
Integrating Semantic Run-Time Models
for Adaptive Software Systems

Francesco Poggi1, Davide Rossi1 and Paolo Ciancarini2

1Department of Computer Science and Engineering (DISI),
University of Bologna, Bologna, Italy
2University of Bologna (Italy) and Innopolis University (Russia)
E-mail: Francesco.Poggi@unibo.it; Davide.Rossi@unibo.it;
paolo.ciancarini@unibo.it

Received 05 January 2019;
Accepted 03 March 2019

Abstract

Software-intensive systems work in ever-changing environments
requiring expensive technical efforts to manage their evolution. In
order to mitigate their risks and costs they should dynamically self-
adapt to any modification of their environment. MAPE-K (Monitor,
Analyze, Plan, Execute – Knowledge) is the basic architectural pattern
for building software-intensive self-adaptable systems. In this paper we
propose an approach in which all the information about a system and
its environment is unified by using Semantic Web technologies into
a set of semantic run-time models which enhance the Knowledge in
MAPE-K. Ontologies are used to manage the interaction and integration
of these models with disparate data sources. The resulting knowledge
base is then used to drive adaptation activities exploiting well known
languages and notations. We discuss how MAPE-K can be exploited
in order to take advantage of ontological representations, along with

Journal of Web Engineering, Vol. 18 1-3, 1–42.
doi: 10.13052/jwe1540-9589.18131
c© 2019 River Publishers

2 F. Poggi et al.

Semantic Web languages and tools, by studying a real-word case study:
a legacy system that was not designed to perform automatic adaptation.
We discuss merits and limits of our approach based on semantic run-
time models both in the context of this specific case study and in a
broader scope.

Keywords: Autonomic systems, adaptive software, MAPE-K,
Semantic Web, ontology.

1 Introduction

Software systems work in continuously changing environments, where
endless modifications in user needs, resource availability, and system
faults require expensive technical efforts. In order to mitigate the
costs for such efforts, software systems should be able to dynamically
self-adapt.

Two main approaches to software adaptation exist: internal or
external adaption, referring to where the self-reconfiguration is
managed [1].

The former consists in using specialized mechanisms (e.g. excep-
tions in programming languages, fault-tolerant protocols, etc.) at design
time to accommodate run-time variabilities. Although effective in
practice, these mechanisms have the drawback to be highly specific
to the application and wired into the code. As a consequence, systems
that use internal approaches are costly to build, difficult to manage
and modify, and usually provide only localized treatments to the
changes.

In contrast to the internal approach, many recent works suggest to
use external mechanisms [2, 3] and models [4] that implement a closed-
loop control pattern to monitor and dynamically adapt at run-time the
system’s behaviors. In the external approach, the adaptation is realized
by an autonomous manager component that resides outside the managed
elements. By localizing the concerns of monitoring and resolving prob-
lems in a separate software component, external approaches provide an
effective engineering solution. The issues related to the development,
analysis, maintenance, and extension are simplified since they are

Integrating Semantic Run-Time Models for Adaptive Software Systems 3

isolated in a separate engine, thus reuse across multiple systems is
facilitated, as described in [1]. Moreover, the self-adaptation behaviours
of an external manager can be integrated into legacy systems, for which
documentation and source code is unavailable.

An architecture-based approach to self-adaptation was first devel-
oped in [5], exploiting architectural models to represent complex
systems in terms of components, relations, and properties. A reference
architecture for these adaptive systems has been proposed in [6], and a
general and reusable infrastructure based on the classical control loop
in control theory has been described in [7].

More recently, the emerging field of Model Driven Engineering
(MDE) [8] called Models@Run.time [4] extended this approach,
investigating the use of different models to represent the knowledge
required for managing the operations of software systems. The main
benefit of Models@Run.time is a unified high-level perspective of
the observed systems, together with precise representations of the
knowledge needed to drive their adaptation.

Model-based adaptation raises new research challenges that have
to be tackled [9]. In this work we mainly focus on two problems.
The first challenge is heterogeneity management: this is the capability
of managing the heterogeneity of knowledge sources and knowledge
users. Most systems are made of different programming languages,
technologies, architectural styles, and mechanisms to support dynamic
adjustments; providing a general framework to manage this variability
helps in lowering the level of complexity of the overall system and
allows easier dynamic integration of new data sources and changes of
policies and rules. Moreover, in order to allow adaptation at the model
level, the heterogeneity problem is not limited to the technological
and architectural aspects of software systems. Since in this paradigm
models are the primary means to understand, interact with, configure,
and modify the run-time behavior of software, architectural models
must be integrated with other ones (e.g. Monitoring Models, Eval-
uation Models, Change Models, Execution Models, etc.) to capture
the different concerns, information and viewpoints of each specific
domain.

4 F. Poggi et al.

We exploit ontologies to solve the problem of heterogeneity man-
agement. By definition, an ontology is “the manifestation of a shared
understanding of a domain that is agreed between a number of agents,
and such agreement facilitates accurate and effective communications
of meaning” [10], which in turn leads to other benefits such as inter-
operability, reuse, and sharing. Ontologies address the heterogeneity
management problem providing a shared and unified representation of
a complex and heterogeneous domain of interest. In particular, we used
the Web Ontology Language (OWL) [11] for all the semantic models
that represent system and environment information. This choice has
the advantage to offer a standardized and mature set of notations and
technologies to represent and perform computations on such models.
For example, the default Semantic Web query language (i.e. SPARQL
[12]) provides an out-of-the-box solution to the run-time queryable
models problem. Moreover, adaptation strategies can be implemented
using semantic reasoners (e.g. Pellet[13], FaCT++[14], Hermit[15],
etc.) and rule languages (e.g. the Semantic Web Rule Language –
SWRL [16]).

The second challenge is dynamic query management, that is the
capability of creating run-time queryable models. Model-based adap-
tation approaches should guarantee easy and uniform mechanisms to
interrogate the information about the observed systems and their envi-
ronment, possibly accessing data that pertain to different viewpoints.
A unified perspective of the observed system should be provided as
up-to-date queryable models, ready to be processed by adaptation
engines.

In this paper we propose an approach able to effectively tackle both
challenges by defining a reference framework for autonomic systems
based on the MAPE-K pattern. This framework is then validated by
instantiating it to solve a real world case study. A key point of our
proposal is the use of specific ontologies we developed for representing
system and environment-related information.

The rest of the paper is organized as follows. In Section 2 we discuss
some relevant related works. Section 3 introduces a real case study
that we will use to illustrate and then evaluate our approach. Section 4
describes the method we used to develop our semantic models. Section 5
illustrates the architecture of the adaptation engine we propose.

Integrating Semantic Run-Time Models for Adaptive Software Systems 5

Section 6 provides an example of an adaptation loop execution and
shows how system information can be queried at run-time. In Section 7
we test and evaluate the effectiveness of our approach for the case
study. Section 8 compares our solution with the main approaches to self-
adaptation based on run-time models, and presents recent developments
of this research line. Finally, in Section 9 we draw some conclusions
and discuss some future extensions of this work.

2 Related Work

Semantic technologies have been used diffusely to support adaptation
in the context of services composition [17]. The main idea here is to
allow the dynamic selection of cooperating services on the basis of their
semantic description.

OWL-S [18] and its ancestor, DAML-S [19], are Semantic Web
technologies to describe web services. Both DAML-S and OWL-S
had among their design goals the ability to describe web services in
a way that would foster their composition on the basis of semantic
annotations. Relevant examples of this approach include [20] where
DAML-S is used with Petri Nets for simulation, verification, and
automated composition of Semantic Web services, [21] where the
authors propose a UDDI extension for semantic services matchmaking
and [22] where the authors propose a semi-automatic approach, in
the form of a recommender for composition designers that uses
DAML-S.

Other two interesting works use Semantic Web technologies
for self-configuring and self-adapting information networks [23],
and design an adaptive framework in a public safety context that
supports collaborative work and dynamic reconfiguration at run-
time [24], respectively. However, very few works treat specifically
the problem of providing tools for building context-aware collab-
orative applications with dynamic reconfiguration of components
at runtime.

