A Prescriptive Model for Migration to
Microservices Based on SDLC Artifacts

Deepali Bajaj'*, Urmil Bharti', Anita Goel® and S. C. Gupta®

' Department of Computer Science, Shaheed Rajguru College of Applied Sciences
for Women, University of Delhi, Delhi, India

2Department of Computer Science, Dyal Singh College, University of Delhi, Delhi,
India

3Department of Computer Science, Indian Institute of Technology, Delhi, India
E-mail: deepali.bajaj@rajguru.du.ac.in; urmil.bharti@rajguru.du.ac.in;
goel.anita@gmail.com; drsc.gupta@ gmail.com

*Corresponding Author

Received 21 March 2020; Accepted 01 March 2021;
Publication 02 June 2021

Abstract

Microservices architectural style is gaining popularity in industry and is
being widely adopted by large corporations like Amazon, Netflix, Spotify,
eBay, and many more. Several other organizations are also preferring to
migrate their existing enterprise scale applications to microservices archi-
tecture. Researchers have proposed various approaches for microservices
decomposition to be used in migrating or rebuilding a monolithic application
to microservices. Applying any available approach to an existing monolithic
application is not a straightforward decision; thus, there is a need for guide-
lines that assist in the migration process. There are various challenges in a
migration process because different migration approaches use different sets of
input data to identify microservices. Since the available migration techniques
are not structured, logically, selection of an appropriate migration strategy is a
difficult decision for any system architect. So, it is a recurrent open research

Journal of Web Engineering, Vol. 20_3, 817-852.
doi: 10.13052/jwe1540-9589.20312
© 2021 River Publishers

818 D. Bajaj et al.

question — which migration technique should be adopted to get microser-
vices for a legacy monolithic application? This paper addresses this research
challenge by examining existing approaches for microservices migration and
groups them based on software development life cycle (SDLC) artifacts. Our
research also proposes a microservices prescriptive model (MPM) from the
existing prominent microservice migration techniques. This model provides
recommendation (1) for refactoring an existing legacy system to microser-
vices, and (2) for new microservices development projects. Our study also
helps in gaining more insight about greenfield and brownfield development
approaches in microservices applications. Moreover, researchers and prac-
titioners of the field can benefit from this model to further validate their
migration approaches based on the available system artifacts.

Keywords: Microservices, decomposition, migration, extraction, slicing,
identifying, brownfield development, greenfield development, microservices
architecture (MSA).

1 Introduction

Microservices architecture (MSA) is gaining popularity in both domains of
academia and industrial world as they overcome the limitations of traditional,
centralized, and monolithic architecture. MSA can be defined as a program-
ming approach for developing an application as a set of small modular/loosely
coupled, autonomous services with a specific business goal [31]. As per its
definition given by Fowler [32], each service has its own database and it has
the flexibility to use a type of database that is best suited to its business needs.

A microservice runs in its own process space and communicates with
other services either by synchronous protocols such as HTTP/REST or asyn-
chronous protocols such as AMQP, STOMP, and MQTT. Each microservice
can scale autonomously and can be easily deployed on the cloud which has
been adopted as a de-facto platform for microservices. These services, due
to small granularity, are more fault-tolerant and easier to maintain. If one
of the services fails, it will not bring down the whole system that could
happen in earlier monolithic systems. Independent deployment characteristic
of microservices makes it helpful for continuous integration and delivery
pipeline [25].

To adopt this new architectural style, technical managers and system
architects have options to either rebuild (rewrite the capability as a new

A Prescriptive Model for Migration to Microservices Based on SDLC 819

service) or refactor the existing legacy application into a set of microser-
vices [26]. Refactoring is a controlled technique wherein software designers
perform behavior preserving transformations in order to improve the internal
design structure of an existing code base. This restructuring of existing code
improves its internal design but, at the same time, does not modify the
external behavior of the software system [32].

Decision on rebuilding a legacy application is very critical and may be
preferred over refactoring approach in many scenarios; a few of them are
listed below.

* The new infrastructure for hosting a microservice is quite dissimilar
from the old legacy application runtime and would need boilerplate code
to be rewritten.

» Sometimes existing capabilities are not coded around clear domain-
driven design (DDD) concepts. This result in major restructuring of the
entire codebases, making code reuse options less attractive.

* Legacy code attains high code toxicity level as they go through much
iteration of change and yield low value for reuse. Toxicity means weak-
ening of internal structure of the application’s code and high number of
access points by client applications.

Thus, refactoring can be considered a viable option if the capability is
relevant and defined in a clear domain driven context.

For designing and developing any application in MSA, different
approaches that are available in research literature can be classified as brown-
field or greenfield [25]. If a new software system is required to rebuild or
refactor from an existing legacy software application, then it is known as
brownfield development. Fresh development of an application from scratch
is known as greenfield development.

Existing brownfield techniques proposed to migrate a legacy mono-
lith application to MSA can be further classified as static or dynamic. In
static approach, system artifacts and characteristics that are static in nature
are analyzed to identify the candidate microservices. System artifacts like
requirement engineering documents, design (high level or low level or both)
documents, source code files, and revision history repository of a legacy
system can be used to analyze and identify important implicit system charac-
teristics like coupling (afferent, efferent, and evolutionary), cohesion (internal
and external), and functional dependencies (class, module, and database) [2—
4, 12, 13]. Migration techniques based on static analysis of source code are
also known as white-box techniques. In dynamic approach, source code of

820 D. Bajaj et al.

application is analyzed at run time along with the analysis of web access
log/user usage log/execution traces for mining the behavioral system charac-
teristics like workload, performance, and scalability of the legacy system.
Migration techniques based on dynamic analysis of source code are also
known as black-box techniques.

Adoption to MSA is not an effortless or smooth journey [26] and com-
panies are spending a lot of resources and efforts in migrating their legacy
applications to MSA. In literature, a number of migration approaches have
been proposed, discussed, and validated. However, researchers have recom-
mended a migration strategy considering only a subset of the available system
artifacts and there is no “one size fits all” for all use cases. To build this
gap, we propose a microservices prescriptive model (MPM) based on soft-
ware development life cycle (SDLC) artifacts to adopt a microservice-based
architectural style.

The key contributions of this paper are as follows.

* Collated key migration techniques to build microservices (1) from
an existing legacy software system, and (2) for a new application
development.

* Identified key parameters and analyzed the selected migration tech-
niques for these parameters.

* Formulated an MPM for migration based on greenfield and brownfield
microservice development. MPM depicts mapping of the SDLC artifacts
for adoption of existing migration techniques while architecting with
microservices.

* Presented evidence-based findings for state-of-the-art migration tech-
niques, static and dynamic analysis tools for migration automation,
validation methods, and quality measures adopted in these migration
techniques.

Our research aims to provide a detailed informative knowledge base to
understand and use the microservice migration process effectively. This could
be a useful resource for software industries and companies that are planning
to adopt MSA.

The remainder of this paper is organized as follows. Section 2 briefs about
existing methodologies that are used to extract microservices from legacy
monolithic applications. In Section 3, an outline of related work is presented
and Section 4 provides an in-depth description of the research methodology
and search design. Section 5 elucidates the parameters that are established to
compare decomposition strategies discussed in selected primary papers. This

A Prescriptive Model for Migration to Microservices Based on SDLC 821

section also provides answers to research questions based on our extensive
literature review. Then, Section 6 states the discussion and results.

2 Existing Migration Approaches

Migrating legacy applications to MSA implies breaking existing code into
loosely coupled services [23, 31]. Here, we discuss papers about refac-
toring/migrating/decomposing/rebuilding legacy monolithic applications to
microservices.

Taibi et al. [1] propose a framework for decomposition process that pro-
vides software architects with a set of decomposition options using process
mining on access logs. They also propose a metric-based ranking mechanism
to evaluate and compare the quality of decomposed microservices. In their
approach, they have applied process mining tools on application log files
to identify the most frequent execution path of the system and removal of
branches and circular dependencies.

Algorithmic recommendation of microservice candidates in a refactoring
and migration scenario is given by Mazlami et al. [2] using formal coupling
criteria: logical coupling, semantic coupling, and contributor coupling. In
logical coupling, software components that get changed for the same reason
are gathered together as one microservice. In semantic coupling, information
retrieval techniques are employed to identify microservices by investigating
the semantics and contents of source code files. Contributor coupling is based
on ownership architecture that reveals communication and team structuring
patterns. In this coupling, the key idea is to maximize internal communication
and reduce communication overhead among external teams. These three cou-
pling criteria transform a given monolith code into graphical representation
wherein weight of the edge indicates coupling strength between classes.
Extraction of microservices is achieved by deleting edges from the graphical
representation using a minimum spanning tree algorithm.

