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Abstract

The Semantic Web aims at building a foundation of semantic-based data
models and languages for not only manipulating data and knowledge,
but also in decision making by machines. Naturally, time-varying
data and knowledge are required in Semantic Web applications to
incorporate time and further reason about it. However, the original
specifications of RDF and OWL do not include constructs for han-
dling time-varying data and knowledge. For simplicity, RDF model
is confined to binary predicates, hence some form of reification is
needed to represent higher-arity predicates. To this date, there are
many proposals extending RDF and OWL for handling temporal data
and knowledge. They all focus on the valid time. In this paper, we
examine each of these proposals and develop a taxonomy to classify
them according to the form of reification employed: explicit reification
or implicit reification. The implicit reification proposals are further
divided into three sub-categories according to semantic constructs
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they use. Some of these proposals stay compliant to the RDF and
OWL standards whereas others add new constructs to RDF model and
SPARQL query language. Additionally, we compare these proposed
models with respect to characteristics, such as their syntax and seman-
tics, their compliance to RDF and OWL specifications, their need for
additional objects, etc. The comparison provides a useful guideline for
the researchers and practitioners of the Semantic Web in managing
temporal data and knowledge.

Keywords: The Semantic Web, Resource Description Framework,
Taxonomy, Temporal Data, Temporal Knowledge.

1 Introduction

The Semantic Web advocated by the World Wide Web Consortium
(W3C) is based on the vision of machine understandable web infras-
tructure and contents. In the current World Wide Web environment,
web contents are constructed mainly for the presentation of data items.
The term web resource is used to designate all kinds of web contents.
Web resources are mostly consumed by human users. The Semantic
Web provides additional metadata specifications, so that all identifiable
resources can be annotated with metadata. The metadata layer yields the
core of a semantic-based data model that facilitates description of every
identifiable resource by named properties. As a result, web resources
can be consumed by both human and computational agents.

The efforts led by W3C helped popularize ontology, knowledge
representation and reasoning for machine processing. In Computer Sci-
ence, ontology is a model of concepts and relationships among them. In
this respect, an ontology is the conceptualization used to help programs,
machines and humans use and share knowledge [20]. An ontological
approach encodes knowledge about the world in terms of concepts,
classes, instances and relationships. Its specification is materialized by
using some ontology framework, such as RDF or its variants. The objec-
tive of using ontology is to create formal vocabularies, terminologies
and semantic structures for using and exchanging knowledge about a
domain of interest. Moreover, an inference engine, such as Pellet [45],
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FaCT++ [54], etc., can be used to derive knowledge that can be logically
inferred from an ontology specification.

Temporality is a common aspect of data models of all kinds and
it involves changing contents over time when both the old and new
contents are critical. There are two common time dimensions used in
temporal databases: Valid Time and Transaction Time. Valid Time refers
to the validity period of a fact, whereas Transaction Time refers to the
time when that fact is recorded in the database. There is a long history
of research in temporal databases as extensions of the relational data
model and temporal extension of SQL.

In fact, major database packages today include temporal sup-
port. Similarly, there are extensive research efforts underway for
incorporating temporality into the Semantic Web data model, namely
RDF and its variants. However, this is a challenging issue since RDF
data model is hard-wired as triples. Handling temporality in RDF
requires reification although semantically sound reification has a high
overhead.

Semantic Web is formulated as layers. RDF is the fundamental
knowledge representation model at the base. RDFS and OWL augment
this base to provide more representational power, such as being able
to specify class and property hierarchy, and more object property
restrictions. Higher levels of abstraction provide even more represen-
tational capabilities. In this survey, we review temporal extensions
proposed for RDF-based data models. For each model, we focus on
core model components, syntax, semantics and its query language. Valid
Time is commonly considered in proposed temporal extensions of RDF.
A Valid Time timestamp augments a RDF triple, and it represents the
time period for which the triple is valid. In the remainder of the paper,
we focus on Valid Time since Transaction Time is not considered in
temporal models we review. Nevertheless, applications in Semantic
Web would benefit from RDF datastore augmented by the transaction
time as well. For instance, when a RDF datastore is being constructed or
RDF data collected progressively along the time dimension, a sequence
of datastore states is indexed by the corresponding transaction time.
The history of datastore changes can then be built and examined when
needed. As a result, the database can be returned to any previous state
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by the roll back operations. Due to the distributed nature of the Linked
Data environment, the transaction time becomes even more important
in tracking the changes in component datastores. The network latency
introduces challenges in reconciling these changes. The benefit of
transaction time is obvious. However, adding it to RDF is extremely
complicated, both conceptually as well as implementing it. That is why
all of the proposed extensions do not consider the transaction time and
focus only on the valid time.

Our contributions in this paper include:

• Our survey is an up-to-date and comprehensive coverage of
temporal Semantic Web models. There are survey papers of
temporal Semantic Web models, such as [14] and experimental
evaluations of [49]. However, new research has been reported
since.

• We adopt a comparative framework in evaluating proposed
temporal models.

• We have developed a taxonomy for classifying RDF temporal
models. This taxonomy is based on the concept of reification
which manifests itself as Explicit Reification and Implicit Reifi-
cation. In the Implicit Reification case, we have identified three
subgroups: (1) Instantiating-Identifying Concept/Relationship,(2)
Relationship Entity Conversion, and (3) Named Graphs.

2 RDF Basics

Resource Description Framework (RDF) [2] is a graph-based data
model. Its basic construct is a simple triple that is made up of (subject,
predicate, object) which makes an assertional statement.Acollection of
triples constitutes a RDF graph. In a RDF graph, the subjects and objects
are visualized as vertices and the predicates as edges. These element
may be resources identified by International Resource Identifier (IRI)
[13], blank nodes denoted by locally scoped identifiers, or typed literals.