In the context of agent-based systems and robotics the use of
Semantic Web technologies to represent dynamic models has been
explored in [25]. The authors propose a framework in which an OWL

6 F. Poggi et al.

ontology is used to describe the semantics and structure of information
processing components. A description based on this ontology is then
transformed into Answer Set Programming (ASP) [26], a form of
declarative programming that is used to represent the overall logic of
the problem to solve; then an ASP solver is used to create a run-time
model of information processing.

In [27] the authors describe a framework based on sets of Live
Semantic Annotations and eco-laws, namely self-organizing system
rules. These artifacts are automatically translated to RDF and SPARQL
to make use of existing Semantic Web inference tools and enable
resource discoveries in opportunistic networks.

Many recent works and standards proposes approaches and tech-
nologies based on Semantic Technologies to easily model dynamic and
self-reconfiguring applications especially for ubiquitous and pervasive
computing. One of the first ontology-based approaches is the Standard
Ontology for Ubiquitous and Pervasive Applications (SOUPA) [28].
It is expressed in OWL and includes modular component vocabular-
ies to represent intelligent agents, time, space, events, user profiles,
actions, and policies for security and privacy. The authors describe two
prototype systems that exploit SOUPA to support knowledge sharing,
context reasoning, and dynamic system behaviors at run-time.

Internet of Things (IoTs) researchers are taking into consideration
Web of Things (WoTs) to support reactive system engineering. The
goal of the WoT is to extend Web services to devices, allowing a
Web client to access devices properties, to request the execution of
actions or to subscribe to events representing state changes [29]. The
related ontology describes how to model physical or virtual sensors and
actuators with the main objective of easing the binding with phisical
devices reachable through web protocols (REST, CoAP, etc.).

A different objective is pursued by the Semantic Sensor Network
(SSN) ontology [30], an Open Geospatial Consortium (OGC)/World
Wide Web Consortium (W3C) standard. It is mainly focused on the
SOSA (Sensor, Observation, Sample, Actuator) pattern [31], a pattern
that can be used to effectively model reactive systems. Therefore it
aims at supporting the definition of simple adaptive behaviors that link
observations, coming from modeled sensors, with the related reactions,

Integrating Semantic Run-Time Models for Adaptive Software Systems 7

performed by actuators. These behaviors are represented by RDF sub-
graphs in a knowledge base and can be activated when observation
facts are asserted. In order to link observations to physical or virtual
properties, the SOSA pattern is extended with some system-oriented
features.

The Semantic Smart Sensor Network (S3N) ontology [32] is another
effort that tries to specialize SSN for supporting the modeling of smart
sensors. To this end a new class, s3n:SmartSensor, has been intro-
duced as a specialization of ssn:System. A smart sensor is composed
of embedded sensors, microcontrollers and communicating systems.
The behavior is expressed by the execution of an algorithm (selected
among the existing ones on context basis) by the microcontroller,
which can be thought as a specialization of the ssn:Actuator, being
able to select algorithms from the current context and to change the
state of the whole smart sensor. Therefore, the main purpose of S3N
is to support smart sensors modeling and not to close the logical
gap between sensors and actuators for fully programming reactive
systems.

Some recent works are based on the idea of using the afore-
mentioned standards and technologies to develope reactive cloud
applications. For instance, in [33] authors present a proposal for an
ontology-driven approach that leverages techniques from the Semantic
Sensor Web to develope self-adaptive cloud application platforms using
the MAPE-K reference model. The main advantage of the described
framework is the support for run-time analysis of the heterogeneous
monitored values by means of reasoning over ontologies and rules.
Another example is FRAMESELF [34], an ontology-based framework
designed for the self-configuration of Machine-to-machine (M2M)
architectures and communications. The main problem faced in this
work is the need to connect thousands of heterogeneous machines that
are widely distributed and frequently evolve according to their envi-
ronment changes. The proposed framework uses the MAPE-K pattern
for self-managing the integration and reconfiguration of heterogeneous
systems.

Effective cloud application platforms self-management is the main
objective presented in [35]. The work uses the MAPE-K paradigm

8 F. Poggi et al.

as reference model for adaptation cycles, and ontologies and rules
to represent self-reflective system knowledge and define adaptation
policies. In [36] the authors use Semantic Web languages to encode
values monitored within cloud application platforms, and integrate
semantically-enriched observation streams with static ontological
knowledge to adapt systems through run-time reasoning mechanisms.
A prototype is presented that utilize Stream Reasoning techniques to
perform analysis and failure diagnosis, and suggest adaptation actions.

To the best of our knowledge no other work in the field of self-
adaptation supported by the MAPE-K pattern includes an extensive
use of Semantic Web languages and tools.

3 Case Study

Our idea to base software adaption on semantic models has been tested
in the context of a real world use case in order to assess its effectiveness.
Our research group has an ongoing collaboration with CeSIA, the center
responsible for the whole IT infrastructure of the University of Bologna
(UniBo). UniBo provides ICT services to more than 90.000 students
and about 10.000 employees, including both faculty and staff. The
IT architecture supporting these services is composed of 160 centers
connected by 510 km of optical fibers, and by means of 500 servers
(90% virtual), exposing 480 websites with an average of 12.400.000
visitors/year and 137.000.000 page hits/year.

One of the main problems faced by our technical staff is the timely
management of this huge system: driven by automatic alerts and users,
whose feedbacks are collected by the help desk in approximately 50.000
tickets/year, the staff people use a monitor infrastructure to analyze
the system state, identify the root cause of each issue, and activate
(human-driven) adaptation plans to solve problems.

Current monitoring is mostly focused on the infrastructure and
network level and uses Nagios1, but a plan to extend it has already
been designed and includes Bischeck2 for inspecting applications and

1https://www.nagios.org/. This and all others URLs presented in the paper have
been accessed on March 20th, 2019.

2http://www.bischeck.org/

Integrating Semantic Run-Time Models for Adaptive Software Systems 9

processes, Splunk3 for analyzing machine-generated data and New
Relic4 for application monitoring. More details on this case study can
be found in [37].

Since each monitor component provides a partial perspective of the
whole system, one of the main issues is to link these fragmented and low
level data about the system state to higher level informative elements in
architectural views, giving clearer and more complete representations
of the domain elements and their relationships. This relation between
the lower IT infrastructure and the higher enterprise architecture of ser-
vices is crucial to understand the exact cause of each critical situation,
identify the elements involved, and devise the most suitable mitigation
and adaptation plan to reconfigure the system into the desired working
state. This can be performed reconciling the information provided
by different views into a unified, coherent and complete Run-time
Model, with both static and dynamic information about the system,
more suitable to respond to internal and environmental events through
adaptation strategies.

In addition to these requirements and objectives, the solution should
also provide an effective and unified mean to inspect and analyze the
system (i.e. the model should be queryable), and facilitate automatic
mechanisms of adaptation and reconfiguration (i.e. to enable system-
level reflection at execution time). All these requirements have been
considered while developing the adaptation engine, by leveraging
the architectural knowledge and dynamic information in the model
contained in the system specification, as described in detail in the next
section.

4 Ontological Engineering

People, organizations, and systems have to communicate and
interoperate. However, their different requirements, contexts, and goals
are often reflected into a wide range of viewpoints and assumptions,
producing different, overlapping and/or mismatched concepts and

3http://www.splunk.com/
4http://newrelic.com/

10 F. Poggi et al.

structures that however concern the same subject matter. Ontologies
are used to overcome this lack of a shared understanding, providing
an unifying framework for the different viewpoints that coexist in vast
and complex enterprise systems [38].

Ontologies provide many practical benefits, such as serving as
the basis for human communication (by reducing conceptual and
terminological confusion), improving the interoperability among sys-
tems with different modeling methods, paradigms, languages and
software tools, and supporting the main system engineering principles
(such as reusability, reliability, requirements identification, system
specification, etc.).

We initially investigated the possibility of adopting an existing
ontology to represent the concepts emerging in complex self-adaptation
scenarios, such as our case study. We soon realized that no one single
existing solution could fit the diverse contexts we face: domain specific
ontologies have the drawback to be too specific, being able to capture
only partially and only some of the details of the domain, but omitting
others. On the other hands, generic ontologies are too broad, contain
details that are not relevant, while other important aspects that should
be captured are ignored.