Dataflow-driven decomposition approaches are used in [3, 4] for iden-
tifying microservices from detailed business requirements. A top-down
decomposition approach used in [3], in which authors have transformed
traditional dataflow diagram (DFD) to get purified DFD. Authors designed a
two-phase automation algorithm for decomposition: (1) generating a decom-
posable DFD from purified DFD; (2) identifying candidate microservice
from decomposable DFD. A semi-automatic dataflow-driven microservice
decomposition approach is suggested by [4]. They propose to generate a
process-datastore version of DFD (DFDpg) from fine-grained DFDs. DFDpg

822 D. Bajaj et al.

shows the connection between processes and related data stores and excludes
information like external entities. Another condensed DFD called decompos-
able DFD is taken out from DFDpg by extracting the sentence sets in which
a process reads or writes data to a data store. Last step of their proposed
approach is to group modules of fine-grained processes and the related data
stores to identify candidate microservices.

Amiri et al. [5] presents a microservice identification method using
clustering technique based on a set of business processes. Authors have
shown that it is possible to identify fine-grained microservices from a single
business process or a set of business processes. Their works exploited the
notions of structural and object dependency between business activities repre-
sented as business process model notation (BPMN). They introduced multiple
approaches for microservices identification, i.e., user-driven, process-driven,
object-driven, and an extended approach. They also studied the accuracy
results of their approaches for different business processes.

Not just business entities of any application, but the relationships and
database interaction of these entities are also important in deciding the entities
that should be clubbed together and where to break into finer components.
Static code analysis is performed to get this relationship and is depicted as a
dependency graph. Levcovitz [8] proposed a decomposition technique based
on client side, facade, and system database. Since a database is an important
component in any application design, their approach uses a database schema
for splitting the application.

Analysis done on the basis of business domain may not find highly
loaded parts of the system [6, 9]. The load predictions done by the software
architects may not be enough for complex use cases and should be supple-
mented with users’ access records for the web pages. Mining web usage
logs to dig out useful details regarding user behavior has been investigated
in research. Muhammad et al. [6] devised a novel approach to automatically
decompose a monolithic application into microservices based on a black-box
approach using web access logs of the application for better performance and
scalability and then applied an unsupervised clustering method to decom-
pose microservices. They also proposed a method to dynamically select the
appropriate resource type to deploy microservices so as to improve the overall
performance of microservices-based applications.

Mustafa et al. [9] also suggested a black-box-based technique that extends
utilization of web usage mining techniques and considered non-functional
requirements like performance and scalability. Authors dig out web access
logs of a web application to find workload distribution patterns and then apply

A Prescriptive Model for Migration to Microservices Based on SDLC 823

clustering technique to identify granular microservices. The rationale behind
their approach is to discover pages that are attracting high loads within certain
periods of time slots and those should be designed as microservices.

Ahmadvand [13] proposed a conceptual methodology that reconciles
security and scalability requirements to be included in the requirements
engineering phase and develops an improved view for the system architects.
Their approach maps functional and non-functional requirements to identify
more optimal system decomposition.

Ren et al. [14] suggested that static code analysis techniques do not
include runtime dynamic characteristics; so they developed a combined
technique of static and dynamic analysis to get static and runtime behavior
of monolithic application. They use coupling among functions to esti-
mate the degree of dependence between functions. They further employ
function clustering to achieve the migration of monolithic applications to
microservices.

Eski et al. [12] used the code repositories and evolutionary coupling
information of software classes and apply graph clustering techniques to
transform existing monolithic applications into microservices. They observed
that identifying microservices using both static and evolutionary coupling
achieves better results than just using either of the two approaches. To
evaluate the quality of decomposition, they compared identified microservice
and reference microservices that are designed by the developers of associated
projects.

Selmadji et al. [13] proposed an auto-decomposition technique to identify
microservices from Object Oriented source code. They group classes on
the basis of their dependencies and then apply hierarchical agglomerative
clustering algorithm to extract microservices. Their approach also assesses
quality of microservices as a measure of structural and behavioral validity.
Classes that maximize the microservice quality function are grouped together.

Gysel et al. [14] proposed a structured and repeatable approach for
microservice decomposition. Their technique is based on 16 coupling cri-
teria extracted from software engineering artifacts such as domain models
and use cases. This coupling information is represented as an undirected
weighted graph to extract densely connected clusters. They have developed
an indigenous tool “service cutter” for service decomposition. The practical
applicability of this tool is inadequate due to its dependency on detailed
specification of the system.

Baresi et al. [15] proposed semantic similarity of available function-
ality evaluated through OpenAPI specifications. Their approach identifies

824 D. Bajaj et al.

potential candidate microservices by matching the key terms in the specifica-
tions against a reference vocabulary and suggests possible decompositions.
The success of their approach is dependent on well-defined Application
Programming Interfaces that give meaningful names.

Sayara et al. [17] gave a probabilistic approach for slicing monolith
application and getting microservices using multidimensional scaling. Their
technique employs update and scaling probabilities for generating a weighted
matrix which is used to generate optimal number of microservices.

Nakazawa et al. [18] suggested a runtime analysis of the monolithic
system to produce a calling-context tree (CCT) that can be used to determine
the strength of relationships between components. They developed a visual-
ization tool that allows developers to design microservices based on source
code and function calling behaviors from a monolithic prototype. Their tool
constructs a compact CCT from profile data. They have applied two cluster-
ing algorithms: (1) semantic-based clustering and (2) calling-context-based
clustering. They developed a visual interface for further refining microservice
design.

Krause et al. [19] combined both static and dynamic analysis of a software
system. They implement runtime behavior, i.e., live trace visualization to
identify microservices. They also combine bounded context patterns of DDD
to augment dynamic software visualization results to make out appropriate
microservice boundaries.

Jin et al. [20] proposed a functionality-oriented method for microservice
extraction. Rather than static source code analysis, they instrumented the test
application by adding probes to collect program dynamic behavior. In the next
step, clustering is performed on execution traces to achieve microservices
candidates. They also validated their results by exploiting five metrics of
service cohesion and coupling.

Stojanovic et al. [21] proposed a systematic system analysis based on
functions, interfaces, dataflows, and data storage of the system to extract
microservices.

3 Related Work

Though a few research articles exist in academic research that brief about
available migration techniques, they are majorly confined to challenges
regarding microservices adoption in industries, trends in microservices
research, and microservices patterns and principle.

A Prescriptive Model for Migration to Microservices Based on SDLC 825

Fritzsch et al. [28] compared ten recent refactoring approaches proposed
in academic literature and provided a visual guide for reference. Ponce
et al. [29] presented a rapid review of some migration techniques available in
literature. They highlighted the types of programming languages suitable for
MSAs. Also, they briefed about challenges faced in the migration process.
Kazanavieius et al. [30] reviewed five migration methods along with their
benefits and drawbacks. Schmidt [33] investigates microservices identifica-
tion proposals with the perspective of model-driven engineering (MDE) and
DDD.

Francesco et al. [34] have applied a systematic mapping methodol-
ogy to classify and evaluate research publications from the following per-
spectives: (1) publication trends (publication venue and research groups
contributing in this field), (2) research aspects (performance analysis and
monitoring, security concerns, and fault tolerance issues), and (3) poten-
tial for industrial adoption. Francesco et al. [35] performed an empirical
study on available migration techniques. They conducted a survey on 18
industry practitioners, by means of interviews and questionnaires, engaged
in the migrating process and collated quantitative information about MSA
like (1) the set of activities performed during migration, and (2) chal-
lenges faced during the migration. Taibi et al. [36] carried out a mapping
study to explore common microservices patterns and principles. They also
prepared a catalog highlighting advantages and disadvantages in those
patterns.

Our literature review exposed a lack of structured knowledge base
regarding building new microservice applications and rebuilding/refactoring
techniques to migrate existing monolithic legacy code. We found that
there is a clear dearth of systematic study that will distinctly guide sys-
tem architects and developers about the suitable migration technique that
should be adopted to achieve MSAs for their monolithic application. A
necessity of pragmatic guidance was realized that would concretely aid
when migrating an existing legacy system (brownfield development) or
building a new system as per microservice architectural design (greenfield
development).

We have not come across any research article that compares avail-
able migration techniques at such great depth covering validation methods,
automation tools used for migration, and microservice evaluation framework
for result. This makes our work more comprehensive and complete and
addresses inadequacies of the existing studies. To the best of our knowledge,
there is no model currently available that structures migration techniques

826 D. Bajaj et al.

on the basis of SDLC artifacts. Thus, our research study aims to fill the
existing gap by providing a comprehensive MPM that can be used in selecting
migration techniques for greenfield or brownfield development based on
SDLC artifacts.

4 Research Methodology and Search Design

The primary objective in this section is to consolidate the decomposition
approaches available in literature for migrating a monolithic application to
MSA. We used the guiding principle of systematic literature review (SLR)
for literature assimilation [22]. SLR facilitated us to organize the procedure
of identifying and classifying relevant writings in our domain. Following
subsections illustrate, in detail, our research methodology, search strategy,
and design.

4.1 Research Questions

Our research goal is to gather, collate, and investigate the migra-
tion/extraction techniques proposed in literature. Based on these goals, we
formulated the following research questions to be addressed, which are the
major part of this study:

RQ1: What are the migration techniques proposed in the literature for
MSA?

RQ2: How are existing microservice migration techniques associated
with SDLC artifacts? What all microservice decomposition techniques
are applicable to greenfield and brownfield development?