RDF model is formed by layered sets of vocabularies that define
the specific meanings to an ontology and an entailment regime [27].
RDF vocabulary (rdfV) is a simple vocabulary that mainly includes
a type predicate (rdf:type) and a property class (rdf:Property). RDF
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Schema (RDFS) extends rdfV and introduces classes for collections of
related resources, their relationships and property specifications. Web
Ontology Language (OWL) [3] further extends RDFS and provides
more expressiveness. OWL-lite, OWL-DL and OWL-Full are the three
versions of OWL family [56] with increasing expressive power and
computational complexity.

The formal semantics of the Semantic Web layered cake is defined
accordingly for each semantic extension. Model-theoretic semantics is
used to define an interpretation model for each extension. In addition,
an interpretation model is used to characterize an entailment regime.
An entailment, also known as logical consequence, is an implicit
relationship that can logically be inferred from the the given statements
in a RDF store. Given two RDF graphs G1 and G2, if every RDF
interpretation satisfying G1 also satisfies G2, the graph G1 entails
the graph G2, denoted by G1 |= G2 [27]. For rdfV, two entailment
rules, rdfD1 and rdfD2, are defined [27]. For instance, based on
rdfD2 entailment rule, the running example (:John, :enrolled, :SW)
entails (:enrolled, rdf:type, rdf:Property). Furthermore, thirteen RDFS
entailment patterns are defined for RDFS [27].

SPARQL Protocol and RDF Query Language (SPARQL) [46] and
its newer version SPARQL 1.1 [24] are the main query language for
RDF and RDFS. SPARQL has a similar syntax form to SQL, but it
is specifically tailored for graphs. SPARQL provides graph pattern
specifications and a SELECT construct to retrieve matched graph
segments from a RDF ontology.

A rule language, Semantic Web Rule Language (SWRL) [31],
was also developed. SWRL combines OWL-DL and Rule Markup
Language (RuleML). It expresses rules in OWL. The rule form
antecedent =⇒ consequent expresses that the consequent holds if the
antecedent is true. As an example, a new predicate hasGrandParent
can be defined by a rule:

hasParent(x1, x2) ∧ hasParent(x2, x3) =⇒ hasGrandParent(x1, x3)

This rule simply states that if an individual, x1, has a parent who
has a parent, x1 has a grandparent.
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2.1 Reification

The verb reify originates from res in Latin, meaning to thingify or to
convert into a concrete thing. It is commonly used in different disci-
plines. For instance, in First Order Logic, reification generally refers
to the use of terms to express concepts that are normally represented
using predicates [17]. In other words, it allows making an assertion
about a predicate. RDF model is confined to binary predicates, hence
reification is needed to represent higher arity predicates. A RDF triple
(a binary predicate) makes an assertion about a subject and an object.
We can consider it as an atomic statement. When we want to make
another assertion about an atomic statement, we need a new construct
in RDF. That is reification. In general, the reification process starts by
making a given statement bind to a new identifiable resource (i.e., an
identifier is used to represent the statement) which acts as a proxy for
the statement. The proxy then can further be used to assert properties
on behalf of the statement.

Consider the facts given in Table 1: John enrolled in the Semantic
Web class when he lived in NYC from 2/1/2016. Clearly, this statement
asserts several facts and can not be expressed in one RDF triple. For
instance, a binary predicate enrolled (John, SW) represents part of this
fact. If the predicate enrolled is reified, it becomes a new term that can
be used consequently as a component in other assertions. We explain
the two forms of reification by an example.

There are two types of reification in RDF: implicit reification and
explicit reification. We illustrate both forms of reification by using the
facts given in

Person relation of Table 1. Table 1 represents a person whose name
is John. For simplicity, we also use the term John as an identifier. This
individual enrolled in SW, lived in NYC, and had a validity interval
2/1/2016–5/31/2016. Person(John, SW, NYC, 2/1/2016–5/31/2016) is
a 4-ary predicate that represents the relation given in Person table.
Obviously, RDF can not represent it directly, so it needs to be broken

Table 1 Person relation
Name Enrolled LivedIn HasDate
John SW NYC 2/1/2016–5/31/2016
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into several triples by using reification. Implicit reification allows defin-
ing binary predicates shown in Figure 1. Obviously, implicit reification
breaks any n-ary relationships into several binary relationships. This is
similar to representing a n-ary relationship in Entity Relationship Data
models into corresponding binary relationships.

All of these predicates can directly be represented in RDF.
enrolled and livedIN predicates are clear; however the last predicate
hasDate(John, 2/1/2016–5/31/2016) asserts that John has a date
2/1/2016–5/31/2016. It is not clear whether it is for enrolled or livedIn,
or both, or something else. Resolving this ambiguity requires explicit
reification that is also provided in RDF. Considering that the date value
2/1/2016–5/31/2016 actually applies to John’s enrollment in SW, this
fact is reified as given in Figure 2.

In explicit RDF reification process, a triple is instantiated as a new
resource that belongs to the class rdf:Statement. According to RDF
specification, the new resource required in reification can be written
as a blank node or identified by an IRI. In the latter case, such an
IRI does not represent any concrete realization of a triple or resource.
The original triple can then be associated with additional properties
as if it is a standard resource. Figure 2 depicts the reification of a
simple triple (John, enrolled, SW). First a new identifier :stmt1 is
defined. This identifier represents the triple, (:John, :enrolled, :SW),
which is further augmented by meta properties. Hence, components of
the original triple become objects of special meta properties, including
rdf:subject, rdf:predicate and rdf:object. The new resource :stmt1 can
be described by additional properties, such as the occurring time
(2/1/2016 to 5/31/2016), place, certainty or provenance.