For this reason we propose the use of domain-specific ontolo-
gies developed with adaptation in mind. While several approaches
are possible, we had good success using the eXtreme Design with
Content Ontology Design Patterns (XD) methodology, a collaborative,
incremental and iterative method for pattern-based ontology design
based on well known ontology engineering principles and best practices
described in [39] and [40]. XD identifies an approach, a family of
methods, and some associated tools based on the application and
exploitation of Ontology Design Patterns (ODPs) [41].

ODPs are modeling solutions enabling the reuse of encoded experi-
ences and good practices to solve recurrent ontology design problems.
They can be of different types, including: logical, which typically pro-
vide solutions for solving problems of expressiveness e.g., expressing
n-ary relations in OWL; architectural, which describe the overall shape
of the ontology (either internal or external) that is convenient with
respect to a specific ontology-based task or application e.g. a certain

Integrating Semantic Run-Time Models for Adaptive Software Systems 11

DL family; content, which are small ontologies that address a specific
modeling issue, and can be directly reused by importing them in the
ontology under development e.g., representing roles that people can
play during certain time periods; presentation, which provide good
practices e.g. naming conventions; etc.

Moreover, XD is partly inspired by eXtreme Programming (XP)
[42] and experience factory [43]. Both approaches introduce princi-
ples that are relevant to our case study: minimizing the impact of
changes at any stage of the development and producing incremen-
tal releases based on customer requirements (XP), and improving
products quality exploiting past experiences’ know-how (experience
factory).

5 Systems Engineering

The architecture at the base of our approach splits a system into an adap-
tive sub-system (including the domain logic) and an adaptation engine
(that controls the system by monitoring its state and effecting changes
when needed). This approach implements the adaptation engine as
a feedback loop [44] and is opposed to “internal adaptation”, which
interwines reconfiguration strategies (i.e. sensors, effectors, adaptation
processes) and application in a single component. The internal approach
has proved to be useful for handling local adaptations (e.g. for exception
handling), but has the drawback that often leads to poor scalability
and maintainability, as described in [1]. In our external approach, the
feedback loop is implemented following the MAPE-K paradigm [6]
in four stages (Monitor/Analyze/Plan/Execute) that share the Knowl-
edge of the managed elements, the adaptable software is monitored
and analyzed, and if changes are required, adaptation is planned and
executed.

The shared knowledge of the system is represented by Reflection
Models, which reflect the adaptable software and its environment,
mapping system-level observations to a higher level of abstraction.
Reflection Models accommodate both static and dynamic informa-
tion, and are paired with other models to define, for example, the
system expected behavior (Requirements Models), reconfiguration

12 F. Poggi et al.

Figure 1 The architecture of the autonomic manager.

policies (Evaluation Models), mappings between reconfigurations and
system-level adaptations (Execution Models), etc.

A key point of our solution is using a declarative approach rep-
resenting this knowledge in an ontological form providing both an
architectural view of the system components and their relationships,
a description of the system configurations, and a clear definition of the
adaptive behaviors associated to each component. The methodology
used to develop the semantic models for the case study is sketched in
Section 4.

The overall architecture of the autonomic manager is depicted
in Figure 1. In the lower part of the picture, a rectangle represents
the CeSIA system. Three components are directly involved in the
adaptation process: CMDBuild5 contains structural information about
the CeSIA system (i.e. servers, applications, services, and their rela-
tionships); Nagios implements the monitoring infrastructure, gathering
data on the dynamic behaviors of its components; the Reconfiguration
agent collects the output of the autonomic manager, if the needed recon-
figuration can be enacted automatically the agent task is to perform it, if
the reconfiguration needs human intervention the agent creates tickets

5http://www.cmdbuild.org

Integrating Semantic Run-Time Models for Adaptive Software Systems 13

that are inserted in an issue ticketing system. All managed hosts host
worker agents that enact local reconfiguration when requested by the
reconfiguration agent (this usually takes the form of starting/stopping
services or adding/removing resources to/from running services).

The gray rectangle in the upper part of the picture represents the
autonomic manager. The four MAPE-K phases are implemented by
concurrent Java components, which coordinate by passing a control
token through shared queues. While the current implementation is
centralized, the design is meant to be easily replicable in a distributed
environment (with obvious advantages in term of robustness and
availability).

The shared knowledge is refined to a set of semantic models that
mimic the taxonomy presented in [45], with run-time information about
the adaptable systems and all the information required to implement
any adaptation activities. These models are implemented as OWL
ontologies, stored in an external triplestore. This triplestore is the only
communication channel used by the autonomic manager components,
which perform read and write operations using standard mechanisms
(i.e. using SPARQL).

6 Examples from the Case Study

In order to clarify our approach, in this section we describe a running
example of an adaptation loop. As discussed in the previous sections,
our adaptation engine is modeled around the four MAPE-K phases.
The loop frequency varies from context to context, depending on the
degree of reactivity required by each system: for the CeSIA adapta-
tion requirements (e.g. react to service delays, replace or reconfigure
defective devices, etc.) a frequency of a few minutes is a reasonable
value.

The objective of the first MAPE-K phase (Monitor) is to provide
an updated view of the system and environment state, that will be used
in the following steps to identify the adaptation needs and implement
the most suitable adjustments. In particular, it is responsible for pro-
viding a Reflection Model, which is constituted by static and dynamic
information about the monitored elements.

14 F. Poggi et al.

The static information concerns the structure of the system in
terms of logical components and their relations. In our example,
they are hardware (e.g. servers, network devices, etc.) and software
(e.g. applications, services, etc.) components, and their relationships
(e.g. component dependencies, application and business processes,
etc.). Among the services provided to UniBo by CeSIA (e.g. mail,
backup and storage, computational resources, etc.), in this example
we focus on a recurring pattern that is used by CeSIA to model most
of the web services exposed at UniBo. This pattern is derived from the
Archimate [46] models developed by CeSIA for tracing and navigating
between low level services/nodes and high level processes/applications,
and has been refined using the methodology described in Section 4.
As shown in Figure 2, UniBo exposes to any client some high-level
interfaces to its services in the form of web portals (e.g. a main portal
for the university and eight sub-sites, one for each school).

The architecture is realized through a flexible cluster implemented
on top of a virtualization infrastructure (which imply that all nodes
are virtual machines). There are mainly three elements types in the
architecture: balancer nodes, cluster nodes, and DBMS nodes. At the
top of the picture, two balancer nodes are paired by a fail-over link
and use heartbeat for guaranteeing high availability: in case that the
primary node becomes unavailable, the secondary replaces it. The
traffic load is balanced to the cluster nodes, which have a common
structure: Varnish6 HTTP accelerator is primarily used for caching, then
HAProxy7 balances the load to the Zope Application Server processes,
which serve the requests querying the Memcached8 component. If data
and objects are not retrieved in memory, an external data source (i.e. the
DBMS node) is interrogated. A copy of this last cluster component is
mirrored for disaster recovery, and is managed using Oracle/Microsoft
technologies. The information about the elements of this architecture
and their relationships is stored in a CeSIA server as CMDBuild assets,
and is converted by our Monitor in RDF triples that conform to the
CeSIA ontology. To perform this task, a Monitoring Model is used

6https://varnish-cache.org/
7http://www.haproxy.org/
8https://memcached.org/

Integrating Semantic Run-Time Models for Adaptive Software Systems 15

Figure 2 The ontological model for the CeSIAcase study during the Monitor (a) and
Analyze (b) phases. In this example, the adaptation engine observes an anomalous
behaviour (i.e. an high response time) in the portal of the Law School. The cause of
the delay is a problem in the Zope Application Server of the left cluster node.

to map these system-level observations to the abstraction level of the
Reflection Model.

This static picture reflecting the system structure is enriched with
the dynamic information (e.g. the response time of an application, the
resource distribution of a server, a node temperature, etc.) coming from
the sensors of the monitoring system. In particular, the output of Neteye
checks are stored on a regular basis in a .dat file, which is read at
each stage and mapped using the Monitoring Model to the semantic

16 F. Poggi et al.

level, enriching the Reflection Model with CeSIA systems’ dynamic
information.