RQ3: How are results of decomposition techniques validated by
authors?

RQ4: What are the significant measures for microservice evaluation
framework?

RQS5: What all tools are used in migration techniques for refactoring a
monolithic application?

In order to investigate and get answers to the above-formulated research
questions, we design the search strategy discussed in the next subsection.

4.2 Search Strategy

We explored research articles indexed in ACM Digital Library, Scopus, IEEE
Xplore, Science Direct, SpringerLink, and Google Scholar databases. The

A Prescriptive Model for Migration to Microservices Based on SDLC 827

search keywords used were:

(“Service” OR “Microservice[s]” OR “Micro-service[s] architecture” OR
“Cloud-native architecture[s]”)
AND
(Migrat* OR Transform* OR Extract* OR [Auto-] Decompos* OR Slic*
OR
Re-architect* OR Identificat* OR Discovery OR Modernizat*)

The search list includes articles extracted during 2016-2020 (inclusive).
To make the list more relevant and complete, we applied snowballing [22],
by checking the reference list of the articles found previously. This makes our
selection work more comprehensive and aggregate.

“Microservices” being the latest and fertile area for research, we consid-
ered both journal articles and conference papers. After removing duplicate
papers, 40 potentially relevant papers were identified in the first compiled
list. To further narrow down and refine our collection of papers, we augment
our selection procedure by supplementary criteria:

(a) Language of the manuscript must be English.

(b) Only peer reviewed articles to be included.

(c) Focus of the paper must be some migration mechanism or technique
(refactoring/rebuilding).

(d) Papers must answer at least one of the research questions formulated
above (RQ1-RQ5).

Papers satisfying above criteria were finally selected. From this complex
analysis, we distilled 21 most recent and relevant papers pertinent to our study
and we designate them as primary studies. We thoroughly investigated these
primary studies to get answers for our research questions.

5 Study Results

There are various challenges in software migration from monolithic architec-
ture to MSA. In this paper, we have studied various migration techniques and
their unique strengths and weaknesses are also analyzed. We have reviewed
decomposition approaches and tabulated on the following attributes: Tech-
nique of Decomposition, Approach Type, SDLC Artifact Used, Methodology,
Tools used for Refactoring, Measures & Metrics, and Validation Method.
Table 1 (Part A and Part B) gives a synopsis of the reviewed decomposition

j et al.

jaj

828 D. Ba

[L1X(L10D)
j10dar juowinradxa ue :21MOAIYOIL

uonisodwosap 9o1A19s0101W 0) uoneordde
u3ISp UQALIp-UTRWO] onels paseq- OIS oNewaIsLS J[Iqow dIyIIouow FuneISIA ‘L
(3IAS) Surisno [9]:(610T)S?21AISSOIOTW OJUT
uBQW-Y PAIYIIom J[eds pasiaradnsun uonisodwooop-oine uoneordde gom
30[$s920® g oruruA(Q 3ursn uonisodwodop xoq-yoe[g Joj yoeoidde Surured| pasiaradnsuny ‘9
Kouapuadap 109[qo eyep pue [61:(8107) seo1AISSOIOTIX
[opout ssao0i1d ssaursng onels [eanjonns uo pardde wyjio3[e onouan JO uoneoynuapI areme-19[q0 ‘S
[+]:(6107) suoneoridde sryyrjouow
juowainbar ssauisng yoeoidde uonisodwossp WOIJ SAIIAIISOIOIW JUIAJIIUAPT
pue 0 [euonIpel], onels JNBWIOINE-TWAS UIALIP-MmOpeIe(03 yoeoidde uaaup-mopgeIep v b
wyLoge
juawarmbar ssaursnq uonIsodwodop UIALIp-mOfjeIep [€1:(L107) yoroidde uaaLp-mopgeiep
pue 04 [euonipeiy, onels uo paseq yoeoidde sisAeue umop-dog, B :SOOIAIQSOIOIW O} YI[OUOW WOL] ¢
Surdnos 101nqLIIUOS pue
wo)sAs [01NUOD ‘onuewas ‘[edo130[:sa13ajens Jurdnoo [21:(L102)
UOISIOA WOJJ Paure)qo [ewI0} 221y} Sursn pajonnsuod ydeis uo SQIMI0)IYOIL QIBMIJOS OIYII[OUOW
9po9 jo A10)s1y 23UBYD onels paseq wipLIo3[e Juneisnyd paseq-ydein WOIJ SIOTAIISOIONUW JO UONIRIIXF T
[11:(6100)
Sururw ss2001d Uo paseq JIomauwresj
uonIsodwodap B :SIOTATISOIITUL
s3o[uonjeorddy orRuA(Q ururw $s9001g 0] SWISAS OIYPII[OUOW WOL] 1
pasn) 10eJIy)1dS adA1, yoeorddy uonisodwods Jo anbruyoay, ISI'T 90UQIRJAY UI JqUINN UOIRILD) "ON
(189 opi, Jodeq ‘ON 'S

sa13ojens uoneidiw jo Arewwing (Y 3Med) 1 dqeL

Based on SDLC 829

icroservices

A Prescriptive Model for Migration to M

(panunuo)y)
AJLIR[IWIS ONUBWAS UO [ST1:(L107)SISATRUR Qo0 IoIUL
suonjeoyroads [gyuedQ onels paseq suoneoyroads [JV Jo Surrasny) [SNnoIy) UOTBOYT)USPT SOOTAIOSOIIN "G
NOSI
ur [opouwl UTEWOP “‘9sed
asn ‘(SINYH) s[epowr 3ore1ed BLIILID [#1]:(9107)uonisodwodap AJ1AIIS
diysuonear Aynug el Surdnoos uo peseq wiyynod[e Suudsn) 03 yoroidde OIBWAISAS B 1IOPND AJIAIDS “p]
[€11:(8107) yoroxdde
PaIaIuR-AJITenb B :S901AIOSOIOTW
SOl 9p0Od A0IN0S onels Surro)snyo oAneIawo[SSe [eOTYOIeIaTH ojur aremijos QO Sunoyore-0y ¢
[¢1]:(810C) uoneorndde
JTYI[OUOUT TWOIJ 9INJONIYIIR
xaput Ajueqruis QfOIN pue wyjLose SQOIAIISOIOIW 0) uonisuen-yoeordde
san0j1sodar 9pod onels oneIs Sunoysnyo ydeas Ayrunwwoo iseq uonoenxd dNEWOoNE Uy ‘7]
3oy uoneorjdde pue ‘Opod Xopul AJLIB[IWIS pIeOdR[pue JuLIdIsn[o [111:(8107) 2amd9yyoIe
uoneordde ‘suonerar [eSIYOIRINY SUBIW-] UO Paseq SOOIAISSOIOIW 0) AINJINI)S JIYI[oUOW
[[e2 UOTIOUNJ ‘SaSSB[) OTWRUAP + d1elS yoeoidde uoneidu onewoNe-ruag woiy suoneoridde qom SuneiSN [
syuawaInbar
(Kymoas pue Liqefeds) [01] :(910¢) uontsodwos(ap)
[euonouUN-uUOU QOTAIOSOIDIW 2INOAS PUL J[qeeds
pue [euonounj el uonisodwooop emdoouo) J10J UOTJBI[IOU0dAI sjuawdImbay "0
[6]:(L102)1949]
Surnoysnyd ueow-)) AzZznj uo paseq Ayremnuerd 1oy Sutuuerd Aq
sSof sseo0r qapm orwreuk(q anbruyoa) uonsodwosep x0q-yor[g SOTAIOSOIOIW JO soTwouode Surzrumndo 6
UONBOYISSB[O W)SAS-qns [81:(9107) swsAs asudiaiua
pue wWa)sAs uo paseq uS1sop aseqejep pue ‘opedej ‘oprs JTYI[OUOUT WOIJ SOTAISSOIOTW
JUSWNOOP JUAWAITNDIY onels JUQI[O UO paseq anbruyda) uonoenxyg Sunoenxa 103 anbruyod) e spremoy, ‘S

j et al.

