhirud, Dhiren Patel, and Yann Busnel. Mul-
tilabel classification of remote sensed satellite imagery. Transactions on
Emerging Telecommunications Technologies, page e3988, 2020.

[7] Sanju Mishra, Rafid Sagban, Ali Yakoob, and Niketa Gandhi. Swarm
intelligence in anomaly detection systems: an overview. International
Journal of Computers and Applications, pages 1–10, 2018.

[8] Saiteja Prasad Chatrati, Gahangir Hossain, Ayush Goyal, Anupama
Bhan, Sayantan Bhattacharya, Devottam Gaurav, and Sanju Mishra
Tiwari. Smart home health monitoring system for predicting type 2
diabetes and hypertension. Journal of King Saud University-Computer
and Information Sciences, 2020.

[9] Pranav Nerurkar, Madhav Chandane, and Sunil Bhirud. Survey of
network embedding techniques for social networks. Turkish Journal of
Electrical Engineering & Computer Sciences, 27(6):4768–4782, 2019.

[10] Pranav Nerurkar, Aruna Pavate, Mansi Shah, and Samuel Jacob. Per-
formance of internal cluster validations measures for evolutionary clus-
tering. In Computing, Communication and Signal Processing, pages
305–312. Springer, 2019.

[11] Shahid Alam, Zhengyang Qu, Ryan Riley, Yan Chen, and Vaibhav
Rastogi. Droidnative: Automating and optimizing detection of android
native code malware variants. computers & security, 65:230–246, 2017.

[12] Hisham Shehata Galal, Yousef Bassyouni Mahdy, and Mohammed Ali
Atiea. Behavior-based features model for malware detection. Journal
of Computer Virology and Hacking Techniques, 12(2):59–67, 2016.

[13] Monire Norouzi, Alireza Souri, and Majid Samad Zamini. A data min-
ing classification approach for behavioral malware detection. Journal of
Computer Networks and Communications, 2016, 2016.

[14] Aashima Malhotra and Karan Bajaj. A hybrid pattern based text mining
approach for malware detection using dbscan. CSI transactions on ICT,
4(2-4):141–149, 2016.

[15] Zhiqiang Li, Lichao Sun, Qiben Yan, Witawas Srisa-an, and Zhenxiang
Chen. Droidclassifier: Efficient adaptive mining of application-layer
header for classifying android malware. In International Conference

Malware Analysis Through Machine Learning 813

on Security and Privacy in Communication Systems, pages 597–616.
Springer, 2016.

[16] Muazzam Siddiqui, Morgan C Wang, and Joohan Lee. A survey of
data mining techniques for malware detection using file features. In
Proceedings of the 46th annual southeast regional conference on xx,
pages 509–510, 2008.

[17] Yuxin Ding, Xuebing Yuan, Ke Tang, Xiao Xiao, and Yibin Zhang. A
fast malware detection algorithm based on objective-oriented associa-
tion mining. Computers & security, 39:315–324, 2013.

[18] Chun-I Fan, Han-Wei Hsiao, Chun-Han Chou, and Yi-Fan Tseng. Mal-
ware detection systems based on api log data mining. In 2015 IEEE
39th annual computer software and applications conference, volume 3,
pages 255–260. IEEE, 2015.

[19] Pranav Nerurkar, Madhav Chandane, and Sunil Bhirud. A com-
parative analysis of community detection algorithms on social net-
works. In Computational Intelligence: Theories, Applications and
Future Directions-Volume I, pages 287–298. Springer, 2019.

[20] Pranav Nerurkar, Madhav Chandane, and Sunil Bhirud. Community
detection using node attributes: A non-negative matrix factorization
approach. In Computational Intelligence: Theories, Applications and
Future Directions-Volume I, pages 275–285. Springer, 2019.

[21] Munkhbayar Bat-Erdene, Hyundo Park, Hongzhe Li, Heejo Lee, and
Mahn-Soo Choi. Entropy analysis to classify unknown packing algo-
rithms for malware detection. International Journal of Information
Security, 16(3):227–248, 2017.

[22] Tobias Wüchner, Aleksander Cisłak, Martin Ochoa, and Alexander
Pretschner. Leveraging compression-based graph mining for behavior-
based malware detection. IEEE Transactions on Dependable and Secure
Computing, 16(1):99–112, 2017.

[23] Qiguang Miao, Jiachen Liu, Ying Cao, and Jianfeng Song. Malware
detection using bilayer behavior abstraction and improved one-class
support vector machines. International Journal of Information Security,
15(4):361–379, 2016.