According to RDF specification, ‘the reification of a triple does
not entail the triple, and is not entailed by it’ [27]. However, from
the reification in Figure 2, there is an entailment pattern to infer
the original triple of (John, enrolled, SW). Since RDF specification

enrolled(John, SW)
livedIn(John, NYC)
hasDate(John, 2/1/2016-5/31/2016)

Figure 1 Binary predicates for person relation.
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:stmt1

rdf:Statement :John

:enrolled

:SW

rdf:type
rdf:subject

rdf:predicate

rdf:object

Figure 2 RDF reification.

does not constrain the semantics of standard reification, it is the user’s
decision to accept the entailment pattern or not.

Moreover, reification also suffers from the proliferation of extra
objects and triples that are needed for representing higher order
relations. That is, to reify (John, enrolled, SW), four additional triples
are needed before additional facts can be added. As a result, the graph
size increases. And even worse, the reified graph makes queries more
difficult to write as we will see it in an example later.

For the user’s convenience, two presentations of RDF graphs are
commonly used in the literature. Figure 3(a) includes the original triple
instead of converting the predicate :enrolled to an object. In contrast,
Figure 3(b) uses a node connecting to an edge instead of another node.
This treatment is a violation of the general definition of graphs, and
common graph-based operations can not be applied directly.

3 Time Basics

Time is a very pervasive concept. It is naturally continuous. However,
for the sake of representation, Time is usually modeled as a discrete
sequence of time instants. Continuous time instants are combined into
intervals for a compact representation. Among many approaches to
model temporal data and knowledge, one can choose to incorporate
Time into a model as the first order citizen, i.e., Time is an explicit
part of the model and its language. Alternatively, Time can also be
realized implicitly by capturing temporal ordering of different model
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:SW

:John

:stmt1

:enrolled

:enrolled

rdf:predicate rdf:object

rdf:subject

(a)

:SW

:John

:stmt1

:enrolled
rdf:predicate

rdf:object

rdf:subject

(b)

Figure 3 Graph representation of RDF reification.

states. That is, when the model changes, an updated version of the
model is generated, while the original model is preserved. This leads
to a notion of versioning. However, versioning suffers from the rapid
proliferation of state objects which are prohibitive when considering
the large size of RDF stores. That is why versioning is not generally
used in Semantic Web to track time varying data and knowledge.
One notable exception is Named Graph [11], which comes close to
versioning. As a result, most of the temporal models for the Semantic
Web employ more explicit ways of incorporating time into the model,
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instead of versioning. Nevertheless, versioning can be used in tracking
the changes of the ontology, not its data as illustrated in the reference
[19, 57].

We assume that the time domain is linearly ordered in a single time
dimension. Considering this structure: TP = {T, <}, where T is the set
of time instants and < is the linear order on T. TP refers to a domain of
time points. For time representation in this paper, we use time instants
with the granularity of one day as metrics for TP . All the time intervals,
denoted by TI , are defined as:

• ATime interval contains a set of consecutive time instants between
its boundaries. A time interval [t−, t+] is the set {tk|tk ∈ TP , t− ≤
tk ≤ t+} and it is closed at both ends. A time interval may be open
on either end or both: [t−, t+), (t−, t+] or (t−, t+).

• t− is the beginning instant which sets the minimal boundary of
the time interval. t+ is the ending instant which sets the maximal
boundary of the time interval.

4 Time in Semantic Web

In this section, we review Semantic Web temporal models reported in
the literature. We examine the characteristics of each temporal model
and develop a taxonomy to categorize them into two groups: explicit
reification-based and implicit reification-based. Explicit reification-
based temporal models employ standard RDF reification with either
RDF reification vocabulary, such as rdf:subject, rdf:predicate, and
rdf:object, or special functions to transform the proposed temporal
model to an equivalent standard RDF model. In comparison, tem-
poral models in implicit reification group employ some mechanism
to identify a concept, a triple, a relationship or a graph. As we shall
see later in this section, different logical constructs are employed to
conceptualize an RDF graph at different levels, such as triple, and
graph level. This group is further characterized into three subgroups
by considering the underlying semantics they use: (1) Instantiating-
Identifying Concept/Relationship, (2) Relationship Entity Conversion,
and (3) Named Graphs.
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For each model, we consider core model components, extensions to
RDF/RDFS vocabularies, SPARQL query support and special features,
if any.As we will see latter, some proposals employ W3C recommended
OWL-Time ontology [12] as the time domain ontology whereas others
include their own definition of time.

4.1 Running Example and Query

The data in Table 1 will be used for illustrating each temporal model.
A simple RDF triple, (John, enrolled, SW), asserts the fact about an
individual Student John and his enrollment in a Semantic Web class.
The predicate enrolled relates a Student instance to a Class instance
(i.e., as domain and range respectively). Furthermore, a closed interval
[2/1/2016, 5/31/2016] needs to be associated with this triple. John
may enroll in other classes over time. Hence, it is conceivable to have
another triple: (John, enrolled, OOP) making another assertion about
his enrollment in other time, such as [8/31/2016, 12/22/2016]. We use
standard U.S. time representation for the timestamps in the examples.
For each proposal, we will use standard RDF to depict the running
example. A bubble denotes a resource as a subject or as an object.
Directed lines represent a predicate. Basic data values are represented
by rectangles.

The query “retrieve the valid time when John enrolled in the
Semantic Web class” will also be used as a running example to illustrate
how it is expressed in each temporal model and its version of SPARQL.

Namespace and Prefixes The following namespaces, IRI
declaration and prefix taken from [1, 13] will be used as a common
notation in all of the examples:

rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
rdfs: <http://www.w3.org/2000/01/rdf-schema#>
owl: <http://www.w3.org/2002/07/owl#>
: <http://example.org/TemporalSW#>

The running example assumes the base ontology Namespace–
http://example.org/TemporalSW, and use “:” as its prefix.
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4.2 Explicit Reification Based Temporal Models

One of the early and formal extensions of RDF to handle temporality
is Temporal RDF [21]. Later enhancements are introduced to this
extension, such as [23, 32, 47]. In the following, we review Temporal
RDF and its enhanced versions.

