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Abstract

The Semantic Web and the Linked Open Data (LOD) initiatives pro-
mote the integration and combination of RDF data on the Web. In some
cases, data need to be analyzed and protected before publication in order
to avoid the disclosure of sensitive information. However, existing RDF
techniques do not ensure that sensitive information cannot be discov-
ered since all RDF resources are linked in the Semantic Web and the
combination of different datasets could produce or disclose unexpected
sensitive information. In this context, we propose a framework, called
RiAiR, which reduces the complexity of the RDF structure in order
to decrease the interaction of the expert user for the classification of
RDF data into identifiers, quasi-identifiers, etc. An intersection process
suggests disclosure sources that can compromise the data. Moreover, by
a generalization method, we decrease the connections among resources
to comply with the main objectives of integration and combination of
the Semantic Web. Results show a viability and high performance for
a scenario where heterogeneous and linked datasets are present.
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1 Introduction

With the advance of the Semantic Web and the Linked Open Data
initiatives, more and more RDF documents are available on the Web.
RDF describes resources as triples: 〈subject, predicate, object〉,
where subjects, predicates, and objects are all resources iden-
tified by their IRIs. Objects can also be literals (e.g., a number, a
string), which can be annotated with optional type information, called
datatype. Since the last decade, RDF is attracting more and more
people, and data is gathered and published by different sources (e.g.,
companies, governments) for many purposes such as statistics, testing,
and research proposals. For instance, according to [21], more govern-
ments are becoming e-governments, since they are part of the LOD
initiatives, providing their data to have a more flexible data integration,
increasing the data quality, and offering new services. However, as
more data is available, sensitive information (e.g., diseases, salaries,
or bank accounts) could be sometimes provided or inferred leading
to compromise the privacy of related entities (e.g., patients, users,
companies).

Data can be analyzed and protected before being published on
the Web [24, 41], or limited in access for queries over controlled
scenarios [35, 48]. In this work, we only focus on the protection of
RDF data, expressed as documents, by the analysis of the data before
publication. A privacy protection of the RDF data is tricky, since the
use of different published heterogeneous datasets could break some
protection. For instance, the combination of well-known datasets as
DBpedia and Enipedia1 produces sensitive information of places of
interest (e.g., schools, hospitals, production factories), regarding their
proximity to nuclear power plants (high contamination resource).

According to [41], anonymization is one common and widely
adopted technique for sensitive data protection that has been

1Enipedia is a dataset containing data related to the production of energy and its
applications. The information available on Enipedia is provided by governments,
which support the LOD. http://enipedia.tudelft.nl
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successfully applied in practice. It consists on protecting the entities
of interest by removing or modifying identifiable information to make
them anonymous before publication, while keeping the utility of the
data. This latter is modified according to certain criteria of the exist-
ing values (e.g., taxonomies, ranges) to satisfy some conditions of
anonymity (e.g., k-anonymity2, l-diversity3). To apply anonymization,
it is necessary to identify and classify the data (see D in Figure 1) into:
(i) main entities, which are the entities of interest, and (ii) related data
that is directly or indirectly associated to the main entities and can
compromise their privacy. The related data can also be classified as [6]:
(i) Identifiers, data that directly identify a main entity (e.g., security
social number); (ii) Quasi-identifiers, data that can be used to link with
other data to identify a main entity (e.g., birthday, postal code, gender);
(iii) Sensitive information, which is the data that compromise a main
entity (e.g., diseases); and (iv) Unsensitive information that does not
have a particular role or impact.

Figure 1 Anonymization framework inspired from [29]; D is the data to be
published, BK is the Background Knowledge; and pD the protected data obtained
by the anonymization process, considering the classification made by the expert user.

2k-anonymity is one of the most used common condition, that consists on making
entities undistinguished from at least k − 1 other entities, because they have similar
information [43].

3l-diversity is an extension of the k-anonymity model that protects the correspond-
ing sensitive values within a homogeneous group.
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A classification, which is performed by an expert user (see Expert
User in Figure 1) who knows previously the data and is responsible
of protecting model, is based on predefined assumptions about how
an adversary can take advantage over these data. These assumptions
are called Background Knowledge. The background knowledge (see
BK in Figure 1) is the information related to the published data, which
can be used by adversaries to discover sensitive information of the
main entities. Due to the huge complexity of the RDF structure, a
classification requires a high interaction of the expert user. Moreover, all
RDF’s elements can be considered as main entities, and they can also be
classified into identifiers, quasi-identifiers, sensitive information, etc.,
making the RDF protection complex.

Works on RDF anonymization are limited [24, 41]. They mainly
apply generalization and suppression operations over taxonomies (each
RDF’s element has a defined taxonomy) to anonymize the RDF doc-
ument. Defined areas (neighborhood) are also provided [24], where
anonymization properties as k-anonymity are satisfied. Various anony-
mous RDF documents are generated by the combination of all values
from the taxonomies and a measure is required to choose the best option.
However, the exhaustive method to select the best anonymous RDF
document makes these approaches unsuitable for complex cases, since
a greater quantity of values to take into account, needs a more elaborate
anonymization process (more possible solutions).

Since RDF forms a directed, labeled graph structure with data,
where the edges (predicates) represent the named link between
two resources, represented by the graph nodes (subjects and
objects) [36], databases and graphs anonymization techniques could
be applied, but they are limited and inappropriate for privacy protection
in the Semantic Web, as we detail in Section 3.

Thus, in the context of RDF data, the following limitations are
identified:

1. RDF anonymization techniques are limited and designed for a
particular and ideal scenario, which is inappropriate when having
several linked heterogeneous datasets [4, 24, 41, 48];

2. The non-consideration of IRIs as external and reachable resources
makes the current RDF solutions unsuitable for protection on the
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Web, since other available resources could link or infer sensitive
information;

3. The presence and consideration of resources (IRIs and Blank
nodes), which are a fundamental part of the RDF data, makes the
database oriented methods [26, 30, 31, 33, 44] unsustainable for a
large quantity of resources due to the number of JOIN functions
needed to satisfy the existing normalized models;

4. Graph anonymization techniques assume simple, undirected and
unlabeled graphs [5,7,8,22,27,28,52,53,56]; thus, the reduction
of complexity of the RDF structure to a simple graph is necessary
for the application of graph solutions, but inappropriate for the
Semantic Web, since properties and semantic relations among
resources would be ignored;

5. The complexity of the RDF structure requires a high interaction
of the expert user to identify and select the RDF’s elements to
be protected (main entities), and the ones related to the main
entities (identifiers, quasi-identifiers, sensitive information, and
unsensitive information); and

6. Approaches based on conceptual RDF representations are needed
in order to provide more general solutions that can be serialized
later on different formats (e.g., RDF/XML, Turtle, N3, JsonLD).

To overcome these limitations, we propose a framework, called RiAiR
(Reduction, Intersection, and Anonymization in RDF) , which is inde-
pendent of the serialization formats and providers. The proposal is
designed for RDF documents, considering their elements (IRIs, blank
nodes, literals) and the scenario, where a huge quantity of information
is available. The complexity of the RDF structure is reduced to make
possible the task of classification and to suggest potential disclosure
sources to the expert user, decreasing his interaction. Moreover, by
a generalization method, we reduce the connections among datasets,
preserving the main objectives of the Semantic Web (integration
and combination), and protecting the sensitive information at the
same time.

We validated our anonymization approach through several experi-
ments. We evaluated the viability and the performance of the proposal
with respect to the related work. Results show a real viability of our
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approach for linked heterogeneous datasets and a high performance of
the anonymization process of quadratic order with respect to the triples
of the the data to be published (n) and the ones from the background
knowledge (m) (i.e., O(n2 + m2)).

The paper is organized as follows. Section 2 presents a moti-
vating scenario to illustrate the disclosure of sensitive information
on the Web. Section 3 surveys the related literature. Terminologies
and concepts are presented in Section 4. Section 5 describes our
approach. Section 6 shows the experiments to evaluate the viability and
performance of our approach. Finally, we present our conclusions in
Section 7.

2 Motivating Scenario

The goal of the Semantic Web is to publish datasets, mainly as RDF,
describing and combining resources on the Web for an open access.
The datasets are usually treated and protected before being published;
however, sensitive information could be deduced using related infor-
mation available from other datasets. To illustrate this, let’s consider a
scenario in which a data manager X works for a government to publish
a dataset A, related to energy production and its applications, on the
Web4.

An extract of the dataset A to be published is shown in Table 1.
Figure 2 shows the schema of the dataset A to be published. Note

that the properties prop:Latitude, prop:Longitude, rdfs:label,
and cat:radioactive define values, while the properties prop:City,
prop:Country, and cat:Fuel type define resources.

Table 1 An example of the data extracted from Enipedia dataset
No . cat:Fuel -

type
cat:radio-

active rdfs:label prop:City
(rdfs:label)

prop:Country
(rdfs:label) prop:lat. prop:long.

1 art:Nuclear true Hartlepool Hartlepool
Cleveland United Kingdom 54.6824 –1.2166

2 art:Nuclear true Limerick Pottstown United States 40.2257 –75.5866
3 art:Nuclear true Neckar Neckarwestheim Germany 49.0411 9.1780
4 art:Nuclear true Beaver Valley Shippingport United States 40.6219 –80.4336

4The example provided uses an extract from Enipedia dataset.
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Figure 2 Structure of the data extracted of the enipedia dataset.