The next phase (Analyze) is responsible for recognizing all those
critical situations that need a system reconfiguration. The adaptation
requirements are identified by applying the Evaluation Model that
defines constraints on the Reflection Model. The Evaluation Model
contains, for example, a characterization of slow application as such
having a response time greater than 10 seconds, of an overloaded server
as having more than 95% CPU load, etc. We exploited simple SPARQL
queries to periodically interrogate the knowledge base, filter the ele-
ments of interest, and add the required statements. Other approaches
can be envisioned, as described in [47].

We modeled this information using the pso:StatusInTime class
included in the Publishing Status Ontology (PSO)9, which allows to
describe the state (e.g. to be slow) that a system component (e.g. the
Zope Application Server) has in a given time interval. Each state can be
enriched with metadata information: for example, we can add details
about the agent that executed the query and the current loop phase.
Figure 2(b) shows the updated Run-time Model, where red rectangles
highlight the elements interested by the newly added statements. In
particular, the Application Service interface of the School of Law and
the Zope Application Server are overloaded due to a massive number of
incoming requests (i.e. the number of simultaneous incoming requests
is very large, and saturates the processes in the server pool).

In the third phase (Plan), the adaptation engine uses both the
structural knowledge about the system architecture and the results of
the previous analysis on the system behaviors to devise, if needed, a
reconfiguration plan. This is accomplished in two consecutive steps.
First, the planner uses the dependency relations among the system
components to assign a priority to the recognized issues. This task
can be accomplished in many ways. For example, different weights
or mechanisms such as utility functions [48] can be used to drive the
selection process. For our case study, we developed also this part of
the engine through SPARQL queries. In particular, the following query

9The PSO ontology is available at http://purl.org/spar/pso

Integrating Semantic Run-Time Models for Adaptive Software Systems 17

implements the principle of selecting as a priority all the defective
components that does not depend from other defective ones.

SELECT ?start {
?start a cesia:Component ;
pso:holdsStatusInTime/pso:withStatus ?status1 .

FILTER NOT EXISTS {
?end ˆcesia:dependsOn+ ?start ;
pso:holdsStatusInTime/pso:withStatus ?status2 .

}
}

This is an example of how reasoning mechanisms can be leveraged
for driving adaptation strategies. Since all the dependency relations
in our model have been defined as transitive, we can run a reasoner
on the model and automatically derive all the dependency relations.
The execution of this query on the semantic model enriched with the
inferred relations returns, as we expected, the Zope Application Server
(marked with a cross in Figure 3(c)).

The objective of the second step of the Plan phase is to select the
most suitable reconfiguration policies for the selected components.
These choices are performed using the Change Model that contains
the list of the possible reconfigurations for each system element. For
example, the CeSIA system defines a list of adaptation strategies in
the form of logical rules that are evaluated in sequence on the existing
knowledge. The first rule whose premises are satisfied is chosen, and
its consequences produce statements that enrich the model with the
the strategy to implement. Since the cluster node on the left is not
overloaded (i.e. it still has RAM and CPU load available), the selected
reconfiguration strategy is to activate more Zope Client processes into
the ZopeApplication Server. In fact, increasing the number of processes
in the pool can be a suitable choice to respond to an increased number
of requests to the web portal of the School of Law.

The objective of last phase, i.e. Execution, is converting the
model-level adaptation into the system-level by supervising the needed
operations, and synchronizing the Reflection Model in the knowledge
base with the new system state. Figure 3(d), for example, shows the

18 F. Poggi et al.

Figure 3 The ontological model for the CeSIA case study during the Plan (c) and
Execute (d) phases. In this example, the reconfiguration policy implemented to solve
the delays in the portal of the Law School consists in adding client processes in the
Zope Application Server.

Zope Application Server pool updated with the added client process
(striped with bold borders). Obviously, not all the adaptation strategies
can be automatized. For instance, the replacement of broken devices
is an activity that needs an human intervention. In all these cases,
the Execution phase filters the chosen adaptation strategies that have
been devised by the Plan phase reading the Reflection Model, and
uses the information read from the Execution Model to instruct the
reconfiguration agent or to assign a ticket to the most appropriate human
agent. In both cases, all the information about the state of the managed
elements are updated into the knowledge base, ready to be processed
by the next cycle of the adaptation loop. Further adaptation actions can

Integrating Semantic Run-Time Models for Adaptive Software Systems 19

take place only after a transient period meant to accommodate for the
set up of the new components. It is the so called warm-up time, during
which machines are booted, programs are started, data structures are
populated and so on.

The monitoring and management of web portals problems (such as
delays) is one of the most common activity at CeSIA. The adaptation
strategy described in the previous example is the automatization of
the most common reconfiguration strategies used by CeSIA. During
the design of our approach, we searched for a trade-off between
system expressiveness (in terms of both system architectures and
adaptation strategies) and complexity. In particular, we tried to min-
imize the effort required to design, add and test new reconfiguration
strategies.

Another very common reconfiguration scenario that we successfully
managed with our approach is shown in Figure 4(a). In this case, the
delays perceived by the clients of the School of Law portal are caused
by a problem in the cluster node, that has an average CPU load and
memory usage greater than 90%.

In this case, a reasonable adaptation strategy is deploying another
cluster node, which translates in the activation of a new virtual machine
(as long as the private cloud infrastructure has resources to host
additional virtual machines), as shown in Figure 4(b). This approach
has the advantage of requiring no node downtime while improving the
performance with the addition of caching and balancing components to
the cluster architecture. Since the architecture of the Application Server
Cluster is virtualized, also other “light-weight” approaches can be
devised, such as guaranteeing more resources (e.g. CPUs and memory)
to a running virtual machine serving as cluster node.

The chosen adaptation strategy can be achieved by adding a new
reconfiguration rule in the Change Model that will be evaluated during
the Plan phase, and extending the Execution Model with instruc-
tions about the operations to enact the planned system changes. The
deployment/undeployment of an additional cluster node in our virtual
infrastructure requires a minimal administrative effort and is performed
by the reconfiguration agent using the hypervisor APIs.

20 F. Poggi et al.

Figure 4 In this example, the delays in the Law School portal are caused by a
problem in a cluster node (a). The chosen adaptation policy is adding another node
to the cluster (b).

7 Experiments

The system described in Section 5 has been built instantiating the
policies explained in Section 6. We created a copy of the UniBo
portal (with a subset of its contents) using the very same virtualization
infrastructure and the same software components.All nodes were set up
to host a reconfiguration worker and the autonomic manager (including
the triplestore) hosted in a separate virtual machine. The tests have
been set up aiming at verifying the ability of the system to trigger
adaptation activities as described in the examples of Section 6 when

Integrating Semantic Run-Time Models for Adaptive Software Systems 21

the performances of the portal are not aligned with a given Service
Level Agreement (SLA). The SLA mainly consists in upper bounds on
the response times for various resources sets and an allowed percentage
of violations in a given time window.

The various components of the autonomic manager have been
configured to interact with the knowledge base via SPARQL statements
used to create and query RDF triples, implementing the needed policies.
The following SPARQL query, for example, filters all the application
servers that are slow, that have both a CPU load and memory usage
less than 85%, and that are running a number of processes which is less
than the number of available cores.

SELECT ?appserver ?label ?rt
WHERE {

?appserver a cesia:ApplicationServer ;
rdfs:label ?label ;
pso:holdsStatusInTime/pso:withStatus

cesiadata:slowComponent ;
cesia:hostedBy+ ?node .

?node a cesia:Node ;
cesia:numCores ?numCores .
cesia:hasObservation ?obs .

?obs cesia:hasObservedResponseTime ?rt ;
cesia:hasObservedCpuLoad ?cl ;
cesia:hasObservedMemoryUsage ?mu ;
cesia:hasObservedProcesses ?p .
cesia:hasObservedResponseTime ?rt .

FILTER(?cl <= 85ˆˆxsd:decimeal)
FILTER(?mu <= 85ˆˆxsd:decimeal)
FILTER(?p < ?numCores)

} ORDER BY DESC(?rt)

By running this query, we get the list of all the application servers
that can be reconfigured by adding a new process, in descending order
response time.