4.2.1 Temporal RDF
In Temporal RDF, each triple is timestamped with a time instant or
an interval [21]. Timestamping is achieved by using standard RDF
definitions and an internal time domain that includes temporal property
specifications, such as temporal, instant, interval, initial and final. A
Temporal RDF triple is in the form of (s, p, o)[T ] and visualized as a
temporal RDF graph given in Figure 4. “:stmt1” and “:temporal 1” are
ground nodes that substitute blank nodes, which are used as subjects in
the original work for reification. Ground nodes refer to non-blank nodes.

In Figure 4, the triple (John, enrolled, SW) is reified by :stmt1 of
rdf:Statement class. :stmt1, is further associated with a temporal entity
:temporal 1 and then an interval :i1. :i1 is the valid time interval of
the triple which has its begin and end time instants “2/1/2016” and
“5/31/2016” respectively, whereas natural numbers are used as time
instants in the original work. This temporal fact is therefore represented
by seven RDF triples in the case of time interval and by six triples in
the case of time instant.

:SW

:John

:stmt1 :temporal 1 :i1

2/1/2016

5/31/2016

:enrolled

:temporal :interval

:hasBegining

:hasEnd

rdf:predicate

rdf:object

rdf:subject

Figure 4 Temporal RDF.



Temporal Extensions to RDF 137

The semantics of a Temporal RDF graph [21] is provided in terms
of nontemporal RDF and RDFS graphs. Temporal entailment is defined
based on the closure of temporal and non-temporal graphs. Specifically,
a temporal graphG1 entailsG2 if and only temporal closure ofG1 entails
G2. Furthermore, a deductive inference rule system for Temporal RDF
graphs is outlined. Temporal rules are defined to equate an interval and
a instant version of temporal graphs.

Aquery language proposed for Temporal RDF graphs is provided in
a rule form. The running example query can be expressed conceptually
as follows:

(:X, :interval, ?Y), (?Y, :hasBegining, ?ti),
(?Y, :hasEnd, ?tf)
<-- (:John, :enrolled, :SW):[?ti, ?tf].

Rewriting the above running example in SPARQL results in the
following:

SELECT ?Y ?ti ?tf
WHERE { :John :enrolled :SW.
?X rdf:type rdf:Statement.
?X rdf:subject :John.
?X rdf:predicate :enrolled.
?X rdf:object :SW.
?X :interval ?Y.
?Y :hasBegining ?ti.
?Y :hasEnd ?tf.
}

In this query, presence of the original triple (John, enrolled, SW)
is assumed. Nevertheless, the query result preserves it even if this
assumption is dropped. Query processing and semantics are also defined
as a temporal tableau similar to a language presented in [22]. The
complexity of query processing is briefly explained. Moreover, the
authors conclude that adding time to the proposed Temporal RDF does
not dominate the computational complexity.
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4.2.2 Enhanced Temporal RDF
The Temporal RDF model [21] is enhanced by allowing anonymous
timestamps [23] for temporal triples. The role of anonymous timestamp
is similar to that of the blank node in RDF model. That is, a temporal
triple has a time but the exact boundaries of this time are not specified.
Such a temporal triple is represented in the form of (s, p, o):[X] which
asserts that (s, p, o) is valid during some unkown time [X]. General
temporal graphs are similarly defined as temporal graphs with known
or anonymous timestamps. The t-ground general temporal graph is
defined as one that does not contain anonymous timestamps.

The semantics of general temporal graphs is given similar to
Temporal RDF semantics developed in [21] and it includes an additional
slice closure of general temporal graphs. Slice closure of a general
temporal graph is computed by a non-temporal closure of snapshot
graphs for each time point. The complexity of evaluating entailment for
general Temporal RDF graphs is NP complete [23]. Query language
for the general Temporal RDF is similar to the example shown above
for Temporal RDF.

4.2.3 C-Temporal Graph
Temporal RDF model [21] is further extended to include temporal
constraints and reasoning [32]. A C-Temporal Graph is denoted by
C = (G, Σ). G is a temporal graph that contains temporal triples and Σ
includes temporal constraints enforced on the triples of the graph G [32].
Temporal blanks are introduced as RDF nodes that contain anonymous
time information represented by time variables. The treatment is similar
to the Enhanced Temporal RDF that handles anonymous timestamps
[23]. As an example, a student went to high school at an unknown time
T1, and later he went to college at another unknown time, T2. These
two facts are represented as two Temporal RDF triples with the variable
timestamps T1 and T2 respectively. To preserve a proper temporal order,
a constraint, T2 > T1, is enforced in the model. As in [21] the temporal
entailment is based on the closure of temporal and nontemporal graphs,
a C-Temporal graph can also be converted to a temporal closure defined
in [23]. In such case, the temporal entailment can be handled as usual.
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Additionally, query processing for the C-Temporal graph is reduced to
matching query patterns on the closed graph.

4.2.4 tRDF for Indeterminate Triples
The tRDF model [47] is based on the Temporal RDF proposed earlier
in [21, 23]. tRDF particularly supports another type of anonymous
timestamp in indeterminate triples. A determinate triple (s, p, o)[T]
represents that the triple is always valid in the interval T. In contrast,
an indeterminate triple (s, p : [n : T ], o) represents that the triple is valid
at most n distinct time points in the interval T. A tRDF graph includes
both determinate and indeterminate triples. In addition, the concept
of normalizing a tRDF graph is defined in order to preserve good
properties of the tRDF model. Normalizing tRDF employs the notion
of value-equivalent-tuples from temporal databases [33]. Two tRDF
triples are value-equivalent if their non-temporal parts are identical.
As an example, suppose John actually enrolled in Semantic Web
class twice: (John, enrolled, SW )[T1] and (John, enrolled, SW )[T2].
Instead of storing them as two value-equivalent triples, coalescence
is applied to merge overlapping or connecting intervals into a single
cumulative interval, i.e., T1 ∪T2. The consolidated interval can then be
used as the timestamp of a single representative triple (John, enrolled,
SW){T1 ∪ T2}. As a result, a normalized tRDF graph G entails each
one of the coalesced tRDF graphs.