Table 2 Some places of interest available in the DBpedia dataset
No. rdf:type rdfs:label prop:lat. prop:long.
1 dbo:School Hartlepool College of Further Education 54.6839 -1.2109
2 dbo:School English Martyrs School and Sixth Form College 54.6754 -1.2362
3 dbo:School Coventry Christian Schools 40.2505 -75.5930
4 dbo:School HÃ¶lderlin-Gymnasium Lauffen am Neckar 49.0704 9.1394
5 dbo:School Pennsylvania Cyber Charter School 40.6385 -80.4549

As a data manager, X should pay attention about the side effect of
publishing the dataset A on the Web, since it can produce sensitive
information for entities already published. For instance, DBpedia5,
which is a linked open dataset extracted from Wikipedia, can be used
as background knowledge in order to discover sensitive information
related to places of interest. This dataset can be easily connected by
the use of properties, such as prop:Latitude and prop:Longitude
present in the dataset A as well. Table 2 shows some places of interest
available in the DBpedia dataset.

By the intersection among coordinates (prop:Latitude and
prop:Longitude) of nuclear power plants (dataset A) and the ones
of places of interest (dataset DBpedia), one can easily identify their
proximity in a defined Region. A Region is an area obtained by
the maximum distance between a nuclear power plant and a place
of interest. The following SPARQL query produces the intersection

5DBpedia does not contain sensitive information, since all data correspond mainly
to well-known entities (e.g., places, governments, actors, singers).
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between the dataset A to be published and the dataset DBpedia. Note
that a Region of 100 km was used to obtain the results.

SELECT DISTINCT
?Place ?g bif:st_distance(?g,bif:st_point(".$long.",".$lat."))
AS ?distance
FROM
<http://dbpedia.org> WHERE {?p rdfs:label ?Place ;
geo:geometry ?g ; rdf:type dbo:School .
FILTER
(bif:st_intersects (?g, bif:st_point (".$long.", ".$lat."), 100)
&& (lang(?Place) = \"en\"))}
ORDER BY ASC(?distance)

Table 3 is the result of the intersection between the dataset A and
dataset DBpedia. It shows in row 1 that a school is less than 500 meters
distance from a power nuclear plant in United Kingdom. It also shows
which hospitals, universities, and any other crowded places are close to
power nuclear plants in a defined area. One can even identify which are
the dirtiest power nuclear plants (prop:Carbonemissions) and the
places next to them. If this combined information is available on the
Web, it can be misused against the nuclear power plants to stop their
production and management, and even against the places of interest
near to them.

Figure 3 illustrates graphically the intersection between dataset
DBpedia and the dataset A. The resource Region links School,
University, Hospital and Power Plant resources.

To protect the dataset A to be published, X needs to identify and
classify the data, according to the assumptions of how an adversary
can obtain or produce sensitive information, using the background
knowledge, as follows. The information of a Power Plant resource

Table 3 Some places of interest next to Nuclear Power Plants
Nuclear
PowerPlant City Country School Distance

(Km)

Hartlepool Hartlepool
Cleveland United Kingdom Hartlepool College of

Further Education 0.40244

Hartlepool Hartlepool
Cleveland United Kingdom English Martyrs School

and Sixth Form College 1.48812

Beaver Valley Shippingport United States Pennsylvania Cyber
Charter School 2.5761

Limerick Pottstown United States Coventry Christian Schools 2.81988

Neckar Neckarwestheim Germany Hölderlin-Gymnasium
Lauffen am Neckar 4.2998
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Figure 3 Intersection between energy production dataset and other datasets.

of type nuclear (art:Nuclear) is sensitive, if there is at least a place
of interest (e.g., School) in a defined Region6.

• Keys: (Identifiers/Quasi-Identifiers): Properties prop:Longitude
and prop:Latitude are keys since both values indicate the
position of a Power Plant, which belongs to a defined Region.

• Sensitive Information: A resource dbo:School and its properties
are sensitive information, since they define the places of interest.

• Unsensitive Information: Other values and properties, which are
not considered in the previous types, are unsensitive information.

Once X has established the classification, a protection technique
based on this classification, should be used to protect the disclosure
of sensitive information. Thus, the following challenges are defined in
this study.

• Provide an easy classification of the RDF data (keys, sensitive
information and unsensitive information);

• A similarity measure able to evaluate the intersection between the
data to be published and the background knowledge, to suggest
disclosure sources; and

6Considering only DBpedia dataset as external related information (background
knowledge).
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• Select the most appropriate protection taking into account the
complexity of the RDF data and the objectives of the Semantic
Web.

Our contribution in this study is as follows:

• A general framework designed for RDF documents, indepen-
dent of the serialization formats, in a scenario where linked and
heterogeneous resources are presented; i.e., the Web;

1. A method to reduce the complexity of the RDF structure of
the data to be published, simplifying the task of analysis,
performed by the expert user;

2. A method to suggest disclosure sources to the expert user,
based on node similarity, reducing the task of data classifica-
tion; and

3. An anonymization operation, based on a generalization
method, to decrease the relations among resources from dif-
ferent datasets, to preserve the main objectives of integration
and combination of the Semantic Web.

The following section presents the related work of RDF anonymiza-
tion.

3 Related Work

In this work, we focus on anonymization techniques as a solution to
protect the sensitive information since it has been widely adopted
for sensitive data protection [41]. To the best of our knowledge,
works on RDF document anonymization are limited [24, 37–41, 48];
however, due to the particularity of the RDF data, other domains where
anonymization has been extensively studied could be applied, such as:
databases [16, 26, 30, 31, 44, 51] and graphs [5, 7, 8, 22, 27, 52, 56]. To
evaluate and classify the existing works, we identified the following
criteria of comparison according to the challenges and objectives of
this work:

1. The complexity of the data, which should be aligned with the one
of RDF structure, considering heterogeneous nodes and relations,
increasing the expressibility and difficulty of the representation;
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2. The type of classification method for identifiers, quasi-identifiers,
sensitive and un-sensitive information due to the high quantity
of entities, properties and values available on the Web, making
difficult the task of the expert user; and

3. The conditions of anonymity that are proposed in the current
proposals to identify the most appropriate ones for the Semantic
Web.

Following sections describe the RDF, databases, and graph
approaches in the context of anonymization.

3.1 RDF Document Anonymization

For RDF documents, the authors in [41] provide an overview of RDF’s
elements over the role in anonymization (e.g., explicit identifiers, quasi-
identifiers, sensitive data). They propose a framework to anonymize
RDF documents, which satisfies the k-anonymity condition. They con-
sider the use of taxonomies for values and relations (each type of value
and relation has its own taxonomy). Generalization and suppression
operations are applied over these taxonomies to anonymize the RDF
document. Once the operations are applied, several anonymous RDF
documents are produced by the use of all value combinations from
the taxonomies. A measure for anonymous solutions that satisfied the
k-anonymity condition, is proposed to select the best option. In [24],
the authors extend the previous work defining an area (neighborhood),
where the k-anonymity condition is satisfied. The exhaustive method to
select the best option makes these approaches unsuitable for complex
cases, since a greater quantity of values to take into account, needs
a more elaborate anonymization process (more possible solutions).
Moreover, the authors assume a classification of the data provided
by the model and they do not specify how this classification was
performed.

Additionally, there are some works on the context of statistical
queries [4, 48] based on grouping operators (e.g., SUM, AVG, MAX)
and others based on expert-defined sanitization queries [37–40] to
remove identifiers, but we only focus on the protection of RDF
documents.
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3.2 Database Anonymization

In some cases when one has small RDF data, a common practice
can be to convert the RDF to a structured dataset as tables to reuse
existing techniques. Anonymization in databases has been extensively
studied and many works are available in the literature. One of the most
used work is proposed in [42], the authors define a condition, called
k-anonymity, where an entity cannot be identified, since there is at
least k − 1 other similar entities. However, the problem of satisfying
the k-anonymity condition is NP-hard, producing different studies
where the complexity and an efficient solution are addressed. For
instance, to anonymize the data, the authors in [33] apply techniques
based on neural networks, the authors in [2] apply genetic algorithms,
while in [33] the authors use matching learning. Non-perturbative
operations, such as generalization and suppression methods, where
data is modified according to certain criteria of the existing values
(e.g., taxonomies, ranges), are mainly used to satisfy the k-anonymity
condition [3]. Other studies use perturbative operations, such as
Micro-aggregation/clustering methods, where the entity values are
replaced or modified by the centroid of the clusters, adding in some
cases new entities to satisfy conditions of anonymization in each
cluster [47, 55].

According to [30], k-anonymity condition does not protect the
sensitive values, since k similar entities can have the same sensitive
information, which is the one required by the adversary. For that,
the authors in [30] extend the k-anonymity condition considering
a diversity (l) of sensitive values for each set of similar entities
(l-diversity). However, the disclosure is still possible due to the attribute
distribution of the dataset. The authors in [26] propose a condition
where the distribution of each sensitive attribute should be close/similar
to the whole attribute distribution in the dataset (t-closeness). Other
studies extend the previous mentioned conditions to address particular
assumptions of the background knowledge. The authors in [31] propose
a (k,T)-anonymization model over spatial and temporal dimensions.
Other works apply the conditions of anonymity to different values
as the authors [44] do, where l-diversity condition is satisfied by the
sensitive information as well. The l-diversity condition is extended
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in the clustering proposal work [51], defining a (k, l, θ)-diversity
model, which takes into account the cluster size, the distinct sensitive
attribute values, and the privacy preserving degree of the model.
An improvement of certain conditions is made for special scenarios;
for instance, the authors in [19] divide numerical sensitive values
into several levels, getting a better protection for numerical values.
Also, properties of the data such as utility, value distribution, etc., are
considered to propose anonymization models. The work in [16] takes
into account the association between quasi-identifiers and the sensitive
information as a criterion to control the use of generalization hierarchy.
Some semantic features are added in recent works. The authors in [34]
provide a (l, d)-semantic diversity model based on a clustering method.
They analyze the distance among sensitive values (d) to consider more
actual diversity. According to [45], a value can be quasi-identifier and
sensitive information at the same time, proposing a method that can treat
“sensitive quasi-identifier” and satisfying the conditions of l-diversity
and t-closeness.