jaj

830 D.Ba

S901AI9s0I0TW Ojul padnoi3d
9Qq uBd WAISASAY} JO 93vI0]S BIRP

[12] :(0707) StsA[eur wWAISAS paInionns

sweIserp mogereq oneIs PUE ‘SMO[JRIEP ‘SOIBJIAIUI ‘SUOTIOUN] Sursn s01AISOIOTW SUTAJNUSP] 1z
Ioraeyaq [0z] :(8107) Suwaisnpd
sooen orwreudp werdoid jo Sunojiuowr £q Q0BI} UONNIIXI UO PIseq UONOBIX
uonnoaxe uoneorddy orwreuA(q pauIeIqo SAdEI) UOTINJXA Jo SurIaIsny) QOTAIOSOIOTU PAJUSLIO-A)[EUOTIOUN,] 0C
So[uoneordde [61]1:(0202)
pUE SO 9POd 9OINOS sonbruyo9) II[OUOW Y} JO SISATeur JTweuip pue
‘USISOp UQALIp-UTRWO(] JrWRUA(+ dNBIS SISA[eue OIWBUAP pUE d1je)S pauIquio)) o11e]s BIA UonIsodwodap 90IAIISOIITA 61
[811:(810¢) yorodde
Surie)snyo 9913 1X)U0-3UI[[Ld ISIY-[II[OUOW) YIIM SOITAIISOIITW
SOl 9pOJ 20INOS oneIs pUB ONUBWIAS UO PIseq SuLdlsn)) SuruS1sop I0J [00) UOTBZI[BNSIA ‘81
saniqedeo
ssaursng jo A3o[outyo9) [L11:(L107) Surreos
pue 9je1 Suress [EUOTSUSWITPII[NUI PUE XLIJeW PajySrom
‘9)e1 9jepdn Jurureuod 3ur[eos reuorsuaWIpHNW 3ursn $991A19S JO Joquinu pazrwundo ue
JUAWNDOP JUAWAINbY oneIs uo paseq anbruyo9) onsiIqeqold Surureiqo Joj yoeoxdde onsiiqeqoid v A
oy uoneorydde [911:(9107) spnojo 103
PUE SI[IJ 9POJ 20INOS JTWRUAP + d1EIS uoneISI uaALp-ejep dn-wonog QINJONIYOIE SIOTAIISOIIIW B SPIEMO], 91
pasn 10ejIy D1dS odA7, yoeorddy uonrsodwosd(q jo anbruyoay, IST] 90UQIQJY UI JAqUINN UONBI) "ON
(Ieax) opiL, 1odeq 'ON 'S

penunuo) (V 3xed) I dqeL

Based on SDLC 831

icroservices

A Prescriptive Model for Migration to M

(ponunuo)y)

00} I3IND AJTAIIS aAd 2rqesodwosap
jsureSe pojepIfeA pue e ojut 0 peyrnd
uoneorddy 9y} SuISUIPUOd
uostredwod Kyure[nueis auryy ‘adqg peyund e [€]
9o11d 193013 1A0W (7) ‘onbruyo9) Jon1sSuoo ‘sisk[eue :(L107) yoroadde
109fo1d Surmerd juowdo[aAdp [enNAU juowaIInbax UQALIp-MO[jeIRp
-UORWIOJUI-OTAOW () ‘Furgdnoo ssaursnq (1) B ISIOTAISOIOTW
— SasEBD asn oM, UOTSAY0)) <[IN :sseooxd deys-eary, 0) JHIOUOW WIOL] €
SOA LID Sursn (8®3s 901ATS0IOTWI
S9seq P02 SIYII[OUOW pue ydeid
Qo1nos uado g ‘iprouowr) sagels [2]:(L102)
Jo 195 opdures saye) jey) UONOLIX 1Y) UO SQINJOAIYOIE
100foxd eae[901n0S Kouepunpar paseq (Surreisn[d AIEMIJOS JTYII[OUOUT
uado ue ur padoforep urewrop 93eIdAR ‘9ZIS WILd) pUB UOTIONI)SUOD) WOIJ SIITATISOIOTUT
st 3doouoo jo jooid v juowdooaap o3eIoAy «[IN ssaoo1d dojs-om], JO uonoenxyg z
SOINJOIYOIE QIBMIJOS
1adxa jo spoyour [11:(6100)
one)s Jsurese pajepIfeA paseorjdnp oq Sururw ssao01d uo
"VAVI Ul podo[oAdp 0} podu Sasse[d JO Jaquinu suondo 3urors paseq JIomowey
SJUBJUNOJOE XB) UBI[R)] “Q0TAIISOIOTUI/SISSL]D JUAIOYIP AJNUIpI uonisodwooop
103 ‘Surdeayyooq 10§ JO IoqUUNU ‘90TATISOIOTUI 0) JIOMOWBI} B 1SOJTATISOIOTIT
WAISAS JuoweuLW uoamiaq Jurjdnoo 0DSIa uonisodwodsp 0] SWISKS
JuawINdop V- ‘s393(qo ueamieq Surdno) ‘NdVonserqg das x18 JIyIoUOW WOI] I
POYISIA UOT)EPI[EA SOIIIOJA] PUE SAINSBIA] Suriojoejey] 10 pas() S[00], K3o1opoyloN JST'T Q0URIRJOY 'ON 'S

ur Jequiny uoner)
((reogn) op, Jodeq

sar3arens uonerdiu jo Arewwng (¢ 1ed) I dqeL

j et al.

jaj

832 D.Ba

sassaoo01d Jo Tequinu
pue ‘s309[qo jo roqunu
‘sAemaresd Jo Joquinu

sorouopuadop ejep
II9U) PUB SONIATOR
SSQUISNQ U9aMIdq

[c1:(8100)
SOOIAIRSOIOTW

‘SONTATIOR JO Joquinu SUOTIOQUUOI)UT JO uoneOynUAPT
uo paseq juswradxyg AoeInooy «[IN Surkjnuapy Areme-100[qO S
SOOTAIOSOIOTUI
QJepIpued AJrIuapl
pUE ‘SI0}S BIEp puR
sassaoo01d uaamiaq
sarouapuadop
Y JorNX
‘ddd Jo uoisroA
[81] 2oejI3UI [V J10315BIRp-Ssad01d [¥1:(6102)
3ursn uoneoynuUIpI Ay} pue suoneordde
90TAIOSOIOTW pue [/ 1] dq paureis-auy oTyIT[oUoW
19)INd 901AISS Jsurede UO0ISaY0d [RUOTJE[T AU} JONISUOD WIOIJ SIOTAIISOIOTW
pajepiyea pue 9o9foxd ‘Kpqeisur :a1npasold Surknuopt
LID 9omosuado ue ‘3urpdnoo juoroyge 109y OIE. uonsodwodap 0} yoeoidde
‘wAsks Junjoen o3ie) ‘uridnoo juarapy ydeinreuog doys-moyq UQALIP-MO[JeIep Y ¥
POUISIA UOTIEPI[BA SOIIIOJA] PUB SAINSBIA] Suriojoejay 10y pas() S[00], KSo1opoyleN IST'T QoURIRJOY 'ON 'S

ur _quIny uoner)
((Ieay) opnL, 1odeq

penunuo) (g 3red) 1 dqeL

Based on SDLC 833

icroservices

A Prescriptive Model for Migration to M

(ponutuo))

(uoneorjdde

Sees se pojuawaduur

waIsAs Jureans

STAOW QUI[UO) OUTUWIEAI}SAOTA
:uonjeorjdde AreurSew

InzZy pnopo
uo pakojdep uoneordde
suruQ doyg Joog-0IoTA]

wolsAs Junjueq d1yIrjouow
PHOM-TeaI HOTH 0SL

Ked 913005 uo pakordop
uoneordde onprjouow se
uoneordde o[iqowr ureaAseq

‘suonejuawadur
SOOIAIDSOIOIW pUL
JTYIT[OUOW 30q UT d[qe[TeAR
‘QUILITe SNONNJY B I0)
uonjeordde qom yrewyouoq
Qomosuado “Iryauoy

=[IN

UOTJRZITIIN 9JINOSAI
‘uonezimn Nd)

*[IN

=[IN

AduewIoLIdd
Aiqeess

*[IN

*[IN

*[IN

*[IN

*[IN

uonedI
pUE UOTIRI[IOU0JAT
juowaInboy

S30[SS90 qam
uo paseq suraped
peopIom Sututy

S9[qe) Iseqeiep
pue ‘suonouny
ssauIsng ‘opeoey
3ursn sA0IAISOIOTIT
Aynuopr o)
amnpaooid days-x1§
saInjonns aseqerep
Jo sisATeue pue
JX2JU0D papunoq
uo paseq yoeoidde
QATJRI) [ENpRID)

93esn 901n0sal

uo paseq sadAy
INA 9eudoidde 0y
Surddew pue s3of
$S900€ [EOLI0}SIY
woij Juruonnred
doeds N

(o1]

(9107) uomsoduwo(ap)
9OIAISSOIDTW 2INDAS PUL
9[qereds I0J UOTJRI[IOUO0IAT
sjuowaInboy

[61:(L10T) 193]
Ayenuerd oy Suruueyd
£Q S9I1AISSOIDTW

Jo sorouos9 Jurizrundo

[81:(9102)
SwAIsAs asudioyua

JIyIjoUoW WO}
SOOTAIOSOIOTW SUTIOBIIXD
10J anbruyo9) ® premoy,

[L1:(L10D)
110dar juowrrodxa ue

:21IN)09)IYOIB IOTAIISOIOTI
0} uonjeorjdde a[iqow
orpouowt uneISIA

[9]:(6107) soo1AIdSOIOTLY
ojur uontsodwodap-oine
uoneordde

qom 10 yoeoidde
Surures| pasiaradnsun)

oI

j et al.