22 F. Poggi et al.

appserver |label |rt
------------------------------+------------------------------+----

cesiadata: zopeappserver -2 |Plone v5.0 - School of Law #2 |945
cesiadata: zopeappserver -1 |Plone v5.0 - School of Law #1 |711
cesiadata: zopeappserver -25 |Plone v4.4 - School of Arts #3 |689

Other reconfiguration strategies have been devised for our case
study. For instance, when the previous policy cannot be applied (e.g.
because the CPU of the node that hosts the slow component is over-
loaded), the autonomic manager checks whether it is possible to add a
new node to the cluster. The following excerpt implements this policy
by filtering all the application clusters that contains slow application
servers and that have not reached their maximum capacity.

SELECT DISTINCT ?cluster ?label ?maxNodes ?currNodes
WHERE {

?appserver a cesia:ApplicationServer ;
redfs:label ?label ;
pso:holdsStatusInTime/pso:withStatus

cesiadata:slowComponent ;
cesia:hostedBy+/odp:isPartOf ?cluster .

?cluster a cesia:Cluster ;
cesia:nodeLimit ?maxNodes .

{
SELECT ?cluster (count(?parts) as ?currNodes)
WHERE {

?cluster a cesia:Cluster ;
cesia:hasPart ?parts

} GROUP BY ?cluster
}
FILTER(?currNodes <= ?maxNodes)

}

This second SPARQL query produces the list of the clusters that
can be reconfigured by adding a new cluster node, as shown in the
following excerpt.

Integrating Semantic Run-Time Models for Adaptive Software Systems 23

cluster | label | maxNodes | currNodes
--------------------+--------------------------+----------+ ---------

cesiadata: cluster-7 | School of Eng.-Web Portal | 4 | 2

All the reconfiguration policies are contained in the Change Models
in the form of a list of SPARQL queries similar to the previously
described ones. In order to select the strategy to apply, the autonomic
manager runs the queries in sequence on the Reflection Models, and
selects the first that returns a non-empty set. If more than one element
is returned, only the first is chosen as the next to be reconfigured.
The information about the adaptation policy that needs to be carried
out are attached to the selected node, and added to the Reflection
Models in the KB, ready to be performed during the next Execution
phase. If no reconfiguration can be applied, the autonomic manager
performs the most general reconfiguration policy, that consists in
tracing this situation in the Reflection Models, and notify the systems
administrators about the issue.

The tests have been performed using an artificial load generator able
to mimic the access patterns of the users as extracted from the running
portal logs. We then used this generator to inject requests as coming
from a raising number of users and checked how the system performed
self-adaptation activities in order to meet the SLA. The architecture of
such system is described in details in Section 6.

The initial cluster is composed by two nodes with four cores and
two gigabytes of RAM. Two Zope Client processes are loaded into the
application servers. Moreover, we decided to turn varnish off, since we
wanted to exclude the caching system from our experiment and mainly
focus on the other components of the architecture.

Before starting the experiment, we also set some configuration
parameters within the autonomic manager. We set the maximum
number of processes within each application server to four in order
to not exceed the total number of processors in each node, a best
practice suggested by the application server developers. We also set
the maximum number of concurrent cluster nodes to six in order to not
exceed the limit imposed by the resources (e.g. CPUs and memory)
available for the virtualization infrastructure. The frequency of the
adaptation loop is set to 10 s. Finally, in order to meet the SLA, we set

24 F. Poggi et al.

the response time threshold to 600 ms. When the cluster node exceeds
this limit, the autonomic manager intervenes by reconfiguring the
cluster.

We prepared a list of twenty HTML pages within our test site. The
address of each request is randomly selected within this page pool.
We started keeping 10 concurrent open HTTP connections, and raised
linearly until we reached a maximum of 80 connections in 20 minutes.
This load has then been kept for five additional minutes.All the requests
are performed by a single machine within the application cluster
subnetwork, connected to the physical machine that hosts the cluster
through a switch with gigabit connections (we also performed some
distributed tests to make sure that the single load-injecting machine
was not a bottleneck and it turned out it was not).

In order to evaluate our autonomic manager, we performed the
experiments twice, first with the autonomic manager turned off and
then on. In the first run of the experiment, the response time of the
web portal increases linearly as the number of concurrent connections
grows, settling around a value of 1.8 seconds (see Figure 5). The number
of page hits/second is stable at around 4500 throughout the duration of
the experiment, since the number of concurrent requests (10 or more for
the whole duration of the experiment) exceeds the available resources
(4 serving processes, 2 on each cluster node).

The results of the experiment with the autonomic manager turned
on is depicted in Figure 6. In this case, the response time grows linearly
until it reaches the threshold of 600 ms after around 5 minutes from
the beginning of the experiment. At this point the autonomic manager
applies the first adaptation policy by running new process into the two
application servers.

After four reconfigurations (the spikes in the response time line,
approximately one every 50 seconds), the two application servers
reached the maximum number of runnable processes. For this reason,
around minute 8:30, a new node with two processes is added to the
cluster, producing another spike and then a fall in the response time
line. Two more processes are added to the newly added node, and
then at around 14:30 a fourth node is added to the cluster. No other

Integrating Semantic Run-Time Models for Adaptive Software Systems 25

Figure 5 Number of active threads over time, response time and hits per seconds
of our experiment with the autonomic manager turned off.

reconfigurations are performed until the end of the experiment, since
the response time sensed by the autonomic manager is always under or
around the threshold of 600 ms.Another interesting aspect worth noting
is the number of hits per second, which increases at each reconfiguration
(as we expected), rising more evidently when new nodes are added to
the cluster (the two spikes at 5:10 and 14:30).

As previously stated these tests are aimed at verifying the autonomic
adaptation capability of the system in presence of a rather simple load
pattern; we were not, at this stage, interested in sophisticated elasticity
algorithms (such as for instance those described in [49]) designed to
face more complex loads, such as flash crowds.

26 F. Poggi et al.

Figure 6 Number of active threads over time, response time and hits per seconds
of our experiment with the autonomic manager turned on.

However, we performed also an experiment with a more challenging
load pattern that corresponds to a typical event in the operations of our
real-world case study: sudden and sustained increase access rate due
to specific events. A typical example is the access rate of the students
enrollment service right after the opening date (this usually happens in
lateAugust). In such a case we witness a sudden raise in the request rate;
with our implementation this would trigger the various self-adaptation
activities bringing the system into a state in which it is able to sustain
the requests while respecting the SLA. However, the requests received
while the reconfiguration activities are in progress would experience
delays and, in same cases, failures. The solution currently adopted to
overcome this problem is to rely upon over-provisioning: the system is
configured with more cluster node replicas and more server processes

Integrating Semantic Run-Time Models for Adaptive Software Systems 27

than needed by the usual number of users so that when the load suddenly
increases the system can serve all the requests with no excessive delays
or errors. This is a quite expensive policy and is adopted by hand-made
reconfiguration performed by the administrators when they know that
specific dates are approaching.

Replicating this situation with a self-adaptive mechanism has been
quite easy with our approach: it is just matter of integrating a calendar
of critical dates in the knowledge base and add new time-triggered
over-provisioning policies (expressed with SPARQL statements); both
adjustments can be performed on-the-fly with no (or very limited, as
in the case of the addition of a new data source) system downtime.
Figures 7 and 8 shows the behaviors of the cluster with and without
over-provisioning, respectively.

Figure 7 Without over-provisioning, the application cluster does not respect the
SLA (the response time raises around 2 s. when the maximum load is reached, and
needs time to add nodes and reconfigure the system).

28 F. Poggi et al.

Figure 8 With over-provisioning (three additional cluster nodes have been added),
the application cluster meets the SLAand stabilizes around a response time of 600 ms.

8 Discussion and State of the Art

In this work we faced two main challenges to model-based adaptation:
finding a unified framework to manage the heterogeneity of real-world
systems, and designing models queryable at run-time suitable to support
reasoning about the states of the system they model. The key point of our
solution is using Semantic Web technologies and some related tools to
represent and manage adaptable systems models both at design and run
time. The design and deployment of a working self-adaptable system
in a real-world use case has provided us with a chance to investigate
the potential of our approach, showing that it can be successfully
implemented in a real operational context.