Differential Privacy as k-anonymity is another well-used technique
to provide privacy. The authors in [13] propose a perturbation method
for true answer of a database query by the addition of a small amount of
distributed random noise. This method is extended by other authors as
in [23], where they improve the accuracy of a general class of histogram
queries while satisfying differential privacy. The work in [32] is a non-
interactive setting model, generalizing probabilistically the raw data
and adding noise to guarantee differential privacy. Other studies are
focused on the privacy of anonymized datasets, since a dataset, in the
context of databases, can be affected by updating and removing opera-
tions, which can expose the sensitive information. The authors in [46]
propose an architecture which protects the main entities for databases
that require removing operations frequently. They apply generalization
operations based on hierarchies (non-perturbative method). The model
satisfies k-anonymity condition; however, the architecture needs to
verify the anonymous data for each new deleting request in order to
protect the privacy of the original datasets. A centralized scenario is
required to apply this proposal.
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Works on database anonymization approaches that satisfy
k-anonymity and its variations, assume that the classification of data
into identifiers, quasi-identifiers, sensitive and un-sensitive information
is provided by a user expert, who knows the data, focusing mainly on
the method to satisfy the conditions of anonymization. In the Semantic
Web, it is unable to understand the detailed characteristics of external
datasets, and assume all the background knowledge possessed by
adversaries. Moreover, as more information is involve, more complex
is the task of converting the RDF data to a structured normalized model,
since a high granularity (many tables) is produced due to the use of IRIs,
acting as foreign-keys.

Following section describes the works related to graph
anonymization.

3.3 Graph Anonymization

RDF data can be represented as a graph structure, having labeled-
nodes, and directed and labeled-edges. In the literature, there are
several works in the context of social media, where the authors assume
a simple network as undirected, node-unlabeled and edge-unlabeled
structure [7,27,52] (see Group 9 in Table 4). These works focus on the
privacy through the number of edges among nodes, since an adversary
can have the information about the relations, which can be the only
one with a particular number (k-degree condition). The work in [7]
proposes a greedy algorithm to satisfy the k-degree by partitioning
all nodes to n clusters. Each cluster becomes uniform with respect
to the quasi-identifier attributes and the quasi-identifier relationship
(generalization). To choose the best n values, two criteria are taken
into account: (i) each cluster has to contain at least k nodes and (ii)
minimize the information loss of the data.The authors in [27] propose an
algorithm to satisfy the k-anonymity condition over the number of edges
of each node. They also rename the k-anonymity as k-degree condition.
The proposal consists in two steps: (i) Degree Anonymization, where a
degree sequence of the graph (descending order) is generated to group
similar nodes with the same degree and (ii) Graph construction, where
an algorithm decides among which nodes a new edge is added according
to satisfy the k-degree condition. In [52], the authors anonymize a graph
by adding random edges. They provide an analysis on the spectrum
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Table 4 Related Work Classification

G Work Requirements
Conditions

of Anonymity Complexity of data Classification
Method

1 [41] k-anonymity RDF Manual
(I, QI, SI, USI)

2 [24] k-anonymity
neighborhood RDF Manual

(I, QI, SI, USI)

3 [48] Differential
privacy RDF Manual

(SI)

4 [4] Differential
privacy RDF Manual

(SI)

5 [33] k-anonymity Structured
data

Manual
(I, QI, SI, USI)

6 [26, 30, 31, 44] k-anonymity
and variations

Structured
data

Manual
(I, QI, SI, USI)

7 [13] Differential
privacy

Structured
data

Manual
SI

8 [23, 32, 46]
Differential
privacy and
variations

Structured
data

Manual
(SI)

9 [7, 27, 52] k-degree
Undirected,

node-unlabeled,
edge-unlabeled

Manual
(I, QI, SI, USI)

10 [5, 8, 22, 56] k-degree
Undirected,

node-labeled,
edge-unlabeled

Manual
(I, QI, SI, USI)

11 [28] k-degree

Undirected,
node-labeled,
edge-labeled

(weight)

Manual
(I, QI, SI, USI)

12 [53] k-degree
l-diversity

Undirected,
node-labeled,

edge-unlabeled

Manual
(I, QI, SI, USI)

13 [37, 38]
[39, 40] Sanitization RDF Manual

(I, QI, Si, USI)

14 Our proposal Intersection RDF Automatic
(I, QI)

of the graph to measure the impact of the anonymization solution.
The spectrum is directly related to the topological properties such as
diameter, presence of cohesive clusters, long paths and bottlenecks, and
randomness of the graph. Works in this group only take into account
the number of relations as a condition of anonymity (k-degree), but in a
scenario where a diversity of nodes is present, the number of operations
to satisfy the k-degree condition increases exponentially. Moreover,
diversity of edges values is not analyzed and the authors assume that
the classification of the data is provided by the expert user.
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Other works manage more complex graphs by assuming labeled-
node structure as in [5,8,22,56] (see Group 10 in Table 4). The authors
in [5] demonstrate assuming several attacks that removing identifiers
and renaming the nodes in an arbitrary manner, from a social graph, is
an ineffective anonymization mechanism. Walk-based attacks are able
to compromise the privacy for modest numbers of node (around 90%);
thus, it has been proven for the authors that removing identifiers of the
data is not a well protection. The authors in [8] assume that the adversary
knows only degree-based information, which is the number of relations
(edges) that has each node. To anonymize the graphs, they add new
nodes instead of edges, since they affirm that “introducing new nodes
does not necessarily have an adverse effect. To the contrary, adding new
nodes with similar properties could better preserve aggregate measures
than will distorting the existing nodes”. To satisfy the k-anonymity
condition, an algorithm following four steps is provided: (i) Optimally
partition degree sequence (descending order), (ii) Augment graph with
new dummy nodes, (iii) Connect original graph nodes to new dummy
nodes, and (iv) Insert inter-dummy-node edges to anonymize dummies.
In [22], the authors propose an anonymization technique that protects
against re-identification by generalizing the input graph. They general-
ize the graph by grouping nodes into partitions, and then publishing the
number of nodes in each partition, along with the density of edges that
exist within an across partitions. To preserve the privacy of individuals,
which are represented as nodes in a social network, the authors in [56]
assume that an adversary may have the background knowledge about
the neighborhood of some target individuals. Two properties are taking
into account: (i) node degree in power law distribution [14] and (ii)
small-world phenomenon [50] to ensure a low loss of data. They
greedily organize nodes into groups and anonymize the neighborhoods
of nodes in the same group to satisfy the k-anonymity condition.

Works in this group have the same drawbacks as the previous
one, which are related to the modeling of social graphs as a simple
structure (even if the graph is node-labeled), and the assumption of the
classification, which is provided by the expert user.

The authors in [28] work also on the context of social networks
by ensuring the privacy of main entities, which are the nodes in the



RiAiR: A Framework for Sensitive RDF Protection 59

graph (see Group 11 in Table 4). They consider a weight over edges,
since it can represent affinity among two nodes, frequency among
two persons, or similarity between two organizations. They propose
a Gaussian Randomization Multiplication strategy due to its simple
implementation in practice and responds to the dynamic-evolution
nature of social networks, since it is very hard and costly to collect
the information in advance in a huge and dynamic scenario. This
work represents in a better way the scenario present in the Semantic
Web. However, edges-labeled are reduced to values and they are not
considered as reachable resources which can be used to disclosure the
sensitive information. Also, this work assumes that the classification of
the data is provided by user expert.

Another work is presented in [53] (see Group 12 in Table 4), the
authors assume a more complex graph than the previous described
groups. In fact, in addition of the node degree, they also assume
the values of the nodes as sensitive data. They propose a frame-
work, which satisfies k-anonymity and l-diversity conditions. They
generate a sequence of 3-tuples (id, node-degree, and its respective
sensitive value). A grouping algorithm is applied over the list to group
similar triples, following certain criteria to satisfy the conditions of
anonymization (k-anonymity and l-diversity). The sequence is called
KDLD sequence, when all the defined conditions are satisfied. From
the KDLD sequence, the graph is rebuilt. Then, they propose a
graph construction technique adding nodes to preserve utilities of the
original graph. Two key properties are considered: (i) Add as few noise
edges as possible; (ii) Change the distance between nodes as less as
possible.

In general, graph anonymization approaches assume a simple struc-
ture of the data as an undirected and unlabeled-edge social media graph.
Also, k-degree is a one of the common conditions of anonymity used
for the authors; however, considering a diversity of nodes as in RDF
and using the existing solutions to satisfy the k-degree condition, the
complexity increases considerably.

The following section summarizes and discusses the works related
to anonymization.
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3.4 Summary and Discussion

Existing techniques in the context of RDF document anonymization are
really limited. In [24, 41], the authors reduce the complexity of RDF
structure to micro-data, where a huge quantity of information such
as heterogeneous nodes and relations is simplified and anonymized.
However, in a scenario where thousands of heterogeneous resources
are present, the current solutions are not appropriate due to the greedy
algorithm to generate all possible solutions (anonymous RDF) and then,
their measure to evaluate and select the most adequate one.