jaj

834 D.Ba

B[NULIOJ [[BII pUB
uorstoaxd Suisn spoyjow
[enuew jsurede pajeprfea

sem uonisodwosap
QOTAIOSOIOTUI

UOTSAYO0D [BUI)XD
‘U0ISaYyO00 [euUIdUI
‘Furdnoo [euIx9
‘3urdnoo Teuro)ur

VAV[ut padojaaap
[00} © Sursn

Aq serouapuadop
II9Y) U0 paseq

[€11:(8100)
yoeoidde

Ppa191u90-A)1penb
B ‘SOOIAIISOIOTW
OJUI AIBMIJOS

pue s1o9foxd qniIn 921y], ‘Krend) «[IN padnoi3 are sasse[D) QO SUBOAIYOIB-IY €1
(uontsodwodop [T11:(8100)
SAIIRILIOYINE WOIY uoneordde
PpaureIqo) SAJIAIISOIOTI JnypIjouowr
Q0UQIJAI pUE SIJePIPULd WOoIJ AINOAIYOIL
9OIAIOSOIDIW PAYNIUIPI SOSSB[O QIBM]JOS SOOIAISSOIOTW
U9MIQq SONLIB[TWIS uaamI2q Jurdnod 0] uonIsueIn
QJBPI[BA "SOTWIAPROY AIeuonnjoAs pue -yoeoidde
(z pue Krendo oneys £q paureiqo uonORIXd
(1 :s100foxd eael om], #[IN «[IN Surysnyo ydein JnjeRWOINE Uy 4l
Suugsnpo Sursn
Suroen orureukp
pue (ydeis [eo
PpUE ‘2Inoa)IyoTe [11]:(8102)
(S1gNyd ‘M-Dd.L [eO1ydIRIAIY QINIOSIYOIR
91015194 ‘TopeilAe(]) SSe[o ‘9an SQOTAIISOIOTI
suonjeordde yrewyouaq XBIUAS JORI)SqRWOI] 0} 2IN)oNys
1 1surege pajepIeaA (g1 paure)qo) JnypIjouowt
[©103) s109foad [ernsnpur VIVM SIsA[eue onejs Suisn woiy suoneordde
pue Qo1nos uadQ Airend) INdVAseq sisA[eue weidoid qom SuneaSin 1T
POYIOIA UOTIBPI[EA SOIIJOJA] PUE SAINSBAN| SULI0J0eJay I0J Pas() S[OOL KSo[opoyleN IST'T Q0URIRJOY 'ON 'S

ur IquINN uoneI)
(180) oL, 1odeq

penupuo) (g 3ed) I dqeL

Based on SDLC 835

icroservices

A Prescriptive Model for Migration to M

(panuuo)y)

u31Sap [RIOYJO 1o}

0} paredwos ‘ropei] e
(¢ pue 11y swoy

(1 suoneordde yrewyouaq
qam 201nos-uado om],

WAJSAS UOTIEPUIWIWOIT
pue Jorqpao)
‘uondrosqgns yooq
:uoneorjdde snonnorg

pnopo uaai3 uo pakordep
uonyesrjdde Surssaooid
03pIA OTRYIUAS

[£1]TomNo 9o1AI0S

jsure3e pajepIfeA pue
(uoneoridde ojdwes qQqQ)
woIs£s Junjoen o3re)

(uoneoridde ojdwes qQq)
wa)sAS Junyoel], 031e) (g
pue (uoneosrdde snonnoy)

wa)sAs Jurpel], (1

[00) UOTEZI[ENSIA

soueurroyrod QOTAIOSOIOTUI
swmunt 9uage Suryoxd
KAjure[nueas 901AI0S BAR[- JOI][
*[IN #[IN

*[IN #[IN

#[IN 0dDSs1d

+IIN I91IND QOIAIS

adAKy0301d oryyrjouowr €
WOl pa3o9[od eIep 9[yoid
woij s[[ed Areiqi] SuLy
I191J€ 9913 JX)UOD-JUI[[Bd
Suneiousn

saniiqeded

SSQuISnq JeIwls

10139303 dnoi3 03 Sureos
[euorsuawipnnu £q
pamor[oj Afiqeqoid o[eos
pue ojepdn woj paure}qo
X1IjeW pAjy3Iom e sas

soniiqedeo
[eUOT}OUNJ-UOU pUE
sonradoid [euonouny se
SooTAIOsOIOTW dsodwod9(]

uonouny ssoulYy
se AIe[nqed0A 90UQIJoI
pue suoneoy1oads
IdvuedQ jo siseq

oty uo uontsodwrosa(g
eLIo)LIo Suridnod 91 woly
SOOTAIOSOIDTW JORIIXA pue
uonIsodwodop 901AIIS 10J
JI0MAUWIRIJ [00) B SIPIAOI]

[81]:(8107) yoroidde
JSIG-[II[OUOW Y} YIIM
SQIIAISOIOIW FUIUIISAP
10} [00} UOTJBZI[ENSIA

[L1]:(L100)

Suress [euorsuaWIpHNUI
pue XImeu

Pa1yS1om JuIsn SIOIAIIS
Jo roquunu pazrundo

ue Sururejqo 10
yoroidde onsijiqeqoad v

[911:(9102)
SPNOJJ I0J 2IN)AIYIIR
moo_?smo.ﬁuﬂa 154 ﬁuwgoﬁ

[S11:(L10D)
SIsA[eue QoeJIIUL

ySnoiyy uoneoynuapl
SOOIAIISOIDTIA

[¥11:(9102)
uonisodwoosp 991AI0S

0} yoeoidde onewa)sAs
B 119)IND 9JTAIOS

81

L1

91

Sl

4!

j et al.

jaj

836 D. Ba

"9IngInje STy} SSNISIp Jou seop 1oded YoI1easaI s9ILOIPUT [IN

SQI0}S BBp II9y) pue
suonouny aanruLd

[12]
:(0202) stsAeue

Jo Surdnoi3 wo)sAs paimonns
uo paseq yoeoidde Jursn S9O1AISOIOTWI
«[IN «[IN «[IN onewasAg Surynuopy |4
SOOTAIOSOIOTW SB
SONUS 9POD DINOS
[2] Joquinu uoroRINUL dnoi3 03 (seoen [oz]
NN IsuteSe pajepIfes ‘Toquunu uotjerado UOTINOIXA [OAJ] :(8707) Surraysnyd
19110y () ‘raquinu pOoYIdW pue SSe[d) Q0kI) UOIINIIX
pue ‘wnio]f (¢) QOBJIONUI ‘TOAI] SISA[eUe Q0BI], UO Paseq UOIOBIX
‘3o1q3undg (7) 93essowl J8 UOISAY0d uonnodAXa QOIAISSOIOTW
2101819d [‘ToA9L urojrad 03 pajuaLio
(1) :suoneoridde eaer moq Urewop je uoIsayo)) Cr'T Iy ssadoxd doys-earyy, -Kyreuonounyg 0T
lo1]
uruonpied :(0z0T) Wrouow
pue‘3urjopowt Y3 jJo sisATeue
SNDOur uonesrdde oreegq ‘Surzirerruej :sdoys OIWERUAP pUe d1e)s
K19110] QUI[UO ‘ziazopdxg Qao1y) SurAfoaur e1A uonisodwooop
KoeSo[‘prom-Teal VAV +TIN ‘10TIMONNS SISA[eue urewo(q QOTAIOSOIITIA 61
POYISIA UOTIEPI[EA SOLIIOJAl PUB SAINSBI[N| SULI0JORJY JOJ Pas() S[OOL, K30[0pOyIRIA ISI'T QOURIRJY 'ON 'S

ur pquiny uoneir))
((Ieay) opL, 1odeq

penunuo) (g 1red) 1 dqeL

A Prescriptive Model for Migration to Microservices Based on SDLC 837

approaches. Below is a brief description of the attributes:

5.1

* Technique of Decomposition is the real core of the approach that authors
have used for microservice identification.

Approach Type points to static, dynamic, or hybrid approach depending
on system artifacts considered as input.

* SDLC Artifact Used is a monolithic system’s artifacts and characteristics
that are used and analyzed to identify the candidate microservices.
Methodology is systematic analysis of the approach chosen by the
author. This illustrates the description of strategy used in each research
article.

Tools used for Refactoring describe the existing tools used in the paper
or developed by the author for decomposition purposes. Tools can be
used for web log collection, static code analysis, or coupling calculation.
* Measures and Metrics suggest empirical evaluation of the approaches
through some metrics. Not all primary studies have shown evaluation of
their microservices based on some evaluation framework.

Validation Method is the practice used to assess the goodness of the
decomposition approach employed for migration. Researchers have used
various validation methods like industrial project, sample project, case
study, experiment, or proof of concept (PoC).

Answer to Research Questions Based on Our Extensive
Literature Review

Our systematic review of primary studies gave answers to initially phrased
research questions. In this section, we will provide answers to all the above-
formulated research questions.

RQ1: What are the existing migration techniques proposed in the literature

for

MSA?

After analyzing the selected primary studies, we can classify the existing

microservices migration techniques into three broad categories as follows:

* Static: These techniques or approaches are based on software artifacts
that are static in nature like requirement documents, design documents,
source code files, and source code revision history repository.