While it can easily be argued that what can be done using this
approach can be accomplished as well in other ways, we believe that

Integrating Semantic Run-Time Models for Adaptive Software Systems 29

our proposal lowers significantly the complexity of both design and
maintenance activities. This is important to convince industry and
institutions that methods based on Model Driven Engineering constitute
a viable solution [50].

Szvetits et al. [51] comprehensively survey the approaches that
have been proposed to model adaptive systems and that focus on the
common idea of establishing semantic relationships between executed

Table 1 Comparison of our work with other main approaches to adaptation based
on runtime models at the state of the art

Kind of Tech/Syntax/ Main

Paper Run-time Models Approach Objective

Whittle et al. [52] Requirements
Models

Fuzzy
Branching
Temporal Logic

Requirements
change

Inverardi and Mori [54] Feature Models,
Context Models

Probabilistic
Automaton

Contextual
Change

Calinescu et al. [56] Evaluation
Models

Markov models
(i.e. stochastic
processes)

Reliability
(NFR)

Bromberg et al. [57] Behaviour
Models

K-Colored and
Merged
Automata

Interoperability
(NFR)

Schneider and
Trapp [58]

Safety Models Conditional
Safety
Certificates [64]
(Binary
Decision
Diagrams [65])

Efficiency
(NFR)

Röttger and
Zschaler [60]

Context Models CQML+ [66] Usability
(NFR)

Georgas et al. [62] Architecture
Models

Directed Cyclic
Graph

Monitoring

Ales and Matjaz [63] Business process
model

BPMN
(extended)

Policy
Checking
and
Enforcement

This paper Semantic Models OWL Adaptation

30 F. Poggi et al.

applications and run-time models. In Table 1 we summarize the main
approaches, and compare them with our solution based on semantic run-
time models. In particular, we describe the main adaptation problems
addressed and the kind of run-time model(s) at the base of each work,
and provide details about the technologies used.

One of the main problem faced by adaptive systems is to meet
requirements changes and evolution in operational environments (i.e.
application contexts). Main challenges in the development of adaptative
systems lie in finding out and analyzing alternative configurations,
comparing their benefits with the current system state. Models at run-
time help to model variable parts of the system during the system
execution, and help the development of a formal representation of
requirements that can be processed at run-time. The requirements
language RELAX [52], for instance, is a declarative language for
self-adaptive systems which supports the explicit expression of envi-
ronmental uncertainty in requirements. RELAX is based on fuzzy
branching temporal logic and provides modal, temporal and ordinal
operators to express uncertainty. Example operators are SHALL, to
define functionality the system must always provide (invariants), and
MAY/OR to define alternatives. In [53, 37] we extended the work
presented in this paper by introducing requirements models to our
semantic run-time models, adding requirement-awareness capabilities
to our approach. Experimental results show that modification of the
requirements models at run-time result in different re-configuration
decisions of our adaptive engine.

Inverardi and Mori [54] focus on the problem of continuously
changing contexts and requirements at run-time, and propose a software
development process to support consistent evolution with the help of
Context Models, Features Models, and a control loop. Their framework
can be applied at different levels of abstraction spanning from code to
software architecture, and is based on probabilistic automaton theory
to drive adaptation.

The management of goals expressing Non-Functional Require-
ments (NFRs) – i.e. those requirements for which satisfaction cannot be
established in a clear-cut sense, such as reliability, availability, security,
etc. – is another of the main problems faced by current researches on

Integrating Semantic Run-Time Models for Adaptive Software Systems 31

adaptive systems [55]. Calinescu et al. [56], for instance, propose a
framework named QoSMOS which utilizes Markov models within a
feedback loop to quantify the performance and reliability of service-
based systems. The monitoring information are evaluated with the help
of specified QoS requirements, and reconfiguration plans are defined
in terms of changes to resource allocation policy and/or to the overall
application workflows.

Interoperability of distributed adaptive systems is the main chal-
lenge faced by Starlink [57]. In environments where services and
systems are composed dynamically, e.g. pervasive computing and
Systems-of-Systems, the protocols used by two systems are usually not
known until run-time. The main component of the proposed framework
is an engine that executes coloured automata representing the interop-
erability behaviors between protocols, and translates message content
from one protocol to another. In [58], the authors introduce the notion
of Safety Models to support the management of dynamic behaviors
of system at run-time so that efficiency requirements are met in evolving
system configurations. An approach for the development of reactive
systems based on semantic models and inspired to agile methodologies
which considers both functional and non-functional requirements is
presented in [59].

To improve tool support for NFRs management, Röttger and
Zschaler [60] propose the use of Context Models to make the specifica-
tion of non-functional measurements (i.e. nonfunctional dimension that
can be constrained to describe a non-functional property) independent
of their use in concrete system specifications. Transformations between
context models and measurements allows the application designer to
focus on the business logic when developing an application.

We initially analyzed NFRs in adaptive systems based on semantic
run-time models in [47, 61], and them managed them introducing
Softgoals Models in [53].

Georgas et al. [62] face the problem of monitoring adaptive systems,
and propose an approach based on a graph representation of the compo-
nents that capture historical configurations and corresponding system
behaviours. The adaptive process is augmented with metadata such as
frequency/duration of entered configurations and context information

32 F. Poggi et al.

(Context Models). A run-time Architecture Model is constituted by
the historical graph consisting of system configurations (nodes) and
transitions (edges), where transitions store architectural differences
between configurations in a bidirectional way, enabling rollback and
rollforward operations. Another interesting work [63] is based on
business process models describing sequences of business activities
that are used to check workflow conformance and guide adaptation
through extensions to BPMN (Business Process Model and Notation)
elements.

9 Conclusions and Threats to Validity

Changes in environment-related aspects and user needs are the chal-
lenges that (self-)adaptive systems have to deal with. These systems
drive their behavior on the basis of a knowledge that is composed
of models representing facts pertaining the environment, the systems
itself, the user needs. In this paper we presented an approach to manage
this knowledge under a unified semantic architecture. We put this
architecture at work by creating a prototype system based on it. Our
tests show that specific real-world critical systems can be fruitfully
implemented using our approach. Not only the resulting system is in
fact able to perform specific adaptation activities in an autonomous way
but we have been able to achieve this goal with a simple, clean, easy to
understand and maintain infrastructure that can easily (and on-the-fly)
accommodate new sources of information and policies’ changes.

We evaluated our approach in a specific application field. In order
to evaluate our approach more broadly we will focus on the adaptation
engine. In particular, we plan to compare different reconfiguration
strategies, and study how and to what extent the system gets affected
by these automated interventions.

We now discuss some potential threats to the validity of our
approach in various contexts. Here is a list of the issues we perceive as
the most relevant.

Performance: while triplestore datasets have reached a level of
robustness and performance close to that of relational databases, current
semantic inference engines are not as well performing as their business

Integrating Semantic Run-Time Models for Adaptive Software Systems 33

rules engines counterparts. Several research projects are currently
working to overcome these limits. For example, stream reasoning [67,
68] techniques have already shown that the use of semantic technologies
for the management of large streams of data is quite effective.

Design vs. run-time tracing: tracing between models is a relevant
issue, mostly with model-driven engineering techniques. While we still
have not implemented a specific solution, we observe that the ability
to easily tag any element of our semantic models should reasonably
simplify the task.

Requirement model representation: different policies [48]
(situation-action vs goal-oriented vs utility function-based) need dif-
ferent refinement and representation of the requirements. In some cases
also uncertainty [52] has to be taken into account. This could lead to
different modeling strategies and impact some adaptation activities.
With our running use case we investigated a goal-oriented approach.
While it is perfectly reasonable to assume that the use of semantic
models for different kinds of requirements is indeed possible, the level
of complexity needed to link requirements and system artifacts could
be not trivial.

Acknowledgments

This paper was supported by the MIUR-PRIN GAUSS Project, and by
the Consorzio Interuniversitario per l’Informatica (CINI) under projects
EMC2 and MANTIS.

References

[1] M. Salehie and L. Tahvildari, “Self-adaptive software: Landscape
and research challenges,” ACM Transactions on Autonomous and
Adaptive Systems (TAAS), vol. 4, no. 2, p. 14, 2009.

[2] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury, Feedback
control of computing systems. John Wiley and Sons, 2004.