Since RDF data can be converted, in some cases, to a structured data
as databases, database anonymization techniques could be also applied.
Small RDF data can be managed by these solutions; however, reducing
the complexity of big RDF data into structured models can produce
a high semantic information loss (properties), and a huge granularity
of the structured normalized-model. Moreover, solutions are proposed
for simple cases where data satisfy conditions of anonymity, but
when a diversity of values is present, the complexity of the solutions
increases exponentially.As RDF data can be also represented as a graph,
anonymization graph approaches have been explored in this work.
The simplicity of the graph structure assumption makes the current
approaches not adequate for the Semantic Web, where heterogeneous
nodes and relations are present. Some criteria of anonymization, such
as k-degree, can be adopted to the Semantic Web, but the solutions to
satisfy these criteria have to be modified according to the complexity
of the RDF structure.

Most of the works in RDF documents, databases and graphs
anonymization assume that the classification of the data required to sat-
isfy the conditions of anonymity, is provided by expert user. However,
the scenario of the Semantic Web complicates the task of classification,
since it is difficult to understand the detailed characteristics of external
datasets, and assume all the background knowledge possessed by
adversaries.

Table 4 shows our analysis in this regard. Note that none of the
works on database and graph anonymization satisfies the criteria of
complexity of data (heterogeneous nodes and relations). Moreover,
the classification on the data is mainly provided by the proposals
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and there is no information about how it was performed. We assume
that the process to classify the data has been manual. Thus, a new
anonymization approach able to cope all requirements is needed to
provide an appropriate protection of sensitive information for the
Semantic Web.

Before describing how our approach addresses these requirements,
the following section introduces some common terminologies and
definitions of anonymization in the context of RDF.

4 Terminologies and Definitions

For the Semantic Web, RDF is the common format to describe
resources, which are abstractions of entities (documents, persons,
companies, etc.) of the real world. RDF uses triples in the form of
〈subject, predicate, object〉 expressions also named statements,
to provide relationships among resources. The following elements
compose the RDF triples:

− An IRI, which is an extension of the Uniform Resource Identifier
(URI) scheme to a much wider repertoire of characters from the
Universal Character Set (Unicode/ISO 10646), including Chinese,
Japanese, and Korean character sets [12].

− A Blank Node, representing a local identifier used in some
concrete RDF syntaxes or RDF store implementations. A blank
node can be associated with an identifier (rdf:nodeID) to be
referenced in the local document, which is generated manually
or automatically.

− ALiteral Node, representing values as strings, numbers, and dates.
According to the definition in [9], it consists of two or three parts:

• A lexical form, being a Unicode string, which should be
in Normal Form C7 to assure that equivalent strings have a
unique binary representation.

• A datatype IRI, being an IRI identifying a datatype that
determines how the lexical form maps to an object value.

7It is one of the four normalization forms, which consists on a Canonical Decompo-
sition, followed by a Canonical Composition. http://www.unicode.org/reports/tr15/
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Table 5 Description of sets
Set Description
I A set of IRIs is defined as: I = {i1, i2, ..., il} | ∀ii ∈ I , ii is an IRI.
L A set of literal nodes is defined as: L= {l1, l2, ..., lm} | ∀li ∈ L, li is a literal

node.
BN A set of blank nodes is defined as: BN = {bn1, bn2, ..., bnn} | ∀bni ∈ BN ,

bni is a Blank Node.

• A non-empty language tag as defined by “Tags for Iden-
tifying Languages” [1], if and only if the datatype IRI is
http://www.w3.org/1999/02/22-rdf-syntax-ns#langString.

Table 5 describes the sets of RDF’s elements that we use in our
approach description.

After the definition of sets of RDF’elements, we formally describe
a triple in Definition 1.

Definition 1 Triple (t): A Triple, denoted as t, is defined as an atomic
structure consisting of a 3-tuple with a Subject (s), a Predicate (p), and
an Object (o), denoted as t :< s, p, o >, where:
− s ∈ I ∪ BN represents the subject to be described, that can be an
IRI or a blank node;
− p ∈ I is a predicate defined as an IRI in the form
namespace prefix:pre dicate name, where namespace prefix
is a local identifier of the IRI , in which the predicate (predicate name)
is defined. The predicate (p) is also known as the property of the triple.
− o ∈ I ∪ BN ∪ L describes the object, that can be an IRI or a blank
node. �

From our motivating scenario, we can observe several triples with
different RDF resources, properties, and literals:

− t1: <genid:S1,rdf:type,dbo:School>
− t2: <genid:S1,rdfs:label,"Hartlepool College of

Further Education">
− t3: <genid:S1,prop:latitude,1.4545>
− t4: <genid:S1,prop:longitude,0.40244>

A set of triples defines an RDF document, by encoding the triples,
using a predefined serialization format complying with the RDF W3C
standards, such as RDF/XML, Turtle, N3, etc. According to the
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structure of triples, RDF document can be represented as an RDF Graph,
since the structure allows node-edge-node relations. An RDF graph is
defined in Definition 2.

Definition 2 RDF Graph ( G): An RDF graph of an RDF document
is denoted as Gd(N, E), where each triple ti from d is represented
as a node-edge-node link. Therefore, G nodes (N), denoted as ni,
represent subjects and objects, and G edges (E), denoted as ej , represent
corresponding predicates: ni ∈ ⋃

ti.s∪ti.o
and ej ∈ ⋃

ti.p
[49]. �

The following subsection presents the formal concepts used in this
work.

4.1 Problem Definition

As we show in the motivating scenario, there are cases in which
sensitive information can be disclosed through the data published from
different sources on the Web (due to data intersection). Thus, the data to
be published, denoted as D, should be protected before, in order to avoid
compromising the disclosure or production of sensitive information.

The available information on the Web is called background knowl-
edge. It can be provided automatically or semi-automatically by the
expert user and can contain simple or complex resources (e.g., one
RDF resource, RDF graph, text files). The background knowledge is
formally defined in Definition 3.

Definition 3 Background Knowledge (BK ): It is a set of IRIs, con-
sidered as nodes and denoted as BK: {n1, n2, ..., ni | ∀ni, ni

is a IRI}. �
In this work, we assume that the intersection between D and BK

can disclose or produce sensitive information, hence identifiers and
quasi-identifiers appear in D due to the connection among its subjects
and objects. We rename both concepts to keys, defined in Definition 4,
since they allow the disclosure of sensitive information.

Definition 4 Keys (K ): Keys are identifiers and quasi-identifiers,
denoted as K : {ki | ∀ki ∈ I ∪ BN ∪ L, ki produces sensitive
information}. �
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We formally define our assumption concerning the intersection
between D and BK datasets in Assumption 1.

Assumption 1 Key Detection (Intersection) (IN ): The intersection
between a set of triples T and a set of IRIs I is defined as a set of nodes
(subjects and objects of triples) that belong to the RDF graph of T
(GT ), denoted as IN , where each node of IN has another similar one
in I. The similarity among the two nodes is measured by a similarity
function (simFunc), whose value is equal or greater than an established
threshold.

IN : T � I =
⋃

{ni∈GT |sim(ni∈T,nj∈I,α,β,γ)≥threshold}
Where:

– � is an operator that defines the intersection between triples and
IRIs;

– ni is a subjects or object that belong to T ;
– nj is a IRI that belong to I;
– sim is the similarity function defined in Definition 5.

The similarity function between two nodes is defined in Definition 5.

Definition 5 Similarity function (simFunc): The similarity between
two nodes is defined as a float value, denoted as simFunc that takes into
account three different aspects of the nodes: (i) syntactic; (ii) semantic;
and (iii) context analysis, such that:

simFunc(ni, nj, α, β, γ) = α × syntactic similarity(ni, nj)
+ β × semantic similarity(ni, nj)
+ γ × context similarity(ni, nj))

Where:

– ni ∈ I ∪ BN ∪ L and nj ∈ I;
– Syntactic similarity is a function which considers the syntactic

aspect of the node, whose values are in [0, 1];
– Semantic similarity is a function which considers the semantic

aspect of the nodes, whose values are in [0, 1];
– Context similarity is a function which considers the incoming and

outgoing relations of the nodes, whose values are in [0, 1];
– α + β + γ = 1. �
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According to the type of nodes of BK (IRIs), different similarity
functions should be provided to discover similar nodes. For instance,
similarity in the context of RDF information retrieval has been widely
studied and several work analyze queries (e.g., a node, graphs) with
respect to RDF structure [17, 54]. Moreover, images, texts, and other
multimedia files could be converted to RDF to facilitate the comparison
of RDF nodes [15, 20, 25]. The nodes belonging to the intersection
between D and BK (IN), are potential keys according to our assumption,
then K = IN . For example, according to our motivating scenario,
the properties prop:Longitude and prop:Latitude from Enipedia
dataset (D) are keys since the position identifies a particular Power
Plant and have intersection with the ones from DBpedia dataset (BK).
The triples from D that contain at least a key are considered as disclosure
sources, defined in 6, since the triples are connected to other resources.

Definition 6 Disclosure Sources (DS): It is a set of triples, which
contains at least a key from K, denoted as DS : {dsi | ∀dsi ∈
D ∧ (dsi.s ∈ K ∨ dsi.o ∈ K), dsi is a disclosure source that disclose
or produce sensitive information}. �

However, all triples in D that contain at least a key, cannot be
considered as disclosure sources, since it depends of the scenario;
thus, the interaction of the expert user is needed to identify only the
ones that compromise the data to be published. For example, the triple
〈..., prop:lat, 54.6824〉, from Enipedia dataset (D), is considered as a
potential disclosure source since it has a key (prop:lat) as predicate.
Definition 7 formally explains the result of the expert interaction.