Indexing structure, tGRIN, is proposed to improve the performance
of tRDF triple storage in the query evaluation. A tGRIN index is a
balanced tree structure that stores close graph vertices together in the
same index node. The closeness of two resources x and y is determined
by a distance metric that combines general graph distance, dG(x, y), and
temporal graph distance, dT (x, y), by a k-norm function, [dG(x, y)k +
dT (x, y)k]1/k [47]. Experiments show that tGRIN index structure for
tRDF queries outperforms the standard B-tree index structure used in
traditional relational databases [47].

The formal semantics and querying tRDF are based on equivalent
models developed in Temporal RDF [21, 23]. Additional semantic
conditions are also needed to interpret indeterminate triples and
queries.
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4.2.5 Generalized RDF Annotation
In [59], a generalized framework for representing and reasoning
annotated RDFS is proposed. This model is based on the works of
annotated RDF (aRDF) [55] which employs annotated logic [34],
and its query language, AnQL [36]. The framework represents an
abstract form of triples: (s, p, o)[L] where L is an annotation term that
belongs to a domain D. The annotation domain D could be temporal,
fuzzy, combinations or others. It is defined as an algebraic structure:
D = {L, �,

∧
, ∨, ⊗ =⇒, ⊥, �}where elements in L are annotation

terms: L = [0,1] and L = [T] for fuzzy and temporal domains
respectively. The top �, bottom ⊥, order �, meet operator

∧
, join

operator ∨ and t-norm ⊗ are used for constructing the annotation
domain and its inference patterns. The t-norm ⊗ is used for combin-
ing annotation information. For instance, based on RDFS entailment
pattern-rdfs5 of [27], (a, rdfs:subPropertyOf, c):L1⊗L2 can be inferred
from (a, rdfs:subPropertyOf, b):L1 and (b, rdfs:subPropertyOf, c):L2.
The annotation term in the inferred triple takes the conjunction of
L1 and L2. For the temporal case, ⊗ is overloaded to represent the
intersection of time intervals. Multiple annotation domains may be
combined using the generalized framework. A complex domain D can
be constructed from individual annotation domains: D = D1 × D2

× .... × Dn = {L, �, ⊗, ⊥, �}. The model is also augmented by a
set of inference rules for annotated RDFS.

4.2.6 RDF∗

Hartig proposed extensions of the RDF model and SPARQLto represent
statement-level metadata [25]. The RDF∗ model allows nested triples.
That is, a triple can be embedded as a subject or an object in another
triple. Figure 5 depicts the running example. The original triple, (John,
enrolled, SW), is nested in an abstract object.To accommodate its nested
structure, RDF∗ requires syntactic and semantic extensions of RDF
model. Nevertheless, RDF∗ graphs can be transformed to standard RDF
graphs by a set of special functions provided in [25]. They are blank
node assignment function, reification function and unfold function. A
transformed RDF∗ graph is an explicitly reified standard RDF graph and
would be similar to the example in Figure 2. In addition, Turtle∗ and
SPARQL∗ are proposed as extensions of standard Turtle and SPARQL
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:john

:sw

:enrolled

:i1
:hasVT

2/1/2-16 5/31/2016

:hasBeginning :hasEnd

Figure 5 RDF∗.

notations respectively. The running example query can be written in
SPARQL∗ as follows. Double bracket pairs show a nested triple:

SELECT ?ti ?tf
WHERE { <<:John :enrolled :SW>> :hasVT ?i1.
?i1 :hasBeginning ?ti.
?i1 :hasEnd ?tf.
}

4.2.7 YAGO 2
The original YAGO Knowledge Base [52] is constructed automatically
from articles on Wikipedia. Each simple article on Wikipedia belongs
to a article category, and mainly contains a lead section, a content body,
appendices and bottom notes [4].An article becomes an entity inYAGO.
Article categories on Wikipedia provide the type information for it. The
type information is linked to the taxonomy of WordNet [30]. In YAGO,
each fact is represented by a triple, (S, P, O). Each fact is also reified,
so an triple identifier is assigned. This effectively results a quadruple:
(id, S, P, O).

YAGO 2 is the new version of YAGO. YAGO 2 employs an
extensible extraction architecture that is based on declarative rules,
whereas YAGO’s extraction rules are hard-wired to the source code
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[30]. In addition,YAGO 2 incorporate both temporal and spatial dimen-
sions to the knowledge base. For the temporal dimension, yagoDate is
the main data type that denotes time points in days. A time interval
can be represented by two time points with a pair of relations, such as
OccursSince and OccursUntil [30]. Entity time denotes the existence
in time of an entity while Fact time represents the valid time of a fact.
Only the fact time is applicable to the running example. The running
example can be represented similarly to Temporal RDF of Figure 4.

4.3 Implicit Reification Based Temporal Models

In general, implicit reification based models use different types of
abstraction for handling reification. They do not employ reification
vocabularies of RDF specifications. Two subcategories follow.

4.3.1 Instantiating-Identifying Concept/Relationship (IIR)
In IIR models, a concept or relationship is reified and further
temporalized. Either such relationship is abstracted as a new object,
or a concept is viewed as four dimensional and instantiated to have
temporal extents. Singleton Property converts each relationship to be
universally unique. 4D fluents use concepts that view each resource as
a perdurant. Fluents represent properties that change over time.

4.3.1.1 Singleton Property
Nguyen et al. propose the concept of singleton property for represent-
ing and querying meta knowledge in [41]. This approach recognizes
each RDF triple as an unique relationship and introduces multiple
contextual instances to it as needed. Given a relationship between
two objects under a context, a singleton property is introduced to
denote the relationship instance with a specific context, such as tem-
porality, provenance, etc. In other words, a singleton property is an
instance of a given relationship used to assert the context property
values. Figure 6 shows the running example in singleton property
approach.