[24] Mojtaba Eskandari, Zeinab Khorshidpour, and Sattar Hashemi. Hdm-
analyser: a hybrid analysis approach based on data mining techniques
for malware detection. Journal of Computer Virology and Hacking
Techniques, 9(2):77–93, 2013.

814 A. Kumar et al.

[25] Stavros D Nikolopoulos and Iosif Polenakis. A graph-based model for
malware detection and classification using system-call groups. Journal
of Computer Virology and Hacking Techniques, 13(1):29–46, 2017.

[26] Pranav Nerurkar, Archana Shirke, Madhav Chandane, and Sunil Bhirud.
A novel heuristic for evolutionary clustering. Procedia Computer
Science, 125:780–789, 2018.

[27] Jiang Ming, Zhi Xin, Pengwei Lan, Dinghao Wu, Peng Liu, and Bing
Mao. Impeding behavior-based malware analysis via replacement
attacks to malware specifications. Journal of Computer Virology and
Hacking Techniques, 13(3):193–207, 2017.

[28] Pranav Nerurkar, Archana Shirke, Madhav Chandane, and Sunil Bhirud.
Empirical analysis of data clustering algorithms. Procedia Computer
Science, 125:770–779, 2018.

[29] Shina Sheen, R Anitha, and V Natarajan. Android based malware
detection using a multifeature collaborative decision fusion approach.
Neurocomputing, 151:905–912, 2015.

[30] Altyeb Altaher. An improved android malware detection scheme based
on an evolving hybrid neuro-fuzzy classifier (ehnfc) and permission-
based features. Neural Computing and Applications, 28(12):4147–4157,
2017.

[31] Weixuan Mao, Zhongmin Cai, Don Towsley, Qian Feng, and Xiaohong
Guan. Security importance assessment for system objects and malware
detection. Computers & Security, 68:47–68, 2017.

[32] Hashem Hashemi, Amin Azmoodeh, Ali Hamzeh, and Sattar Hashemi.
Graph embedding as a new approach for unknown malware detection.
Journal of Computer Virology and Hacking Techniques, 13(3):153–166,
2017.

[33] Songyang Wu, Pan Wang, Xun Li, and Yong Zhang. Effective detection
of android malware based on the usage of data flow apis and machine
learning. Information and software technology, 75:17–25, 2016.

[34] Igor Santos, Felix Brezo, Xabier Ugarte-Pedrero, and Pablo G Bringas.
Opcode sequences as representation of executables for data-mining-
based unknown malware detection. Information Sciences, 231:64–82,
2013.

[35] Abhishek Bhattacharya and Radha Tamal Goswami. Dmdam: data
mining based detection of android malware. In Proceedings of the first
international conference on intelligent computing and communication,
pages 187–194. Springer, 2017.

Malware Analysis Through Machine Learning 815

[36] Abhishek Bhattacharya and Radha Tamal Goswami. Comparative anal-
ysis of different feature ranking techniques in data mining-based android
malware detection. In Proceedings of the 5th International Conference
on Frontiers in Intelligent Computing: Theory and Applications, pages
39–49. Springer, 2017.

[37] Alejandro Martı́n, Héctor D Menéndez, and David Camacho. Mocdroid:
multi-objective evolutionary classifier for android malware detection.
Soft Computing, 21(24):7405–7415, 2017.

[38] Aya Hellal and Lotfi Ben Romdhane. Minimal contrast frequent pattern
mining for malware detection. Computers & Security, 62:19–32, 2016.

[39] Annamalai Narayanan, Mahinthan Chandramohan, Lihui Chen, and
Yang Liu. A multi-view context-aware approach to android mal-
ware detection and malicious code localization. Empirical Software
Engineering, 23(3):1222–1274, 2018.

[40] Baojiang Cui, Haifeng Jin, Giuliana Carullo, and Zheli Liu. Service-
oriented mobile malware detection system based on mining strategies.
Pervasive and Mobile Computing, 24:101–116, 2015.

[41] Yanfang Ye, Lingwei Chen, Shifu Hou, William Hardy, and Xin Li.
Deepam: a heterogeneous deep learning framework for intelligent mal-
ware detection. Knowledge and Information Systems, 54(2):265–285,
2018.

[42] Bin Wu, Tianliang Lu, Kangfeng Zheng, Dongmei Zhang, and Xing
Lin. Smartphone malware detection model based on artificial immune
system. China Communications, 11(13):86–92, 2014.