[3] K. J.Aström and R. M. Murray, Feedback systems: an introduction
for scientists and engineers. Princeton university press, 2010.

34 F. Poggi et al.

[4] G. Blair, N. Bencomo, and R. B. France, “Models@run.time,”
Computer, vol. 42, no. 10, pp. 22–27, 2009.

[5] P. Oreizy, M. Gorlick et al., “An architecture-based approach to
self-adaptive software,” IEEE Intelligent systems, no. 3, pp. 54–62,
1999.

[6] J. O. Kephart and D. M. Chess, “The vision of autonomic
computing,” Computer, vol. 36, no. 1, pp. 41–50, 2003.

[7] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, and
P. Steenkiste, “Rainbow: Architecture-based self-adaptation with
reusable infrastructure,” Computer, vol. 37, no. 10, pp. 46–54,
2004.

[8] R. France and B. Rumpe, “Model-driven development of com-
plex software: A research roadmap,” in Future of Software
Engineering. IEEE Computer Society, 2007, pp. 37–54.

[9] M. Derakhshanmanesh, J. Ebert, M. Grieger, and G. Engels,
“Model-integrating development of software systems: a flexible
component-based approach,” Software and Systems Modeling,
2018.

[10] P. Agarwal, “Ontological considerations in giscience,” Interna-
tional Journal of Geographical Information Science, vol. 19, no. 5,
pp. 501–536, 2005.

[11] W. O. W. Group, “Owl 2 web ontology language,” 2012. [Online].
Available: https: //www.w3.org/TR/owl2-overview/

[12] E. Prud’Hommeaux, A. Seaborne et al., “Sparql query language
for rdf,” 2008. [Online]. Available: https://www.w3.org/TR/rdf-
sparql-query/

[13] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz, “Pellet:
Apractical owl-dl reasoner,” Web Semantics: science, services and
agents on the World Wide Web, vol. 5, no. 2, pp. 51–53, 2007.

[14] D. Tsarkov and I. Horrocks, “Fact++ description logic reasoner:
System description,” in Automated reasoning. Springer, 2006,
pp. 292–297.

[15] B. Glimm, I. Horrocks, B. Motik, G. Stoilos, and Z. Wang,
“HermiT: an OWL 2 reasoner,” Journal of Automated Reasoning,
vol. 53, no. 3, pp. 245–269, 2014.

Integrating Semantic Run-Time Models for Adaptive Software Systems 35

[16] I. Horrocks, Patel-Schneider et al., “SWRL: A semantic web rule
language combining OWL and RuleML,” 2004.

[17] J. Rao and X. Su, “A survey of automated web service com-
position methods,” in Semantic Web Services and Web Process
Composition. Springer, 2005, pp. 43–54.

[18] D. Martin, M. Burstein, D. Mcdermott, S. Mcilraith, M. Paolucci,
K. Sycara, D. L. Mcguinness, E. Sirin, and N. Srinivasan, “Bring-
ing semantics to web services with OWL-S,” World Wide Web,
vol. 10, no. 3, pp. 243–277, 2007.

[19] A. Ankolekar, M. Burstein, J. R. Hobbs, O. Lassila, D. Martin, D.
McDermott, S. A. McIlraith, S. Narayanan, M. Paolucci, T. Payne,
and others, “DAML-S: Web service description for the seman-
tic web,” in The Semantic Web—ISWC 2002. Springer, 2002,
pp. 348–363.

[20] S. Narayanan and S. McIlraith, “Simulation, verification and
automated composition of web services,” in Proc. 11th Int. Conf.
on the WWW. ACM, 2002, pp. 77–88.

[21] K. Sycara, M. Paolucci, A. Ankolekar, and N. Srinivasan, “Auto-
mated discovery, interaction and composition of semantic web
services,” Web Semantics: Science, Services and Agents on the
World Wide Web, vol. 1, no. 1, pp. 27–46, 2003.

[22] E. Sirin, J. Hendler, and B. Parsia, “Semi-automatic Composition
of Web Services using Semantic Descriptions,” In Web Services:
Modeling, Architecture and Infrastructure workshop in ICEIS.
2003. Citeseer, 2002.

[23] G. Gharbi, M. B. Alaya, C. Diop, and E. Exposito, “Aoda: an
autonomic and ontology-driven architecture for service-oriented
and event-driven systems,” in Enabling Technologies: Infrastruc-
ture for Collaborative Enterprises (WETICE 13). IEEE, 2012,
pp. 72–77.

[24] S. Ramanathan,A. Kamoun, and C. Chassot, “Ontology-based col-
laborative framework for disaster recovery scenarios,” in Enabling
Technologies: Infrastructure for Collaborative Enterprises (WET-
ICE 13). IEEE, 2012, pp. 104–106.

[25] S. Niemczyk and K. Geihs, “Adaptive run-time models for groups
of autonomous robots,” in Proc. 10th Int. Symp. on Software

36 F. Poggi et al.

Engineering for Adaptive and Self-Managing Systems, 2015,
pp. 127–133.

[26] M. Gelfond and V. Lifschitz, “Classical negation in logic programs
and disjunctive databases,” New generation computing, vol. 9,
no. 3–4, pp. 365–385, 1991.

[27] G. Stevenson, J. Ye, S. Dobson, D. Pianini, S. Montagna,
and M. Viroli, “Combining Self-organisation, Context-awareness
and Semantic Reasoning: The Case of Resource Discovery in
Opportunistic Networks,” in Proc. 28th ACM Symposium on
Applied Computing, ser. SAC. New York, USA: ACM, 2013,
pp. 1369–1376.

[28] H. Chen, F. Perich, T. Finin, and A. Joshi, “Soupa: Standard
ontology for ubiquitous and pervasive applications,” in First
Int. Conf. on Mobile and Ubiquitous Systems: Networking and
Services. IEEE, 2004, pp. 258–267.

[29] S. Kaebisch and T. Kamiya, “Web of Things (WoT) thing
description,” First Public Working Draft, W3C, 2017.

[30] A. Haller, K. Janowicz, S. Cox, D. Le Phuoc, K. Taylor, and
M. Lefrançois, “Semantic sensor network ontology,” W3C Rec-
ommendation, W3C, 2017.

[31] K. Janowicz, A. Haller, S. J. Cox, D. Le Phuoc, and M. Lefrançois,
“Sosa: A lightweight ontology for sensors, observations, samples,
and actuators,” Journal of Web Semantics, 2018.

[32] S. Sagar, M. Lefrançois, I. Rebai, M. Khemaja, S. Garlatti, J. Feki,
and L. Médini, “Modeling Smart Sensors on top of SOSA/SSN and
WoT TD with the Semantic Smart Sensor Network (S3N) modular
Ontology,” in Proc. 9th International Semantic Sensor Networks
Workshop, Monterey, USA, 2018.

[33] R. Dautov, I. Paraskakis, and D. Kourtesis, “An ontology-driven
approach to self-management in cloud application platforms,”
in Proc. 7th South East European Doctoral Student Conference,
2012, pp. 539–550.

[34] M. B.Alaya and T. Monteil, “Frameself: an ontology-based frame-
work for the self-management of machine-to-machine systems,”
Concurrency and Computation: Practice and Experience, vol. 27,
no. 6, pp. 1412–1426, 2015.

Integrating Semantic Run-Time Models for Adaptive Software Systems 37

[35] R. Dautov, D. Kourtesis, I. Paraskakis, and M. Stannett, “Address-
ing self-management in cloud platforms: a semantic sensor web
approach,” in Proc. Int. workshop on Hot topics in cloud services.
ACM, 2013, pp. 11–18.

[36] R. Dautov, I. Paraskakis, and M. Stannett, “Utilising stream
reasoning techniques to underpin an autonomous framework for
cloud application platforms,” Journal of Cloud Computing, vol. 3,
no. 1, p. 13, 2014.

[37] D. Rossi, F. Poggi, and P. Ciancarini, “Dynamic high-level in self-
adaptive systems,” in Proc. 6th Int. Conf. on Reliability, Infocom
Technologies and Optimization (ICRITO). IEEE, 2017, pp. 49–60.

[38] M. Uschold and M. Gruninger, “Ontologies: Principles, methods
and applications,” The knowledge engineering review, vol. 11,
no. 02, pp. 93–136, 1996.