* Dynamic: These approaches are based on software artifacts that are
collected at execution or run time of an application like web access log
and user usage log.

838 D. Bajaj et al.

Table 2 Identified broad categories of microservices migration techniques

Approach Type SDLC Artifacts Used Paper Reference Number
Static Requirement documents 8, 10, 14, 17
Requirement models 3,4,5,21
Design documents 7,14,1519
Source code files 2,11,12,13,16, 18, 19
Source code revision history repository 2,12
Dynamic Web access log 6,9
Application logs 1,11, 16, 19, 20
Hybrid Both static and dynamic documents 11,16, 19

» Hybrid: In these approaches, researchers have exploited both the static
characteristics and dynamic or run-time behavior of an application.

Table 2 shows Approach Type, SDLC Artifact Used, and paper reference
number (as per Table 1) where the approach is being used. Mazlami et al. [2]
have used change history of code and commit history from version control
system to establish set of classes that were changed together or worked on
by the same set of developers. Chen et al. [3], Li et al. [4], and Stojanovic
et al. [21] have exploited DFD of the business logic to derive microservices.
Amiri et al. [5] used business process models along with structural and
data object dependencies for microservice identification. Fan et al. [7] have
used DDD of the monolithic application to identify potential microservice
candidates. A similar approach is used by Levcovitz et al. [8] by identify-
ing requirement documents containing systems and subsystems information.
Ahmadvand et al.’s [10] decomposition methodology is based on functional
and non-functional requirements of the legacy system. Approaches discussed
in [2, 11-13, 16, 18], and [19] are based on source code repositories of
an existing application. Coupling and cohesion between classes are used
for identification of microservices. Gysel [14] presents legacy application
as nano-entities comprising data, its operation, and artifact elements. These
nano-entities are connected on the basis of 16 coupling criteria to extract
groups of services.

Techniques given by Taibi et al. [1], Muhammadet al. [6], Mustafa
et al. [9], and Jinet al. [20] are based on web access log or application logs
to derive microservices. Renet al. [11], Procaccianti et al. [16], and Krause
et al. [19] use both static and dynamic approaches for migration.

A Prescriptive Model for Migration to Microservices Based on SDLC 839

RQ2: How are existing microservice migration techniques associated with
SDLC artifacts? What all microservice decomposition techniques are appli-
cable to greenfield and brownfield development?

To answer this question, we are proposing an MPM based on SDLC
artifacts as shown in Figure 1. In our model, we are identifying microservices
for three kinds of applications — (1) anew application, (2) an existing monolith
application where the code may not be of much use, and (3) an existing
monolith application where the code may be used.

After investigating the selected primary studies, we identified that decom-
position techniques exist for both greenfield as well as brownfield devel-
opment. A new application development from scratch is called greenfield
development. Rebuilding a legacy application means re-architecting and
developing the application again from its existing requirement documents
and models. Refactoring a legacy software means restructuring the existing
code into MSA without changing its external behavior, i.e., using the existing
monolith code for microservices construction. Refactoring and rebuilding
techniques come into the category of brownfield development.

We observed that researchers have not categorized the applicability
of their approaches according to greenfield and brownfield development.
This indistinctness may pose challenges in the best approach selection for
migration.

The proposed MPM model defined on the basis of greenfield and
brownfield is as follows.

* New Application: During greenfield development, system architects
and developers may use requirement documents for the identification
of the microservices. These documents may vary depending on the
availability likeuse cases, functional, and non-functional requirements.
The microservices can also be identified from the available requirement
models like DFD and BPMN.

* Rebuilding: Occasionally, developers disregard the available code of
legacy application and plan to rebuild the entire application as microser-
vices due to (1) high maintenance cost of old code and (2) low value
outcome in extracting and reusing the old code. It also gives flexibility
to system architects to implement new services in more appropriate
programming languages and emerging technology stacks. Thus, rebuild-
ing offers technology refreshment for services. As a result, they retire
the legacy application code and use requirement documents (use cases,
functional, and non-functional requirements), requirement models (DFD

840 D. Bajaj et al.

Microservices Identification Process

|
Green Field Development Brown Field l)evelopment

|
New Application Development Legacy Application Migration

| J

| |

Design
Documents

SDLC a,‘ Requirement Requirement
A rtlfa cts N Documents Models

L.
DFD,
Use Cases, BPMN

Functional

Log e
Data a

Web Access
Logs,
Application

Source

API Specifications,
Class Diagrams,

Code Files,

Revision
History
Repo

Requirements,

Non-Functional
Requirements

UML Diagrams,
Domain Driven
Design,
Application and
Data Design

Logs

Figure 1 Microservices prescriptive model for migrating to microservices based on SDLC
artifacts.

and BPMN), and design documents (API specifications, class dia-
grams, Unified Modeling Language diagrams, DDD, application and
data design for rebuilding microservices.

* Refactoring: Code modules can be considered as good candidates for
reuse and extraction, if (1) they are not toxic, (2) their functionality is
based on single responsibility principle with clearly defined boundaries
in terms of DDD, and (3) have high intellectual property. In such
scenarios, developers may plan to restructure existing source code files.
Code revision history, web access logs, and application logs provide
supplementary information in the refactoring process.

Table 3 shows decomposition technique, documents that can be used,
and paper reference number where the approach is being used. Techniques
discussed in [3-5, 8, 10, 14, 17], and [21] make use of requirement documents
and models which enable these approaches suitable for greenfield develop-
ment and thus can be exploited for building a new microservice application.
Requirement documents and models along with design documents discussed
in [7, 14, 15], and [19] can be exploited in rebuilding microservices from an
existing legacy application.

Similarly techniques discussed in [1, 2, 6,9, 11-13, 16, 18, 19], and [20]
can be used by software architects and designers for brownfield development

A Prescriptive Model for Migration to Microservices Based on SDLC 841

Table 3 Identified broad categories of microservices migration

Development Type Decomposition Strategy SDLC Artifact Used Paper Reference

Greenfield New application Requirement 8,10, 14, 17
development development documents
Requirement 3,4,5,21
models
Brownfield Rebuilding Requirement 8, 10, 14, 17
development documents
Requirement 3,4,5,21
models
Design documents 7,14,1519
Refactoring Source code files 2,11,12,13,16, 18, 19
Source code 2,12
revision history
repository
Web access log 6,9
Application log 1,11, 16, 19, 20

as they mainly employ source code files, source code revision history
repository, web access log, and user usage log to extract microservices.

RQ3: How are results of decomposition techniques validated by authors?

For this question, we recognized various validation methods used by
different researchers to demonstrate the correctness of their decomposition
process. It is very essential to assess goodness and correctness for any
migration technique to justify its usefulness. In literature, we observed that
authors have validated their migration approaches by decomposing either an
industrial project or sample project and presented their work as an experience
report. Few researchers have demonstrated the feasibility of their approach
through PoC and shown the validity of results. Others have used either a
case study or experiment analysis to prove the correctness of their migra-
tion technique. Table 4 shows the different validation methods opted by
researchers.

Some primary studies validated their results using sample open source
web benchmark applications and compared their results with their official
design. JPetStore and Cargo Tracking System are commonly used mono-
lithic web applications used for validations, while AcmeAir and SpringBlog
are benchmarking applications implemented both as monolithic and MSAs.

842 D. Bajaj et al.

Table 4 Identified validation methods of microservices

Validation Approach Paper Reference
Industrial project 1,8,11,19

Sample project 4,7,9,11,12,13, 14, 15, 18, 20
Proof of concept 2,16

Case study 3,6, 10,17
Experiment 5

Consultation from industry expert 1,12,13

Table 5 Identified quality measures of microservices

Measure Paper Reference
Coupling 1,3,4, 13,20
Cohesion 3,4,13,20
Accuracy 5,11,13
Scalability 6
Performance 6,18
Operations provided by the microservice 20

CPU utilization/resource utilization 9

Some researchers got their decomposition approach validated by consult-
ing software industry experts who have identified microservices manually.
Few have just laid down their approach without referring to any validating
approaches [21].

Few researchers have also proved the goodness of their approach by
comparing their results with the results presented in other research articles.
For this, they have applied their migration approach on some benchmark web
applications. Li et al. [4] have compared their results with Gysel et al. [14]
and Baresi et al. [15]. Similarly, Nakazawa et al. [18] and Jin et al. [20] have
compared their results with Mazlami et al. [2].

RQ4: What are the significant measures for a microservice evaluation
framework?

To evaluate quality, accuracy, and goodness of identified microservices, it
must be evaluated against some microservices measurement framework [21].
Our literature study reveals that not much work has been done in identify-
ing the right measures for assessing the quality of microservices. Different

A Prescriptive Model for Migration to Microservices Based on SDLC 843

Table 6 Tools used in migration techniques for refactoring a monolithic application

Type of Brief Description Paper

Tool Tool Name of the Tool Ref. No. License

Static Structure101 Software structure 31 Proprietary
[37] analysis tool to analyze

the dependencies and
restructuring the source
code packages (SCP).

JPROF [38] Java profiling agent which 18 Open source
is used to capture
execution flow in the form
of call trees.