The unique property :enrolled 1 in Figure 6 is an instantiation of
the generic :enrolled by rdf:singletonPropertyOf. It is then used for
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:John :SW
:enrolled 1

:enrolled 1:enrolled :i1 2/1/2016

5/31/2016

:hasBeginning
rdf:singletonPropertyOf

:hasEnd

:hasVT

Figure 6 Singleton property.

asserting the relationship between John and the class SW. The temporal
context is therefore asserted by (:enrolled 1, :hasVT, :i1).

The formal semantics of the singleton property is derived from
the standard RDF and RDFS semantics with the additional semantics
extension for the vocabulary rdf:singletonPropertyOf. The singleton
property gives rises to three cases of query patterns: data, metadata
and mixed patterns which SPARQL supports. The running example
query belongs to the metadata pattern and can be written in SPARQL
as follows:

SELECT ?ti ?tf
WHERE { ?p rdf:singletonPropertyOf :enrolled.
:john ?p :sw.
?p :hasVT ?i1.
?i1 :hasBeginning ?ti.
?i1 :hasEnd ?tf.
}

4.3.1.2 4D Fluents
Welty et al. proposed 4D Fluents model for representing time-varying
relationships in OWL [58]. This model employs 4D view and Fluent.
Haynes introduced four dimensional view or perdurantist view into
Computer Science in his seminal work [28]. Perdurantism is a philo-
sophical theory of persistence and identity [26], and it is closely related
to four dimensionalism. In four dimensional view, an object that persists
through time has distinct temporal parts at every time instant through its
existence in time. Furthermore, each persisting object can be considered
a four dimensional spacetime worm that stretches across space-time.
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Slicing the worm at a specific time interval or instant of the time
dimension yields a temporal part. A Temporal part is also called a time
slice in other literature [16]. The slicing produces entity-at-a-time. In
contrast, three dimensional view considers that an object is wholly
present or endures through its existence in time. Therefore there are no
temporal parts.

Fluent is a component of Situational Calculus which is a log-
ical language for representing change. McCarthy first introduced
Situational Calculus [38, 39]. It concerns situations, actions and fluents
in a dynamic domain. Actions make the domain change from one
situation to another. Fluents are situation-dependent functions for
describing the effects of actions.

In 4D Fluents model, fluents are properties that change over time
[58]. These properties are special cases in that both the domain
and range of them are temporal parts of the corresponding entities.
TemporalPart is the main class for converting regular entities to 4D
spacetime worm ones. OWL-Time ontology of [29] is used as time
domain in 4D Fluents model. Particularly, a class TimeInterval derived
from the equivalent class of OWL-Time is used for all temporal terms.

Several object and fluents properties are listed in Table 2. Figure 7
represents running example in 4D Fluents model.

In Figure 7, individuals :John and :SW are two 4D entities. Each
entity has temporal parts, :John@i1 and :SW@i1 respectively. The
property :enrolled is transformed to a fluent whose domain and range
are both temporal parts. Each temporal part is associated with a specific
temporal extent, i.e., time interval, that denotes its valid time. One
fluent property requires two extra objects, i.e., temporal parts, and two
properties, in contrast to reification, that uses one extra object and four
properties as illustrated in Figure 2. Moreover, the 4D fluents model
has advantages. Particularly, OWL inverse operator and cardinality

Table 2 4D fluents ontology object property
Object Property Domain Range
:fluentProperty :TemporalPart :TemporalPart
:temporalExtent :TemporalPart :TimeInterval
:temporalPartOf :TemporalPart complementOf(:TimeInterval)
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:John

:SW

:John@i1

:SW@i1

:temporalPartOf

:temporalPartOf

:enrolled

:i1 2/1/2016

5/31/2016

:temporalExt

:temporalExt

:hasBeginning

:hasEnd

Figure 7 4D fluents.

constraints are available and standard OWL reasoners can be used for
inferencing.

The 4D Fluents model is within standard RDF and OWL-DL. Its
semantics is defined based on OWL-DL semantics. Consequently, there
is no need to extend RDF or OWL. The running example query can be
written in SPARQL 4D Fluents model:

Select ?ti ?tf
WHERE {?ts1 :temporalPartOf :John.
?ts2 :temporalPartOf :SW.
?ts1 :enrolled ?ts2.
?ts1 :temporalExt ?i.
?ts2 :temporalExt ?i.
?i :hasBeginning ?ti.
?i :hasEnd ?tf.
}

Since the 4D Fluents model imports OWL-Time [29], :i1 in Figure 7
is an OWL-Time interval, while ?ti and ?tf in the above query are two
OWL-Time instants.

4.3.1.3 Extended 4D Fluents
Batsakis et al. extended 4D Fluents model to incorporate qualitative
temporal relations that have unknown temporal information [7, 8].
Such a relation is considered an object property between time intervals.
The model employs OWL-Time [29] and Allen’s thirteen temporal
relations [5], such as before, meets and overlaps, etc. Consider the
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:John

:John@i1

:John@i2

:SW@i1

:OOP@i2

:i1

:i2

:SW

:OOP

2/1/2016

5/31/2016

:enrolled

:temporalExt
:temporalExt

:enrolled

:temporalExt :temporalExt

:temporalPartOf

:temporalPartOf

:temporalPartOf

:temporalPartOf

:hasBeginning

:hasEnd

:before

Figure 8 Extended 4D fluents.

running example and additionally the triple that John enrolled in another
class OOP in a later semester. However, the actual enrollment time
was unknown. In Figure 8, time interval :i2 denotes the valid time of
John’s OOP enrollment and its relationship to :i1 is captured by the
object property before. Semantics of the extended 4D Fluents model is
based on the original 4D Fluents model, with the additional temporal
semantics needed for qualitative temporal relations.