Definition 7 Disclosure-Source Query (EU ): It is a selec-
tion/projection query applied over DS (

∏
DS), that returns triples

considered as disclosure sources by the expert user according to the
scenario. This set of triples is denoted as EU : {eui | ∀eui ∈ DS, eui

is considered as a disclosure source by the expert user}. �

Using the classification of the expert user, anonymization methods
can be applied on the selected triples in order to prevent the disclosure
of sensitive information. Note that even the original set of triples (D)
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could be protected, it should be re-protected considering the already
published data (BK) and their intersections with the original one. A
protection operation is formalized in Definition 8.

Definition 8 Protection Function (ProtFunc): It is a function applied
on a triple that returns another similar one, by modifying either the
subject, the predicate, the object, or all the three RDF elements, to avoid
the disclosure of sensitive information. It is denoted as ProtFunc(t ∈
D, op, par), where op is a protection operation (e.g., generalization,
suppression) and pr are the parameters of configuration (e.g., level of
generalization). �

By the result of applying the protection process on the set of triples
selected by the expert user, the protected data is obtained. This latter
is formalized in Definition 9 and it does not allow the disclosure of
sensitive information.

Definition 9 Protected data to be published (pD): It is a set of triples
denoted as pD, which is the result of applying any protection technique
on the set of triples selected by the expert user (EU) of D; i.e., the data
to be published are protected if their intersection with the BK does not
produce the triples selected by the expert user, using the same threshold
established during the intersection:

pD = D � {ProtFunc(eui) | eui ∈ EU}
Where:

– D is the data to be published;
– � defines the replacement of the set EU ⊂ D with the one obtained

by applying a operation function over its elements;
– EU is the set of triples considered as disclosure sources by the

expert (see Definition 7);
– ProtFunc is a function that applies a protection operation (e.g.,

generalization, suppression) on either the subject, predicate,
object, or all three values. �

Following the previous example, let’s protect the triple
〈..., prop:lat, 54.6824〉 considered as a disclosure source, selected by
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the expert user, by applying a generalization function over the predicate
to reduce its similarity with the DBpedia dataset (BK): 〈..., prop:
coordinate, 54.6824〉.

The next section describes our protection process.

5 Protecting Process: Our Proposal

Our protection process mainly relies on a four phases approach (see
Figure 4), called RiAiR, where the input, a set of RDF documents in
any serialization format (D), is converted into a graph representation,
used by all modules: (i) Reducing-Complexity phase in which the graph
is analyzed to reduce its complexity-structure to extract a compressed
one; (ii) Intersection phase, where similar nodes between the input
graph (reduced or not) from D and the one from the BK are identified
as potential keys (IN); (iii) Selecting phase in which the expert user
analyzes and selects the disclosure sources (EU), which contains at least
one potential key; and (iv) protection phase that executes a protection
process over the selected triples (EU).

A description of each phase is presented in the following sections.

5.1 Reducing-Complexity Phase

Since the expert user needs to classify thousands of triples available
in D, a reduction step is needed in order to simplify the interaction
and make easy the task of classification. As some triples are essential
to describe concepts, they cannot be removed from the data and are
considered as constraints. These latter are a set of triples, defined by
the expert user, that have an important role over the data. The set of
constraints is defined in Definition 10.

Figure 4 Framework of our RDF anonymization process.
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Definition 10 Constraints (C): It is a selection/projection query
applied over D (

∏
D) that indicates the triples to be preserved. It

is denoted as C:{ci:< si, pi, oi >| ∀ci ∈ D, ci is a triple to be
preserved}. �

For example, we define as a constraint the triples whose predicates
are equal to the value http://www.w3.org/1999/02/22-rdf -syntax-
ns#type, since it describes the concept of a resource.

The set of triples T = {ti : 〈si, pi, oi〉} of D is analyzed by the
similarity function simFunc defined in Definition 5, considering the
set of IRIs as a simple node (e.g., a resource). This similarity should
take into account the context of the value (e.g., a similarity function
based on the incoming and outgoing relations) instead of the analysis of
the value itself in order to identify a more general resource. From two
similar nodes, the one that subsumes the other is kept. A sorting step to
organize the triples in a defined order is needed to return a unique output
(e.g., Depth-Subject-Predicate-Object order). As sensitive information
can be present in resources and literal values as well, we classify the
nodes into two categories: internal nodes, which are the ones that are
subjects and objects at the same time, and external nodes that are only
objects in the set of triples (T).

We propose Algorithm 1 and Algorithm 2 to reduce the complexity
of each category of nodes. The reducing-complexity algorithm applied
on internal nodes, receives a set of triples T = {ti : 〈si, pi, oi〉}, a
threshold th1, a similarity function simFunc, and returns another set
of triples T′ = {t′

i : 〈s′
i, p

′
i, o

′
i〉}. In Algorithm 1, each triple (ti) in

T is analyzed by the simFunc applied to its subject (node) with other
subjects from T (lines 4–5 of Algorithm 1). If the simFunc is equal or
greater than the defined threshold (th), the triple (ti) is added to the list
processedListTriples and the subject of ti will be replaced by the one
from tj in all triples from T (lines 8, 9 of Algorithm 1). The replacing
function is performed in line 11 of Algorithm 1 and the modified set of
triples is returned in line 13.

The algorithm for external nodes receives a set of triples T =
{ti : 〈si, pi, oi〉}, a threshold th1, a similarity function simFunc, and
returns another set of triples T′ = {t′

i : 〈s′
i, p

′
i, o

′
i〉}, according to the
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Algorithm 1: Reducing complexity – Internal nodes
Input: Set of triples T={t:〈s,p,o〉}, threshold th1, Function simFunc
Output: Set of triples T’

1 processedListTriples = {}; //List of processed triples.
2 replaceListNodes = {}; //List to replace nodes in the set of triples.
3 T = T.sort(HSPO); //Sorting by depth-subject-predicate-object order.
4 foreach ti in T do
5 foreach tj in T-{ti} do
6 if tj /∈ processedListTriples then
7 if simFunc(ti.s, tj .s)≥ th1 then
8 processedListTriples.add(ti);
9 replaceListNodes.add(Pair(ti.s,tj .s));

10 break; //Since a similar node was found, the next ti is
analyzed.

11 T’ = T.replaceNodes(replaceListNodes); // Nodes are replaced.
12 T’ = T’.removeDuplicateTriples(); //Duplicate triples are removed.
13 return T’;

threshold (th) provided by the expert user. A list, called removeList-
Triples, is used to store temporarily the triples to be removed in the last
step of the algorithm (line 1 in Algorithm 2). As the previous algorithm,
a sorting step is needed to return an unique output. Each subject (node)
from triple ti in T is compared with other subjects that belong to the
triples in T, using the similarity function simFunc defined in Definition 5
for simple nodes. To verify if the triple has an external node, its depth8

is calculated. If the depth of ti is different than 0, then the object node is
not external, and we move forward to the next triple in T (lines 4–5 of
Algorithm 2). If the simFunc between ti and tj is equal or greater than
the defined threshold and ti does not belong to the set of constraints (C
in Algorithm 2) defined by the expert user (see Definition 10), the triple
ti is added to the removeListTriples list (lines 8–10 in Algorithm 2).
Finally, the triples are removed in line 11 in Algorithm 2).

8The depth of a triple is considered as the biggest path of its object to a terminal
node.
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Algorithm 2: Reducing complexity – External resource
Input: Set of triples T={t:〈s,p,o〉}, threshold th1, Function simFunc
Output: Set of triples T’

1 removeListTriples = {}; //List to remove triples.
2 T = T.sort(HSPO); //Sorting by depth-subject-predicate-object order.
3 foreach ti in T do
4 if ti ∈ removeListTriples ∨ depth of ti = 0 then
5 continue; //Next triples is analyzed.

6 foreach tj in T - {ti} do
7 if tj /∈ removeListTriples then
8 if simFunc(ti.s, tj .s)≥ th1 and ti /∈ C then
9 removeListTriples.add(ti); //Adding triples to be

removed.
10 break; //Since a similar node was found, the next ti is

analyzed.

11 T’ = T.removeTriples(removeListTriples); //Triples of removeListTriples
list are removed.

12 return T’;

Note that Algorithm 1 and Algorithm 2 are independent and they
can be used in any order.

The reducing-complexity algorithms are applied to the data to be
published (D). Once the reductions are obtained, the intersection among
this set and the BK can be performed. Following phase describes the
intersection phase.

5.2 Intersection Phase

The previous phase reduces the complexity-structure of D; the number
of triples of D to decrease the interaction of the expert user over the
data. However, identifying the triples that are disclosure sources in the
reduced set of D, is still a difficult task for the expert user. To identify
the nodes of the reduced set D that belong to the intersection with the
background knowledge (BK), we propose Algorithm 3, based on the
intersection among two datasets assumption (see Assumption 1) and
using the similarity function defined in Definition 5.
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Algorithm 3: Intersection among two datasets
Input: Set of triples T = {ti:〈s,p,o〉}, I , threshold th2, Function simFunc
Output: Set of nodes IN

1 IN = {}; //Set of nodes.
2 foreach ti in T do
3 foreach ij in I do
4 if simFunc(ti.s, ij)≥ th2 then
5 if ti.s /∈ IN then
6 IN.add(ti.s); //The subject of T is added.

7 if simFunc(ti.o, ij)≥ th2 then
8 if ti.o /∈ IN then
9 IN.add(ti.o); //The object of T is added.