SonarGraph Analysis tool used for 4 Proprietary
Architect [39] continuous inspection of

code. It allows simulation

of refactoring without

touching the source code.

WALA [40] Code analyzer for Java to 11 Open source
produce class hierarchy
and inter-procedural
dataflow analysis.

Dynamic Kieker [41] Provides dynamic analysis 20 Open source
capabilities, i.e.,
monitoring and analyzing
a software system’s
runtime behavior —
enabling application
performance monitoring
and architecture discovery.

ExplorViz [42] Trace visualization tool 19 Open source
that enables a live
visualization and
monitoring of large
software applications. It
reveals applications
underlying architecture
including package
hierarchy and shows
related communication.

(Continued)

844 D. Bajaj et al.

Table 6 Continued

Type of Brief Description Paper

Tool Tool Name of the Tool Ref. No. License
Elastic APM Application performance 1 Open source
[43] monitoring (APM) tool

built on the ElasticStack.
It allows programmers to
monitor applications in
real time by gathering
detailed performance
statistics.

DISCO [44] Process mining tool that 1,15 Proprietary
allows discovering visual
maps from process data.

Database Analysis DBeaver [45] Universal database 20 Open source
management tool used to
identify database tables
used in a specific business
context. It enables data
and schema migrations.

measures proposed by researchers are coupling (afferent, efferent, and evo-
lutionary), cohesion (internal or external), accuracy, scalability, performance,
and resource utilization. Not all primary studies have shown evaluation of
their microservices based on some evaluation framework. A metric-based
ranking mechanism is proposed by [1] to assess identified decomposition
options. They used coupling between microservices (CBM) which can be
derived by number of external links divided by number of class in the
microservice. Ahmadvand [13] uses internal cohesion and coupling and
external cohesion and coupling for global evaluation of microservice char-
acteristics. Primary studies [6] and [18] take into consideration scalability
and performance respectively for evaluation. Table 5 shows identified quality
measures of microservices.

RQ5: What tools are used in migration techniques for refactoring a mono-
lithic application?

Refactoring a monolithic application can be done by examining depen-
dencies in its codebase and finding out various parts that are interconnected.
Several generic software quality, architectural analysis, and application per-
formance analysis tools are available using which microservice specific

A Prescriptive Model for Migration to Microservices Based on SDLC 845

architectural patterns can be identified. These tools enable us to understand
the linkage between closely related units which can serve as microservices.
Broadly, these tools can be categorized as static analysis tools and dynamic
analysis tools. Static analysis tools identify logically cohesive components
from a wide range of system components before running an application.
Dynamic analysis identifies cohesive components after running an applica-
tion, i.e., observing runtime behavior from application log or application
runtime traces. Table 6 shows the tools used by researchers in their migration
techniques for refactoring a monolithic application along with its licensing
options.

Researchers have used these tools in their migration strategies to refactor
monoliths to get microservices. Table 6 shows the list of static and dynamic
analysis tools. Majority of these tools support Java, C#, C, C++, and .Net
programming languages.

6 Discussion and Conclusion

As monolithic systems are becoming monstrous to deal with, several organi-
zations are breaking their legacy code to the MSA style. Microservices are
relatively a new architectural style and old monoliths are very different from
it in many aspects. Journey from monolith to MSA is not easy as there are
various decomposition techniques available in literature, and identifying a
technique to follow is a complex decision. Existing migration methods and
techniques do not fit well for every use case.

This research study is based on SLR and it creates awareness about
existing migration techniques from monolith to MSA. Existing migration
strategies have been categorized as static, dynamic, or hybrid build upon
the SDLC artifacts used and it answers our initially phrased first research
question. We observed that majority of papers selected as primary studies in
our review are based on static approaches capturing SDLC artifacts. Dynamic
approaches make use of runtime data, i.e., application logs and web access
logs to achieve optimally tailored services. Approaches involving both static
and dynamic methods are categorized as hybrid.

In our study, we give a comprehensive literature review on various migra-
tion techniques and classify them. We have proposed an MPM based on
SDLC artifacts which answers our second research question. This model can
be used in new application development or rebuilding/refactoring an existing
legacy application to microservices. Thus, our model will definitely help
its readers in identifying a suitable migration approach for their projects.

846 D. Bajaj et al.

Researchers have detailed about their migration approaches but never explic-
itly recorded its applicability for greenfield and brownfield developments.
We have categorized existing migration strategies used in greenfield or
brownfield developments. Our study revealed that most of the approaches
exist for brownfield scenarios as it is relatively straightforward to partition
an existing system. Identifying service boundaries in a greenfield system
could be complex as it necessitates a sufficient level of technical maturity and
complete understanding of the system at the beginning itself. This indicates
that greenfield development would be a future research direction.

The third research question addresses the multiple validation approaches
used by researchers in their migration strategies. We perceived that most
scientific articles have validated their approach using sample projects to
present their results. Some have compared their results with other estab-
lished techniques as well. We suggest that any migration strategy should
be objectively and quantitatively assessed as done by Li et al. [4] and Jin
et al. [20] rather than just subjective assessment as done in Chen et al. [3].
The fourth question discusses microservice evaluation frameworks that are
witnessed in literature. By and large, our findings revealed that there is a lack
of standard metrics to verify the quality of decomposition. A few migration
techniques compared their results against the quality metrics of coupling
and cohesion. Other quality metrics like performance and accuracy are also
used in few articles. The last question talks about tools available to support
refactoring a monolithic application. We have described various tools that
have been used to automate the static and dynamic migration approaches.
This comprehensive list of tools will assist system architects in planning for
existing system migration. To conclude, the findings of our research and
proposed model are useful to practitioners and system architects to avoid
experiencing the migration challenges already discussed by researchers.

References

[1] Taibi, D., & Systd, K. (2019). From Monolithic Systems to Microser-
vices: A Decomposition Framework based on Process Mining. In 8th
International Conference on Cloud Computing and Services Science,
CLOSER.

[2] Mazlami, G., Cito, J., & Leitner, P. (2017, June). Extraction of microser-
vices from monolithic software architectures. In 2017 IEEE Interna-
tional Conference on Web Services (ICWS) (pp. 524-531). IEEE.

A Prescriptive Model for Migration to Microservices Based on SDLC 847

[3] Chen, R.,Li, S., & Li, Z. (2017, December). From monolith to microser-
vices: a dataflow-driven approach. In 2017 24th Asia-Pacific Software
Engineering Conference (APSEC) (pp. 466-475). IEEE.

[4] Li, S., Zhang, H., Jia, Z., Li, Z., Zhang, C., Li, J., ... & Shan, Z. (2019). A
dataflow-driven approach to identifying microservices from monolithic
applications. Journal of Systems and Software, 157, 110380.

[5] Amiri, M. J. (2018, July). Object-aware Identification of Microservices.
In 2018 IEEE International Conference on Services Computing (SCC)
(pp. 253-256). IEEE.

[6] Abdullah, M., Igbal, W., & Erradi, A. (2019). Unsupervised learning
approach for web application auto-decomposition into microservices.
Journal of Systems and Software, 151, 243-257.

[7] Fan, C. Y., & Ma, S. P. (2017, June). Migrating monolithic mobile
application to microservice architecture: An experiment report. In 2017
IEEE International Conference on Al & Mobile Services (AIMS) (pp.
109-112). IEEE.

[8] Levcovitz, A., Terra, R., & Valente, M. T. (2016). Towards a technique
for extracting microservices from monolithic enterprise systems. arXiv
preprint arXiv:1605.03175.

[9] Mustafa, O., & Go6mez, J. M. (2017). Optimizing economics of
microservices by planning for granularity level. Experience Report.

[10] Ahmadvand, M., & Ibrahim, A. (2016, September). Requirements rec-
onciliation for scalable and secure microservice (de) composition. In
2016 IEEE 24th International Requirements Engineering Conference
Workshops (REW) (pp. 68-73). IEEE.

[11] Ren, Z., Wang, W., Wu, G., Gao, C., Chen, W., Wei, J., & Huang,
T. (2018, September). Migrating Web Applications from Monolithic
Structure to Microservices Architecture. In Proceedings of the Tenth
Asia-Pacific Symposium on Internetware (p. 7). ACM.

[12] Eski, S., & Buzluca, F. (2018, May). An automatic extraction approach:
transition to microservices architecture from monolithic application. In
Proceedings of the 19th International Conference on Agile Software
Development: Companion (p. 25). ACM.

[13] Selmadji, A., Seriai, A. D., Bouziane, H. L., Dony, C., & Mahamane, R.
0. (2018, September). Re-architecting OO Software into Microservices.
In European Conference on Service-Oriented and Cloud Computing
(pp. 65-73). Springer, Cham.

848 D. Bajaj et al.

[14] Gysel, M., Kolbener, L., Giersche, W., & Zimmermann, O. (2016,
September). Service cutter: A systematic approach to service decom-
position. In European Conference on Service-Oriented and Cloud
Computing (pp. 185-200). Springer, Cham.