TOQL [6] is the SQL-like query language for Extended 4D
Fluents model. To accommodate querying qualitative temporal rela-
tions, additionally query constructs, such as “AT” clause and Allen
temporal operators [5], such as before, after, meets, etc., are included in
TOQL.

4.3.1.4 Temporal Web Ontology Language-tOWL
Fransincar et al. proposed an extension of the OWL-DLlanguage, called
tOWL [40], for representing time and changes in an ontology. tOWL
uses a subset of OWL-DL whose foundation is the logic SHIN (D).
This logic is sufficiently expressive and is decidable for a sound and
complete reasoning algorithm [37]. The time domain of tOWL handles
both instants and intervals that are modeled by rational numbers and a
set of partial order relations over them.As a result, an actual time instant,
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:john

:sw

:john@i1

sw@i1

towl:timeSliceOf

towl:timeSliceOf

:enrolled

towl:interval1

towl:interval2

2/1/2016

5/31/2016

towl:time

towl:time

towl:equal

:hasBegining

:hasEnd

Figure 9 tOWL.

an interval or Allen’s temporal relations [5] are all converted to rational
number-based equivalent instants or relations. For modeling changing
values, tOWL employs the 4D Fluents model, i.e., perdurantist’s view
[58]. tOWL is conceptualized as a layered approach. The foundation
layer is OWL-DL and the extended concrete domain is the second layer.
Time representation is at the third layer, which is defined by the concrete
domain.

Figure 9 gives the running example in tOWL. Note that tOWL
requires separate intervals for :John and :SW. Therefore, a restriction
on the equivalence of towl:interval1 and towl:interval2 is enforced by a
relation towl:equal in Figure 9 which is one more triple used compared
to 4D Fluents model in [58].

In tOWL, the time domain is based on rational numbers and
relations over them. This approach makes tOWL more expressive in
representing complex temporal relations. For instance, in Figure 9,
a temporal constraint towl:interval1 equates towl:interval2 can be
expressed with the equality of endpoints of the two intervals. Addi-
tionally, tOWL reduces the proliferation of objects by differentiating
types of fluents as FluentObjectProperty and FluentDatatypeProperty.
For a FluentDatatypeProperty, which relates a time slice to a typed
value, three triples can be saved due to that the time slice is not needed
for a typed value.

4.3.2 Relationship to Entity Conversion (REC)
In REC models, a relationship is transformed to a composite entity. The
transformed entity comes in two forms: a new entity that implicitly
reifies the original triple, or an abstract object that becomes a term for
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further use. As an example of REC models, N-ary relations provide a
main modeling concept: a triple is objectified as a new entity and can
further be associated to properties, such as time.

4.3.2.1 N-ary Relations
In principle, N-ary relation is a generalization of reification. For each
N-ary relation, a new class with an instance is introduced for it as if
the relation is objectified. Further property assertions can be made with
respect to the newly introduced instance. Figure 10 gives the running
example in N-ary relations.

The resource :enrolled1 in Figure 10 is introduced as a new instance
encapsulating both the course name value, SW, and its valid time
interval through two properties, :hasCourse and :hasVT. The relation
(:John, :enrolled, :SW) is converted to an entity class :Enrollment.
The property :enrolled is overloaded, so its range becomes the newly
introduced class :Enrollment. Adding time to the original triple, i.e.,
(John, enrolled, SW), requires three more triples.

N-ary relation approach does not require extension to RDF, RDFS
or OWL vocabularies. It simply converts relationships to entities that
encapsulate properties. The semantics for N-ary relation approach is
based on RDF and RDFS semantics. In Figure 10, the new object
:enrolled1 may also be represented by a blank node. A blank node does
not have any meaning, but acts like a wrapper for grouping related
objects.

The running example query in SPARQL is as follows:

:enrolled1

:Enrollment

:i1 2/1/2016

5/31/2016

:John

:Student :SW

rdf:type

rdf:type

:hasVT:enrolled

:hasCourse

:hasBeginning

:hasEnd

Figure 10 N-ary relation.
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Select ?ti ?tf
WHERE {
:John :enrolled ?e.
?e rdf:type :Enrollment.
?e :hasCourse :SW.
?e :hasVT ?i.
?i :hasBeginning ?ti.
?i :hasFinish ?tf.
}

While N-ary relation approach can be applied to OWL, it would
incur overheads. For instance, multiple inverse properties are needed for
a N-ary relation. Moreover, the use of cardinality restrictions becomes
limiting on some roles that depend on the class of some other roles [42].

4.3.2.2 FrameBase
FrameBase [48] integrates FrameNet [15] and WordNet [35] for
constructing an extensible RDFS schema. FrameNet originated from
Frame Semantics [15]. Frame Semantics assumes that people under-
stand the meaning of words by evoking semantic frames, and relate
words to meanings. FrameNet is a large lexical database that contains
semantic frames for describing meanings of natural language words.
It also provides example sentences annotated with frames and frame
elements to demonstrate the use of words in the frame. Each distinct
semantic frame contains lexical units and frame elements. Lexical units
are the keywords used to evoke the frame, while frame elements are the
roles that describe properties of the frame.

WordNet [35] is another well known lexical database for English
that provides meanings of words. Each type of words, such as nouns,
verbs, adjectives etc. is organized to form a synset, or a synonym set.
Each set represents a lexical concept [35]. WordNet contains about
117,000 synsets, and each may be linked to others. The major relation
is hyperonymy,or is A relation, and meronymy, or part-whole. These
relations, among other components, form a lexical network of words
and concepts.

The main representation model used in FrameBase is similar to the
model of N-ary relations discussed above and in Figure 10. A primary
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entity is created to form a semantic frame for the N-ary relation. The
frame’s properties can be asserted in a sense of semantic role [18, 42].A
mapping between FrameNet and WordNet is created to form the basis
lexical units and relations for FrameBase’s schema.The mapping is
further transformed by the schema induction and automatic reification-
dereification mechanism to yield a light weight yet broad covering
frames [48].