10 return IN;

Algorithm 3 receives a set of triples T = {ti : 〈si, pi, oi〉}, a set
of IRIs I , a threshold th2, a similarity function simFunc, and returns a
set of nodes IN, according to the threshold defined by the expert user.
Each subject and object from triple ti in T is analyzed by using the
similarity function (simFunc) with the IRI ij in I . If simFunc is equal
or greater than the defined threshold (th), the subject or object from
triple ti in T are added to the list IN (lines 4–9 in Algorithm 3). The set
IN is returned in line 10.

The nodes of IN are considered as potential keys (see Definition 4),
since they allow the connection of the data to be published with
other datasets. Following section presents the selecting phase which
is executed by the expert user.

5.3 Selecting Phase

According to Definition 6, triples that contain at least a key are
disclosure sources and can disclose or produce sensitive information;
however, not all triples that belong to this definition can reveal sensitive
information; therefore, the interaction of the expert user is needed to
select only the triples that compromise the data. The selection can be
performed by a query or any other method.
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To further simplify the expert user interaction, we propose the use of
a Graphic User Interface (GUI) based on the set of potential disclosure
sources (DS). By a visual interface, the expert user can analyze and
select only the triples which are disclosure sources for the scenario.
The set of triples obtained by the selection of the expert user, is the set
EU (see Definition 7).

Following section describes the protecting phase applied over the
set of triples EU.

5.4 Protection Phase

Once the disclosure sources are selected by the expert user, a protection
process on these triples can be performed. We propose the use of
generalization operations on the predicate of each triple, to only reduce
the connections among datasets (D and BK), preserving the objectives
of integration and combination of the Semantic Web. A taxonomy for
each type of relation from the set of triples EU (see Definition 7), has
to be provided by the expert user. Moreover, a measure to calculate the
level of generalization, applied to the taxonomies (to choose a predicate
form a set of values), is needed (e.g., hierarchical and taxonomy
measures) in order to provide an appropriate, customized and measured
protection according to different scenario. Algorithm 4 describes the
protection process by applying a generalization operation on each
selected triple of EU (see Definition 8).

Algorithm 4: Protection process
Input: Set of triples T = {ti:〈s,p,o〉}, Set of taxonomies TA, Level of

generalization g
Output: Set of triples T ′

1 T’ = {}; // Set of triples.
2 foreach ti in T do
3 Taxonomy ta = TA.getTaxonomy(ti.p); // Taxonomy of predicate

ti.p.
4 ti.p = ta.getPredicate(g); // Predicate from taxonomy ta.
5 T’.add(t); // The modified triple is added to T’.

6 return T’;
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Algorithm 4 receives a set of triples T = {ti : 〈si, pi, oi〉}, a set
of taxonomies TA, a level of generalization g, which is a value among
[0, 1], and returns a set of modified triples T’ = {t′

i : 〈s′
i, p

′
i, o

′
i〉},

according to the taxonomies and the level of generalization provided
by the expert user. From the set of taxonomies provided by the expert
user (TA), the taxonomy which corresponds to the predicate of ti (ti.p)
is used to obtain another predicate that satisfy the level of generalization
(g) (lines 3 and 4 in Algorithm 4). The modified triple is added to the
list T ′ (line 5 in Algorithm 4) and the whole list is returned in line 6.

Note that to obtain the protected RDF data, the compressed triples
selected by the expert user, have to be released to apply the protection
process over their triples.

Our whole proposal overcomes the limitations identified in the
context of RDF protection, such as the assumptions of simple data that
is not similar to the one available on the Web, and the high interaction
of expert user for the classification. The proposal is designed for RDF
data, considering their elements (IRIs, blank nodes and literals) and
the scenario, where linked and heterogeneous resources are available.
The complexity of the RDF structure is reduced in order to decrease the
interaction of the expert user and to make easy the task of classification.
Potential keys are identified and disclosure sources are provided to
the expert user. Moreover, by a generalization method, we reduce the
connections among datasets, preserving the main objectives of the SW
(integration and combination), and protecting the sensitive information
at the same time.

The following section evaluates the complexity of our proposal.

5.5 Complexity Analysis of the Whole Anonymization
Process

A complexity analysis of our anonymization approach indicates a
quadratic order performance in terms of number of triples of the data
to be published (n) and the ones from the background knowledge (m),
i.e., O(n2 + m2). A detailed complexity analysis was done on each
phase of the process to get the complexity of the whole process:
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• For the Reducing-complexity phase, each triple (n) is analyzed
by searching another similar one in the set of triples, then their
execution order is O(n2).

• The Intersection phase based on the reduced set of triples from D,
has an execution order O(n × m), D and BK respectively, for the
worst case where no triple was removed by reducing-complexity
phase.

• The Configuration phase, which is made by the expert user,
depends of the number of triples from D that contain potential
keys, which are obtained by the intersection between D and BK.
Thus, this phase has an execution order O(n) where all triples are
considered as disclosure sources.

• The anonymization phase, applied over the triples selected by the
expert user, has an execution order of O(n), if all triples from D
are considered as disclosure sources.

As the four phases are executed sequentially, the whole protection
approach exhibits a quadratic order complexity, i.e., (O(n2 +m2 +n×
m + 2 × n)).

The following section evaluates the viability and demonstrate the
quadratic order performance of our proposal.

6 Experimental Evaluation

To show the viability and performance of the approach for heteroge-
nous datasets available on the Web, we performed an experimental
evaluation.

6.1 Prototype and Implementation

To evaluate and validate our protection approach, a desktop prototype
system, called RiAiR, was developed using Java. Figure 5 shows a visual
interface of our prototype, which has several customizable options
according to user-preferences. For example, the expert user can apply
the reducing-complexity process to either internal, external nodes, or
only one of them. The thresholds for the reduction, intersection, and
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Figure 5 Visual interface of our protection approach.

protection processes can be also customized by the expert user, selecting
a value among [0,1] in the left area of the visual interface.

For the reducing-complexity and intersection phases, we imple-
mented the similarity function, called simFunc (Definition 5), consid-
ering only the context similarity to be independent of the domain and
to address more heterogeneous datasets. The function is defined by
using the incoming and outgoing properties (relations) from the nodes,
since the behavior of a node can be determinate through its relations
(context). We present the similarity function as follows.

simFunc(ni, nj, α = 0, β = 0, γ = 1) = α × syntactic similarity

+ β × semantic similarity

+ γ × (0.5 × |incomingProperties(ni) ∩ incomingProperties(nj)|
|incomingProperties(ni) ∪ incomingProperties(nj)|

+ 0.5 × |outgoingProperties(ni) ∩ outgoingProperties(nj)|
|outgoingProperties(ni) ∪ outgoingProperties(nj)|)

Where:

– incomingProperties is a function that returns the incoming
relations of a node;

– outgoingProperties is a function that returns the outgoing
relations of a node.
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Note that for the reducing-complexity phase, the intersection and
union among properties is made by a syntactic string comparison;
while for the intersection phase (see Definition 4), since the datasets
are provided from different sources, the syntactic comparison is
performed to only the property name of the incoming and outgo-
ing properties (e.g., http://www.domain1.com/nameProp is equal to
http://www.domain2.com/nameProp, since both property names are
equals – nameProp).

For the anonymization phase, we implemented a generalization
operation based on taxonomies provided by the expert user. The
taxonomies are processed by the approach through the use of a simple
document in XML format, presented as follows.

<taxonomies>
<taxonomy_1>

<taxonomy_1a>
</taxonomy_1a>
<taxonomy_1b>
</taxonomy_1b>

</taxonomy_1>
<taxonomy_2>

<taxonomy_2a>
</taxonomy_2a>

</taxonomy_2>
...

</taxonomies>

A taxonomy for each triple of the set EU (see Definition 7) is
analyzed by applying a similarity measure that returns another similar
relation (predicate) according to a defined threshold. We use the sim-
ilarity measure of work [10], since it takes into account the deepness,
the distance, and the children in common of the taxonomies.

6.2 Datasets and Environment

Our prototype was used to perform several experiments to evaluate
the viability and the performance (execution time) of our approach



RiAiR: A Framework for Sensitive RDF Protection 77

in comparison with the related work. To do so, we considered three
datasets:

• Data 1: The DBpedia person data9 with 16,842,176 triples (used
to evaluate the reducing-complexity phase due to the huge number
of triples);

• Data 2 (BK): The DBpedia geo coordinates10 with 151,205 triples;
and

• Data 3 (D): An extraction of Enipedia dataset (power plants), con-
sidering propertiesart:Nuclear,cat:radioactive,prop:City,
prop:Country, prop:lat, prop:long, and prop:year, with
568 triples.

Using Data 1, Data 2, and Data 3, we evaluated the viability
and performance of the reducing-complexity process, while for the
intersection phase, we used Data 2 and Data 3. The protection phase
is applied over the reduced set of triples obtained by the reducing-
complexity phase and the set of nodes of the intersection phase between
Data 3 and Data 2. Since in this particular case the BK is also a set of
triples (a complex node), we applied the reducing-complexity process
over the dataset as well. Experiments were undertaken on a MacBook
Pro, 2.2 GHz Intel Core(TM) i7 with 16.00 GB, running a MacOS High
Sierra and using a Sun JDK 1.7 programming environment.

6.3 Evaluation metrics

6.3.1 Accuracy in disclosure sources
In order to evaluate the accuracy of our approach when a set of triples
are suggested as disclosure sources to the user expert, we calculated
the F-score, based on the Recall (R) and Precision (PR). These criteria
are commonly adopted in information retrieval and are calculated as
follows:

9Information about persons extracted from the English and Germany
Wikipedia, represented by the FOAF vocabulary – http://wiki.dbpedia.org/
Downloads2015-10.