[43] James B Fraley and Marco Figueroa. Polymorphic malware detection
using topological feature extraction with data mining. In SoutheastCon
2016, pages 1–7. IEEE, 2016.

[44] Mohamed El Boujnouni, Mohamed Jedra, and Noureddine Zahid. New
malware detection framework based on n-grams and support vec-
tor domain description. In 2015 11th international conference on
information assurance and security (IAS), pages 123–128. IEEE, 2015.

[45] Amine Boukhtouta, Serguei A Mokhov, Nour-Eddine Lakhdari, Mourad
Debbabi, and Joey Paquet. Network malware classification comparison
using dpi and flow packet headers. Journal of Computer Virology and
Hacking Techniques, 12(2):69–100, 2016.

[46] Zhenlong Yuan, Yongqiang Lu, and Yibo Xue. Droiddetector: android
malware characterization and detection using deep learning. Tsinghua
Science and Technology, 21(1):114–123, 2016.

816 A. Kumar et al.

[47] Aziz Mohaisen, Omar Alrawi, and Manar Mohaisen. Amal: High-
fidelity, behavior-based automated malware analysis and classification.
computers & security, 52:251–266, 2015.

[48] Ping Wang and Yu-Shih Wang. Malware behavioural detection and
vaccine development by using a support vector model classifier. Journal
of Computer and System Sciences, 81(6):1012–1026, 2015.

[49] Mozammel Chowdhury, Azizur Rahman, and Rafiqul Islam. Malware
analysis and detection using data mining and machine learning classifi-
cation. In International Conference on Applications and Techniques in
Cyber Security and Intelligence, pages 266–274. Springer, 2017.

Biographies

Ajay Kumar is a senior Network/IT Analyst, working with Government of
India (Ministry of Defense). He has B-Tech from Central University Delhi
with distinction and M Tech from VJTI, Mumbai with distinction. He is a
Ph.D. scholar of Dept. of Computer Science & Engineering, NIT Patna. His
area of research is network security, Authentication, IoT and Machine Learn-
ing. He has published more than 20 research papers in various renowned
International conferences and SCI indexed journals.

Malware Analysis Through Machine Learning 817

Kumar Abhishek is working as an Assistant Professor, Department of Com-
puter Science and Engineering, National Institute of Technology Patna, India.
His area of interest lies in RDF, Semantic Web, Ontology, Semantic Sensor
Web, Ontology mapping and Approximation. He has published more than
100 research papers in various renowned International conferences and SCI
indexed journals.

Shishir Kumar Shandilya is the Division Head of Cyber Security and
Digital Forensics at Vellore Institute of Technology, VIT Bhopal University,
India. He is also a Visiting Research Fellow at Liverpool Hope University-
United Kingdom, a Cambridge University Certified Professional Teacher
Trainer, ACM Distinguished Speaker and a Senior Member of IEEE. He
is an Academic Advisor to National Cyber Safety Security Standards, New
Delhi. He has received IDA Teaching Excellence Award for distinctive use of
technology in Teaching by Indian Didactics Association, Bangalore (2016)
and Young Scientist Award for two consecutive years, 2005 and 2006, by
Indian Science Congress MP Council of Science Technology. He has seven
books published by Springer Nature-Singapore, IGI-USA, River-Denmark
and Prentice Hall of India. His recently published book is on Advances in
Cyber Security Analytics and Decision Systems by Springer.

818 A. Kumar et al.

Muhammad Rukunuddin Ghalib currently works at the Division of Ana-
lytics, VIT University. Dr. Muhammad does research in Artificial Neural
Network, Data Mining and Computing in Mathematics, Natural Science,
Engineering and Medicine. Currently working on IOT based artificial rain
creation.

	Introduction
	Problem Statement
	Detection Approaches
	Behavior-based detection
	Signature-centric discovery

	Related Works
	Analysis of Behavior-based detection
	Analysis of Signature-based Detection
	Discussion
	Behavior-based detection on Android Platform
	Behavior-based detection on Embedded Platform
	Signature-based detection on window Platform
	Signature-based detection on Android Platform
	Signature-based detection on Embedded Platfrom

	Proposed System
	Architecture
	Data Collection
	Preprocessing
	Features Selection
	Eliminate unwanted data
	Detection module
	Knowledge Store
	Result

	PE File Structure
	Experimental Setup
	PC and Software Requirement
	Dataset Information
	Selected PE File Features
	Performance Criteria
	Algorithm
	Model Evaluation

	Concluding Remarks and Subsequent Works
	Dataset