[15] Baresi, L., Garriga, M., & De Renzis, A. (2017, September). Microser-
vices identification through interface analysis. In European Confer-
ence on Service-Oriented and Cloud Computing (pp. 19-33). Springer,
Cham.

[16] UU, Z. L., Korpershoek, M., & VU, A. O. Towards a MicroServices
Architecture for Clouds.

[17] Sayara, A., Towhid, M. S., & Hossain, M. S. (2017, December). A
probabilistic approach for obtaining an optimized number of services
using weighted matrix and multidimensional scaling. In 2017 20th Inter-
national Conference of Computer and Information Technology (ICCIT)
(pp- 1-6). IEEE.

[18] Nakazawa, R., Ueda, T., Enoki, M., & Horii, H. (2018, September).
Visualization tool for designing microservices with the monolith-first
approach. In 2018 IEEE Working Conference on Software Visualization
(VISSOFT) (pp. 32-42). IEEE.

[19] Krause, A., Zirkelbach, C., Hasselbring, W., Lenga, S., & Kroger, D.
(2020, March). Microservice Decomposition via Static and Dynamic
Analysis of the Monolith. In 2020 IEEE International Conference on
Software Architecture Companion (ICSA-C) (pp. 9-16). IEEE.

[20] Jin, W., Liu, T., Zheng, Q., Cui, D., & Cai, Y. (2018, July). Functionality-
oriented microservice extraction based on execution trace clustering. In
2018 IEEE International Conference on Web Services (ICWS) (pp. 211-
218). IEEE.

[21] Stojanovic, T. D., Lazarevic, S. D., Milic, M., & Antovic, 1. (2020,
February). Identifying microservices using structured system analysis.
In 2020 24th International Conference on Information Technology (IT)
(pp- 1-4). IEEE.

[22] Keele, S. (2007). Guidelines for performing systematic literature
reviews in software engineering (Vol. 5). Technical report, Ver. 2.3
EBSE Technical Report. EBSE.

[23] Taibi, D., Lenarduzzi, V., Pahl, C., & Janes, A. (2017, May). Microser-
vices in agile software development: a workshop-based study into
issues, advantages, and disadvantages. In Proceedings of the XP2017
Scientific Workshops (p. 23). ACM.

A Prescriptive Model for Migration to Microservices Based on SDLC 849

[24] Taibi, D., & Systi, K. (2019). A Decomposition and Metric-Based Eval-
uation Framework for Microservices. arXiv preprint arXiv:1908.08513.

[25] Garriga, M. (2017, September). Towards a taxonomy of microservices
architectures. In International Conference on Software Engineering and
Formal Methods (pp. 203-218). Springer, Cham.

[26] Dehghani, Z. (2018). How to break a Monolith into Microservices.

[27] J. Lewis and M. Fowler, “Microservices,” 2014. http://martinfowler.c
om/articles/microservices.html. Accessed on 13th March 2020

[28] Fritzsch, J., Bogner, J., Zimmermann, A., & Wagner, S. (2018,
March). From monolith to microservices: a classification of refactor-
ing approaches. In International Workshop on Software Engineering
Aspects of Continuous Development and New Paradigms of Software
Production and Deployment (pp. 128—-141). Springer, Cham.

[29] Ponce, F., Marquez, G., & Astudillo, H. (2019, November). Migrating
from monolithic architecture to microservices: A Rapid Review. In 2019
38th International Conference of the Chilean Computer Science Society
(SCCCO) (pp. 1-7). IEEE.

[30] Kazanavieius, J., & Mazeika, D. (2019, April). Migrating legacy
software to microservices architecture. In 2019 Open Conference of
Electrical, Electronic and Information Sciences (eStream) (pp. 1-5).
IEEE.

[31] Pedreira, O., Silva-Coira, F., Places, A. S., Luaces, M. R., & Folgueira,
L. G. (2019). Applying Feature-Oriented Software Development in SaaS
Systems: Real Experience, Measurements, and Findings. Journal of Web
Engineering, 18(4), 447-476.

[32] https://martinfowler.com/books/refactoring.html, Access on 21.5.2020

[33] Schmidt, R. A., & Thiry, M. (2020, June). Microservices identifica-
tion strategies: A review focused on Model-Driven Engineering and
Domain Driven Design approaches. In 2020 15th Iberian Conference
on Information Systems and Technologies (CISTI) (pp. 1-6). IEEE.

[34] Di Francesco, P., Lago, P., & Malavolta, 1. (2019). Architecting with
microservices: A systematic mapping study. Journal of Systems and
Software, 150, 77-97.

[35] Di Francesco, P., Lago, P., & Malavolta, 1. (2018, April). Migrating
towards microservice architectures: an industrial survey. In 2018 IEEE
International Conference on Software Architecture (ICSA) (pp. 29-
2909). IEEE.

[36] Taib, D., Lenarduzzi, V., & Pahl, C. (2018). Architectural patterns for
microservices: a systematic mapping study. SCITEPRESS.

http://martinfowler.com/articles/microservices.html
http://martinfowler.com/articles/microservices.html
https://martinfowler.com/books/refactoring.html

850 D. Bajaj et al.

[37] https://structurel101.com/legacy/structural-analysis/ Accessed on
18.11.2020

[38] http://perfinsp.sourceforge.net/jprof.html#Overview Accessed on
18.11.2020

[39] https://www.hello2morrow.com/products/sonargraph/architect9
Accessed on 18.11.2020

[40] http://wala.sourceforge.net/wiki/index.php/Main_Page Accessed on
18.11.2020

[41] http://kieker-monitoring.net/ Accessed on 18.11.2020

[42] https://github.com/ExplorViz/docs/wiki#quick-start-guides Accessed
on 18.11.2020

[43] https://www.elastic.co/guide/en/apm/get-started/current/overview.html
Accessed on 18.11.2020

[44] https://fluxicon.com/disco/ Accessed on 18.11.2020

[45] https://github.com/dbeaver/dbeaver/wiki Accessed on 18.11.2020

Biographies

Deepali Bajaj has over 14 years of teaching experience as Assistant Professor
in Department of Computer Science, Shaheed Rajguru College of Applied
Sciences for Women (University of Delhi). She is currently doing her research
in the area of Cloud and Distributed Computing. Her key research areas are
Microservices and Function as a service (FaaS) of serverless technology. She
has authored several national and international research publications.

https://structure101.com/legacy/structural-analysis/
http://perfinsp.sourceforge.net/jprof.html#Overview
https://www.hello2morrow.com/products/sonargraph/architect9
http://wala.sourceforge.net/wiki/index.php/Main_Page
http://kieker-monitoring.net/
https://github.com/ExplorViz/docs/wiki#quick-start-guides
https://www.elastic.co/guide/en/apm/get-started/current/overview.html
https://fluxicon.com/disco/
https://github.com/dbeaver/dbeaver/wiki

A Prescriptive Model for Migration to Microservices Based on SDLC 851

Urmil Bharti has over 14 years of teaching experience as Assistant Professor
in Department of Computer Science, Shaheed Rajguru College of Applied
Sciences for women (University of Delhi). Earlier she has more than 10 years
of industry experience. Her last designation was Senior Quality Analyst.
She is currently doing her research in the area of Cloud and Distributed
Computing. Her key research area is open source serverless frameworks. She
has authored several national and international research publications.

Anita Goel is an Associate Professor in Department of Computer Science,
Dyal Singh College, University of Delhi, India. She has received her Ph.D.
in Computer Science and Masters in Computer Applications from Jamia
Millia Islamia and Department of Computer Science (University of Delhi),
respectively. She has a work experience of more than 30 years. She is
a visiting faculty to Delhi Technological University and NIIT University.
From 2009-10, she was Fellow in Computer Science, at Institute of Life
Long Learning (ILLL) in University of Delhi. She has served as member of
program committee of International conferences like IEEE BigData Congress
2015 and ICWI 2015. She has guided several students for their doctoral
studies and has travelled internationally to present research papers. She has
authored books in Computer Science and has several national and interna-
tional research publications.

852 D. Bajaj et al.

S. C. Gupta is B.Tech (EE) from IIT Delhi and has worked at Computer
Group at Tata Institute of Fundamental Research and NCSDCT (now C-DAC
Mumbai), Till recently, he worked as Deputy Director General, Scientist-G
and Head of Training at National Informatics Centre, New Delhi and was
responsible for keeping its 3000 scientists/ engineers up to date in various
technologies. He has extensive experience in design and development of
large Complex Software Systems. Currently he is a Visiting Faculty at Dept
of Computer Science and Engineering, IIT Delhi. His research interests
includes Software Engineering, Data Bases and Cloud Computing. He has
been teaching Cloud Computing at IIT Delhi, which includes emerging
disruptive technologies like SDN and SDS. He has guided many M.Tech &
Ph.D. Research students in these technologies and has many publications in
Software Engineering and Cloud Technology in National and International
Conferences and Journals.

	Introduction
	Existing Migration Approaches
	Related Work
	Research Methodology and Search Design
	Research Questions
	Search Strategy

	Study Results
	Answer to Research Questions Based on Our Extensive Literature Review

	Discussion and Conclusion