[39] A. Gómez-Pérez, M. Fernández-López, and O. Corcho, Ontologi-
cal Engineering: with examples from the areas of Knowledge Man-
agement, e-Commerce and the Semantic Web. Springer Science
and Business Media, 2006.

[40] M. C. Suárez-Figueroa, A. Gómez-Pérez, E. Motta, and A.
Gangemi, Ontology engineering in a networked world. Springer
Science and Business Media, 2012.

[41] A. Gangemi and V. Presutti, “Ontology design patterns,” in
Handbook on ontologies. Springer, 2009, pp. 221–243.

[42] J. Shore et al., The art of Agile development. O’Reilly Media, 2007.
[43] V. R. Basili, G. Caldiera, and H. D. Rombach, “Experience

factory,” Encyclopedia of software engineering, pp. 469–476,
1994.

[44] B. Morin, O. Barais, J.-M. Jezequel, F. Fleurey, and A. Solberg,
“Models@ run. time to support dynamic adaptation,” Computer,
vol. 42, no. 10, pp. 44–51, 2009.

[45] T. Vogel and H. Giese, “Model-driven engineering of self-adaptive
software with EUREMA,” ACM Transactions on Autonomous and
Adaptive Systems (TAAS), vol. 8, no. 4, p. 18, 2014.

[46] M. M. Lankhorst, H. A. Proper, and H. Jonkers, “The architecture
of the archimate language,” in Enterprise, Business-Process and
Information Systems Modeling. Springer, 2009, pp. 367–380.

38 F. Poggi et al.

[47] F. Poggi, D. Rossi, P. Ciancarini, and L. Bompani, “Semantic run-
time models for self-adaptative systems: a case study,” in Enabling
Technologies: Infrastructure for Collaborative Enterprises (WET-
ICE 16). IEEE, 2016.

[48] J. O. Kephart and W. E. Walsh, “An artificial intelligence perspec-
tive on autonomic computing policies,” in Proceedings. 5th IEEE
Int. Workshop on Policies for Distributed Systems and Networks,
2004, pp. 3–12.

[49] G. Lodi, F. Panzieri, D. Rossi, and E. Turrini, “Sla-driven clustering
of qos-aware application servers,” Software Engineering, IEEE
Transactions on, vol. 33, no. 3, pp. 186–197, 2007.

[50] E. Luna et al., “Challenges for the adoption of Model-Driven Web
Engineering approached in industry,” Journal of Web Engineering,
vol. 17, no. 3-4, pp. 183–205, 2018.

[51] M. Szvetits and U. Zdun, “Systematic literature review of the
objectives, techniques, kinds, and architectures of models at run-
time,” Software and Systems Modeling, vol. 15, no. 1, pp. 31–69,
2016.

[52] J. Whittle, P. Sawyer, N. Bencomo, B. H. Cheng, and J.-M.
Bruel, “Relax: Incorporating uncertainty into the specification
of self-adaptive systems,” in Proc. 17th IEEE Int. Requirements
Engineering Conference. IEEE, 2009, pp. 79–88.

[53] D. Rossi, F. Poggi, and P. Ciancarini, “Dynamic high-level require-
ments in self-adaptive systems,” in Proc. 33rd ACM Symposium
on Applied Computing. ACM, 2018, pp. 128–137.

[54] P. Inverardi and M. Mori, “A software lifecycle process to support
consistent evolutions,” in Software Engineering for Self-Adaptive
Systems II. Springer, 2013, pp. 239–264.

[55] J. Mylopoulos, L. Chung, and B. Nixon, “Representing and using
nonfunctional requirements: A process-oriented approach,” IEEE
Transactions on Software Engineering, vol. 18, no. 6, pp. 483–497,
1992.

[56] R. Calinescu, L. Grunske, M. Kwiatkowska, R. Mirandola, and
G. Tamburrelli, “Dynamic qos management and optimization in
service-based systems,” IEEE Transactions on Software Engineer-
ing, vol. 37, no. 3, pp. 387–409, 2011.

Integrating Semantic Run-Time Models for Adaptive Software Systems 39

[57] Y.-D. Bromberg, P. Grace, and L. Réveillère, “Starlink: runtime
interoperability between heterogeneous middleware protocols,”
in 2011 31st International Conference on Distributed Computing
Systems. IEEE, 2011, pp. 446–455.

[58] D. Schneider and M. Trapp, “Conditional safety certification of
open adaptive systems,” ACM Transactions on Autonomous and
Adaptive Systems (TAAS), vol. 8, no. 2, p. 8, 2013.

[59] P. Ciancarini, A. Messina, F. Poggi, and D. Russo, “Agile knowl-
edge engineering for mission critical software requirements,”
in Synergies Between Knowledge Engineering and Software
Engineering. Springer, 2018, pp. 151–171.

[60] S. Röttger and S. Zschaler, “Tool support for refinement of non-
functional specifications,” Software and Systems Modeling, vol.
6, no. 2, pp. 185–204, 2007.

[61] F. Poggi, D. Rossi, P. Ciancarini, and L. Bompani, “An application
of semantic technologies to self adaptations,” in 2016 IEEE 2nd
International Forum on Research and Technologies for Society
and Industry Leveraging a better tomorrow (RTSI). IEEE, 2016,
pp. 1–6.

[62] J. C. Georgas, A. van der Hoek, and R. N. Taylor, “Using archi-
tectural models to manage and visualize runtime adaptation,”
Computer, vol. 42, no. 10, 2009.

[63] A. Frece and M. B. Juric, “Modeling functional requirements for
configurable content-and context-aware dynamic service selection
in business process models,” Journal of Visual Languages and
Computing, vol. 23, no. 4, pp. 223–247, 2012.

[64] D. Schneider and M. Trapp, “Conditional safety certificates in
open systems,” in Proc. 1st Workshop on critical automotive
applications: robustness and safety. ACM, 2010, pp. 57–60.

[65] S. B. Akers, “Binary decision diagrams,” IEEE Transactions on
Computers, no. 6, pp. 509–516, 1978.

[66] S. Röttger and S. Zschaler, “CQML+: Enhancements to CQML,”
in Proc. 1st Int. Workshop on Quality of Service in Component-
Based Software Engineering, 2003, pp. 43–56.

40 F. Poggi et al.

[67] A. Margara, J. Urbani, F. van Harmelen, and H. Bal, “Streaming
the web: Reasoning over dynamic data,” Web Semantics: Science,
Services and Agents on the WWW, vol. 25, pp. 24–44, 2014.

[68] F. Corcoglioniti, M. Rospocher, M. Mostarda, and M. Amadori,
“Processing Billions of RDF Triples on a Single Machine Using
Streaming and Sorting,” in Procs 30th ACM Symposium on
Applied Computing, ser. SAC ’15. New York, NY, USA: ACM,
2015, pp. 368–375.

Biographies

Francesco Poggi is a Research fellow at at the Department of Computer
Science and Engineering (DISI) of the University of Bologna. He holds
a Ph.D. in Computer Science from the University of Bologna, since
2015. He won the best paper award at DOCENG 2015 for his paper
titled “Exploring scholarly papers through citations”. He has been
principal investigator for the MIUR-ANVUR of the funded research
project “Uniform Representation of CurricularAttributes”. His research
interests include: adaptive systems and reflective enterprise software
architectures; information visualization; Semantic Web technologies;
markup languages for complex documents; science of science.

Integrating Semantic Run-Time Models for Adaptive Software Systems 41

Davide Rossi is an Assistant Professor at at the Department of Com-
puter Science and Engineering (DISI) of the University of Bologna.
His activity mainly focuses on applied aspects related to software
engineering (modeling, distributed software architectures, middleware,
web engineering) with specific interest toward the concepts of ser-
vice, composition, interaction and process. He participated in several
national/international research projects and is the author of more than
fifty published contributions in the form of journal articles, international
conference/workshop proceedings papers and book chapters.

Paolo Ciancarini is Professor of Computer Science at the University
of Bologna since 1992. He got a Phd in Informatics at the University
of Pisa in 1988. In Bologna he lectures on Software Engineering and
Software Architecture, and is member of the Faculty of the PhD School
in Computer Science.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