10Geographic coordinates extracted from Wikipedia – https://wiki.dbpedia.
org/downloads-2016-10.
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PR =
A

A + B
∈ [0, 1] R =

A

A + C
∈ [0, 1] F-score =

2 × PR × R

PR + R
∈ [0, 1]

where A is the number of correctly suggested triples; B is the number of
wrongly suggested triples; and C is the number of triples not suggested
by our approach but considered as disclosure sources.

According to our scenario, Data 3 contains eight properties, from
which only two properties (prop:lat and prop:long) are considered as
disclosure sources. Thus, 142 triples need to be selected by the user
expert, since 71 power plants are present. We describe the accuracy
evaluation in subsection Configuration Phase.

6.3.2 Protection data verification
To consider a data as a protected one, it should not contain disclosure
sources which compromise the data; thus, to verify the data, we propose
a measure based on the sensitive triples returned by applying a query
over the datasets. The verification is performed as the relation between
the sensitive information produced by the original data with respect to
the one produced by protected data; i.e.,

AnonV(D, pD) =
N. of sensitive triples from D − N. of sensitive triples from pD

N. of sensitive triples from D
∈ [0, 1].

where D is the data to be published and pD the protected one (see
Definition 9).

For our evaluation, we use the query presented in our motivat-
ing scenario, considering any type of resources (e.g., dbo:School,
dbo:Hospital). A total of 364 entities, represented by 1456 triples,
are sensitive information.

SELECT DISTINCT
?Place ?g bif:st_distance(?g,bif:st_point(".$long.",".$lat.")) AS ?distance
FROM <http://dbpedia.org>
WHERE {?p rdfs:label ?Place ; geo:geometry ?g.
FILTER (bif:st_intersects (?g, bif:st_point (".$long.", ".$lat."), 100)
&& (lang(?Place) = \"en\"))}
ORDER BY ASC(?distance)

This metric evaluates the protected RDF data in the subsection
Protection Phase. We describe and evaluate as follows each process to
obtain a protected RDF data.
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6.4 Reducing-Complexity Phase

We performed the reducing-complexity process over three real datasets
available on the Web (Data 1, Data 2, and Data 3). We evaluated the
Jena parsing-time (ms) and the size (bytes) of the input and output
to compare the improvement of working over the output in terms of
viability and performance.

6.4.1 Viability evaluation
Test 1: We chose randomly the value 0.44 as the threshold for the
reducing-complexity process. We extracted 1,000 triples from each
dataset and increased the number of triples by a step of 1,000 for the next
iterations. Table 6 shows the results obtained for Data 1. This process
reduced the complexity of more than 16 millions of triples to only
132 triples, since the values were extracted from Wikipedia following a
schema with a finite number of properties. The Jena parsing-time of the
input is reduced to 1.03 ms (132 triples) and its size to 9333 bytes. Note
that applying the same threshold for different sets of triples extracted
from Data 1, we obtain the same output for all the cases, showing that
the general schema of the resources (finite number of properties) is
returned by this process.

For Data 2, Table 7 shows the results of applying the reducing-
complexity process. The dataset of 151,205 triples is reduced to only
4 triples, i.e., the 151,205 triples follow the schema represented by the
4 returned triples. The Jena parsing-time and the size of the input were

Table 6 Test 1: Reducing-Complexity process for Data 1, using a threshold 0.44
Data 1 Input Output

Threshold Triples Jena Time
(ms)

Size
(bytes) Triples Jena Time

(ms)
Size

(bytes)
0.44 1,000 7.99 68958 132 1.10 9333
0.44 2,000 16.89 138108 132 1.08 9333
0.44 3,000 23.95 207036 132 1.12 9333
0.44 4,000 30.41 276070 132 1.05 9333
0.44 5,000 36.50 345687 132 1.07 9333
0.44 6,000 42.75 414809 132 1.15 9333
0.44 7,000 48.23 484719 132 1.06 9333
0.44 8,000 53.11 553507 132 1.10 9333
0.44 9,000 56.93 622646 132 1.01 9333
0.44 10,000 61.12 666224 132 1.09 9333
0.44 16,842,176 – – 132 1.03 9333
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Table 7 Test 1: Reducing-Complexity process for Data 2, using a threshold 0.44
Data 2 Input Output

Threshold Triples Jena Time
(ms)

Size
(bytes) Triples Jena Time

(ms)
Size

(bytes)
0.44 1,000 9.45 77144 4 0.40 455
0.44 2,000 17.94 154729 4 0.35 455
0.44 3,000 25.37 232222 4 0.39 455
0.44 4,000 31.49 309952 4 0.44 455
0.44 5,000 38.63 387289 4 0.36 455
0.44 6,000 44.98 464888 4 0.41 455
0.44 7,000 51.81 543737 4 0.37 455
0.44 8,000 57.41 622768 4 0.36 455
0.44 9,000 62.74 700421 4 0.39 455
0.44 10,000 69.89 778651 4 0.42 455
0.44 151,205 – – 4 0.40 455

Table 8 Test 1: Reducing-Complexity process for Data 3, using a threshold 0.44
Data 3 Input Output

Threshold Triples Jena Time
(ms)

Size
(bytes) Triples Jena Time

(ms)
Size

(bytes)
0.44 568 4.99 37645 8 0.68 769

reduced to 0.40 ms and 455 bytes, respectively. In Data 3, the output
contains only 8 triples from 568 triples as we can observe in Table 8.
The Jena parsing-time and the size of the dataset was reduced to 0.68
ms and 769 bytes, respectively. Similarly to the two previous data sets,
the 8 returned triples represents the scheme of all triples in the set.
Test 2: In order to select the best threshold for the reducing-complexity
process of each dataset, we evaluated the number of triples, Jena
parsing-time, and the size of the output by using a threshold value
between [0.01 – 1.00] with a step of 0.01. Table 9 shows the results
obtained for Data 1. As we can observe, we obtained the best result for
the thresholds from 0.01 to 0.29, where only nine properties are used in
the whole database. The Jena parsing-time of the output was reduced
to 0.49 ms, while the size was reduced to 834 bytes.

For Data 2 and Data 3 (see Tables 10 and 11), the best results were
obtained for a wide range of thresholds [0.01–0.49]. By regarding the
datasets, in Data 2 and Data 3, all resources were described by the same
properties (four and eight properties, respectively), while in Data 1,
there are some resources described by only three or four properties from
a total of nine, therefore in Data 1, the optimal threshold was obtained
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Table 9 Test 2: Reducing-Complexity process for Data 1 with a step 0.01
Data 1 Input Output

Threshold Triples Jena Time
(ms)

Size
(bytes) Triples Jena Time

(ms)
Size

(bytes)
[1.00 , 0.50] 10,000 63.62 666224 10,000 62.56 666224
[0.49 , 0.45] 10,000 61.54 666224 148 1.17 10420

0.44 10,000 62.21 666224 132 1.12 9333
0.43 10,000 65.32 666224 111 0.96 7934
0.43 10,000 62.59 666224 75 0.86 5423

[0.41 , 0.40] 10,000 61.98 666224 55 0.80 4040
0.39 10,000 60.81 666224 39 0.72 3069
0.38 10,000 62.44 666224 26 0.63 2174

[0.37 , 0.36] 10,000 62.86 666224 33 0.65 2617
[0.35 , 0.34] 10,000 61.12 666224 18 0.56 1523
[0.33 , 0.30] 10,000 63.29 666224 12 0.51 1047
[0.29 , 0.01] 10,000 63.58 666224 9 0.49 834

0.29 16,842,176 – – 9 0.49 834

Table 10 Test 2: Reducing-Complexity process for Data 2 with a step 0.01
Data 2 Input Output

Threshold Triples Jena Time
(ms)

Size
(bytes) Triples Jena Time

(ms)
Size

(bytes)
[1.00 , 0.50] 10,000 69.25 778651 10,000 69.42 778651
[0.49 , 0.01] 10,000 70.91 778651 4 0.39 455

0.49 151,205 – – 4 0.39 455

Table 11 Test 2: Reducing-Complexity process for Data 3 with a step 0.01
Data 3 Input Output

Threshold Triples Jena Time
(ms)

Size
(bytes) Triples Jena Time

(ms)
Size

(bytes)
[1.00 - 0.50] 568 4.92 37645 568 4.89 37645
[0.49 -0.01] 568 4.71 37645 8 0.39 769

0.49 568 – – 8 0.39 769

in a smaller range [0.01–0.29], since for the range [0.30–0.49], some
resources were not considered as similar to the general schema due to
their less number of properties.

6.4.2 Performance evaluation
To evaluate the performance of of the reducing-complexity phase, we
measured the average time of 10 executions for each test.

Test 3: We evaluated the time of the reducing-complexity process
of 10,000 triples from Data 1 by using several thresholds between
[0.01–1.00] in order to observe the influence of the threshold over
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Figure 6 Test 3: Execution time of the reducing-complexity process using a
threshold between 0.01 and 1.00.

the reduction time. Figure 6 shows that from a threshold 0.49, where
the number of triples is reduced to only 148, the reduction time
decreases to 4,977.91 ms until 3,668.54 ms for a threshold value
of 0.01. As more triples are reduced during the reducing-complexity
process, less comparisons are performed, since for each iteration
less operations of similarity are needed to discover another similar
node.

Test 4: In this test, we evaluated the impact of the number of triples,
from Data 1, on the execution time of the reducing-complexity
phase. We used a threshold value of 0.29, which was one of the
thresholds that reduced more triples, and a step of 10,000 triples
for the iterations. Figure 7 shows the execution time with respect
to the number of triples. For 60,000 triples, the execution time
is 302.65s. The result obtained confirms the quadratic performance
of this process. The following section evaluates the intersection
phase.

6.5 Intersection Phase

Using the reduced datasets of Data 2 and Data 3, obtained by the
reducing-complexity process (4 and 8 triples, respectively), we perform
the intersection process considering Data 3 as the data to be published
(D), while Data 2 as the background knowledge (BK).
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Figure 7 Test 4: Execution time of the reducing-complexity process using a
threshold value of 0.29.

6.5.1 Viability evaluation
To evaluate the viability of applying this process over real scenarios,
we chose randomly a threshold value (0.65) and later we analyzed the
behavior of this process with respect to several threshold values.

Test 5: By using a threshold value of 0.65, the intersection process did
not return any intersection node. Regarding the reduced datasets, the
nodes that represent the latitude and longitude properties are terminal
nodes, thus they do not have outgoing properties and its similarity is
less than 0.50. Additionally, the similarity between the node which
represents a power plant (Data 3) and the one which represents a place
of interest (Data 2) is calculated based on two properties in common
(intersection – latitude and longitude) from ten properties (union – eight
properties in D and four properties in BK), thus their similarity value
is 0.20.

Test 6: We evaluated the viability of this process using several thresh-
olds from 0.01 to 1.00 with a step of 0.01 (see Table 12). From a
threshold value between 1.00 and 0.50, no node was returned. For
[0.49, 0.21], two nodes which represent the coordinates of the nuclear
power plant resource in D, are returned as potential keys, which is what
we expect. For [0.20, 0.01], three nodes are returned (coordinates and
the node which represents the nuclear power plant).
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Table 12 Test 6: Intersection process for Data 3 with a step 0.01
Threshold Number of Nodes

[1.00 - 0.50] 0
[0.49 - 0.21] 2
[0.20 - 0.01] 3

Table 13 Test 9: Accuracy evaluation for the set of triples suggested as disclosure
sources to the Expert User

Intersec.
Thres-
hold

N. of
potential

keys

Triples
suggested

as
disclosure

sources
(Expert

User
Interface)

Triples
suggested

as
disclosure

sources
(Internal
Mapping)

Valid Not
Valid

Not
sugges-

ted

Prec.
(%)

Rec.
(%)

F-s.
(%)

[1.00 , 0.50] 0 0 0 0 0 142 0 0 0
[0.49 , 0.21] 2 2 142 142 0 0 100 100 100
[0.20 , 0.01] 3 8 568 142 426 0 25 100 40

6.5.2 Performance evaluation
Test 7: The time required to discover the nodes that can be potential
keys, was measured. An average of 10 execution indicates a time of
0.24 ms for this process.

6.6 Selecting Phase

A GUI based on triples was built to reduce the effort of the expert user.
The interface selects automatically the triples which contain at least
one key, considered as potential disclosure sources.

Test 8: We measured the average of verifying the selected triples, which
contain the nodes detected during the intersection process, of 10 people
that have under- and post-graduate degrees in Computer Science. Since
only eight triples are available in the reduced dataset of Data 3, the
verifying average time was 8.23 s.

Test 9: We evaluated the accuracy of the set of triples suggested
as disclosure sources by our approach, using the F-score measure.
Table 13 shows that for a threshold between [0.49, 0.21] all triples
which compromise the data to be published are suggested (Data 3),
obtaining a F-score 100%. For a threshold between [0.20, 0.01] also
the triples which compromise the data are suggested, but other triples
were suggested as well. These thresholds have a F-score of 40%.
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6.7 Protection Phase

The relations (properties) that belong to the triples considered as
disclosure sources by the expert user, have to be protected in order
to reduce the risk of disclosure of sensitive information. Accord-
ing to the configuration process, the eight triples from the reduced
set of Data 3 were pre-selected in the selecting interface, show-
ing that they can be potentially used to disclose sensitive infor-
mation. By the verification of the expert user, the anonymization
process is performed. Since there are eight triples with different
properties (predicates), eight taxonomies need to be provided by the
expert user.

Test 10: We measured the average time of 10 executions, by using
a random threshold of generalization (0.36). A time of 1.12 ms was
required to perform this process.

Test 11: Additionally, we evaluated the protected data by using the
AnonV function defined in subsection evaluation metrics. Table 14
shows that for a threshold less than 0.50 in the intersection phase, the
protected data (pD) does not produce sensitive information, obtaining
the maximum evaluation value (100%).

In these subsections, we evaluated the viability and performance of
our approach by using datasets available on the Web. We demonstrated
a huge reduction of the expert-user interaction suggesting disclosure
sources. Also, a high performance was obtained for all the phases.
Following subsection evaluates our approach with respect to related
work.

Table 14 Test 11: Protection data evaluation according to the number of sensitive
triples produced by the D and pD

Intersec.
Threshold

Sensitive
Triples in D

Sensitive
Triples in pD

Protected Data
Verification (%)

[1.00 , 0.50] 1456 1456 0
[0.49 , 0.21] 1456 0 100
[0.20 , 0.01] 1456 0 100
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Table 15 Test 12: Related Work Comparison
Work Complex.

of data Triples Classification Anonymization
Time (s)

Total
Time (s)Type Time (s)

[41] RDF D: 568
BK: 10,000

Manual
(I, QI, SI, USI) ∼10,568(*) >3,789.24(+) >14,357.24

(>3.99 h)

[44] Structured
data

D: 528
BK: 10,000

Manual
(I, QI, SI, USI) ∼10,568(*) >3,632.67(+) >14,200.67

(>3.94 h)

[53] Graph D:568
BK:10,000

Manual
(I, QI, SI, USI) ∼10,568(*) >3,721.34(+) >14,289.34

(>3.97 h)
Our

Appro-
ach

RDF D: 568
BK: 10,000

Automatic
(I, QI)

8.23
(Verifi-
cation)

Reduc. Inter. Anon. 13.51
(0.00375 h)D: 0.82

BK: 4.46 0.00024 0.00112

(*) An estimation of 1 second for each triple.
(+) The approach was stopped after an hour of execution.

6.8 Related Work Comparison

In order to compare the viability and the performance of our approach
with respect to the state of the art, we selected a work for each identified
group of the related work section. For RDF data, we selected the work
in [41], for structured data (database) the work in [44], while for graph
data the work in [53]. Thresholds of 0.49, 0.10, and 0.36 were used for
the reducing-complexity (D and BK), intersection, and generalization
processes, respectively in our approach. The implementation of each
work was done following the same development environment used
for our approach, such as computer specifications and programming
language.

Test 12: We evaluated the average time of 10 executions of the
anonymization processes. From Data 2, 10,000 triples are considered
as the background knowledge (BK) and the whole Data 3 as the
data to be published (D). Table 15 shows the results obtained for
this comparison. The non-viability of the works in [41, 44, 53] for
real scenarios, was clearly demonstrated in this evaluation, since the
interaction of the expert user to classify the data, required a high
effort (more than three hours), making this task almost impossible.
Moreover, the execution time of the anonymization processes, without
considering the classification, was greater than one hour for [41,44,53]
(the executions were stopped after one hour of processing), while for
our solution was only 5.28 s. Note that we considered the time of
classification similar to the time of verification which was obtained
in our configuration-phase evaluation (∼1 second for triple).

Following section presents our conclusions of this paper.
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7 Conclusions

In this paper, we investigated the protection of sensitive information
for RDF documents before publication on the Web. We proposed a pro-
tection approach, consisting on four phases: (i) Reducing-Complexity
phase, where the input, a set of RDF documents (D) in any serialization
format, is analyzed to reduce its graph complexity; (ii) Intersection
phase, where similar nodes (IN ) between the reduced graph from the
data to the published (D) and the one from the background knowledge
(BK) are identified as potential keys; (iii) Configuration phase in
which the expert user analyzes and selects the triples that contain at
least one potential key, considered as disclosure sources (EU ); and
(iv) protection phase that executes an generalization operation over the
selected triple.

We evaluated the viability and performance of our anonymization
approach with several datasets available on the Web. Results show that
our approach decreases the interaction of the expert user by reducing
the complexity of the graph structure (reducing-complexity phase),
identifying potential keys (intersection phase), and suggesting potential
disclosure sources through a graphic user interface to the expert user.
Moreover, we evaluated our approach with respect to the state of the
art, demonstrating that our proposal overcomes existing solutions, and
these latter are not able to manage linked and heterogeneous resources.

To select an adequate threshold for the reducing-complexity and
intersection phases, the structure of the dataset needs to be analyzed
before. For instance, the dataset Data 1, from our experimental eval-
uation, has a depth equal to 2 and it is composed by sub-graphs that
are not linked, so to compare the root nodes, a threshold similarity less
than 0.50 is required since they do not have incoming properties.

We are currently working on a new graphic user interface based on
graph visualization to better illustrate the relations among the datasets.
Furthermore, we are testing different similarity function to provide
a better reducing-complexity and intersection processes for hetero-
geneous datasets. For the intersection phase, new semantic similarity
functions are required to recognize potential keys that are not from the
same domain (e.g., SameAs service). Additionally, the datasets can be
enriched with new properties (relations) or extra inferred information
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as a pre-step in order to better perform the similarities (e.g., syntactic
and semantic datatype inference as in [11, 18], respectively).
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Vidal, and Javam C. Machado. A differentially private approach
for querying rdf data of social networks. In Proceedings of the 21st
International Database Engineering & Applications Symposium,
IDEAS 2017, pages 74–81, New York, NY, USA, 2017. ACM.

[49] Regina Ticona-Herrera, Joe Tekli, Richard Chbeir, Sébastien
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