4.3.2.3 Valid-Time Temporal Model
O’Connor et al. propose a valid-time temporal model and a SWRL-
based [31] query mechanism for manipulating temporal knowledge in
OWL ontologies [44]. The model introduces a new class, temporal-
Fact, and uses N-ary relations. The running example is represented
in Figure 11. The graph in Figure 11 is similar to N-ary relations in
Figure 10. However, there are differences on the class hierarchy. In the
validtime temporal model, any existing OWL class can have temporal
aspects as long as it subclasses temporal:Fact, which is the super class
of all temporal facts. This avoids significant ontology rewriting in
converting an ontology to a temporal version.

The temporal expressivity of this model is further enhanced by using
SWRL [31] to construct temporal rules. A set of temporal operators that
includes Allen’s operators [5] is implemented as library-like built-ins

:enrolled1

:Enrollmenttemporal:Fact

:i1 2/1/2016

5/31/2016

:John

:Student :SW

rdf:type

rdf:type

rdfs:subClassOf

:hasVTime

:enrolled

:hasCourse

:hasBeginning

:hasEnd

Figure 11 Valid-time OWL model.
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for SWRL rules. With the temporal ontology and temporal built-in
operators, complex temporal rules can be constructed.

Querying the temporal ontology is done by SQWRL[43].All SWRL
built-ins [31] are included for SQWRL, so complex temporal queries
can be formed. These include queries that require complex closure,
negation, or complex aggregation and grouping. The running example
query is adapted to show temporal operator usefulness in this model.
The following SQWRL query retrieves all resources who took the
course :SW before 2016. The symbol ∧ denotes logical and.

Student(?s) ˆ :enrolled(?s, ?e) ˆ
:hasCourse(?e, :sw) ˆ
temporal:hasValidTime(?e, ?vt) ˆ
temporal.before(?vt, "2016")
--> sqwrl:select(?s)

The above query can be transformed to a standard but lengthy
SPARQL query. However, there are very limited temporal opera-
tor supports in SPARQL. If done so, the temporal order, such as
temporal:before, may need to be fulfilled by using literal value com-
parisons. This model is designed to be implemented at the users’ level.
There is no formal extension to RDF, RDFS or OWL model and
vocabularies. However, the additional semantics for Allen’s temporal
operator [5] and the built-in SWRL rules need to be added.

4.3.3 Named Graphs
The term Named graph was first introduced in [11]. Named
Graphs extend RDF model to provide a mechanism for identifying
grouped RDF triples. A named graph, denoted by (u1, G1) where G1 is
a standard RDF graph that is named by an IRI ui [11]. W3C has adopted
Named Graphs model in SPARQL query language [24, 46]. With the
Named Graph model, the running example is represented in Figure 12.

In Figure 12, :graph1 indicates a graph for which additional
properties can be asserted. W3C adopted a line-based N-Quads as con-
crete syntax for RDF 1.1 Datasets [10]. The format is a quad: <subject,
predicate, object, GraphName>. For querying Named Graphs,
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:john

:sw

:enrolled

:graph1

:hasVT

:i1

2/1/2016 5/31/2016

:hasBeginning :hasEnd

Figure 12 Named graph.

TriQL[9], RDFQ [51] and SPARQLare available. The running example
query can be written in SPARQL as follows:

SELECT ?ti ?tf
FROM :graph1
WHERE {:graph1 :hasVT ?i.
?i1 :hasBeginning ?ti.
?i1 :hasEnd ?tf.
:John :enrolled :SW.
}

Named Graphs model is a general purpose triple grouping. In the
above query, it is assumed that all triples share the same temporal extent
are grouped in the same graph. The FROM clause indicates the source
graph. In an extreme case that each triple requires a different time
reference, a significant amount of named graphs is needed. When triples
may need multiple metadata annotation, using Named Graphs model
becomes complex.

4.3.3.1 τSPARQL Temporal Queries
Tappolet et al. propose a temporal RDF query approach τSPARQL
[53]. τSPARQL is defined as a shorthand format for querying such a
temporal ontology. In this model, OWL-Time ontology [12] is used as
the time domain which defines time instants and intervals. The target
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temporal RDF model is designed using Named Graphs. Each graph is
identified by exactly one time interval. Triples with the same temporal
extent are grouped to the same graph. In other words, the name of a
graph is the time interval. The grouping also introduces complexity to
the model in that the indexing structure would have a significant impact
on query retrieval time.

τSPARQL is based on SPARQL, and recognizes a quadruple form,
such as ([ti, tf], s, p, o), as the main query pattern. The interval [ti, tf]
is to be checked against names of graphs. The triple s, p, o are handled
as a SPARQL query pattern. As a result, a τSPARQL query can be
mapped to a standard SPARQL 1.1 one. The running example query
can be written in τSPARQL as follows:

SELECT ?ti ?tf
WHERE {
[?ti, ?tf] :John :enrolled :SW.
}

Assuming that the working example is represented as in Figure 12,
mapping the above query to standard SPARQL results the following:

SELECT ?ti ?tf
WHERE {
GRAPH :graph1 {:John :enrolled :SW.}
:graph1 :hasBeginning ?ti.
:graph1 :hasEnd ?tf.
}

4.3.3.2 RDF+
RDF+ model [50] uses named graphs and triple-level identifiers. Named
graphs are used in place of RDF reification. Triple identifiers allow
explicit annotation of meta knowledge. RDF+ model has two type
of statements: literal and meta knowledge statement. A RDF+ literal
statement is a quintuple form (g, s, p, o, θ) where g is the graph’s IRI,
s,p,o are standard RDF triple components, and θ is a statement identifier.
Based on the triple identifier in the RDF+ literal statement, the RDF+
meta knowledge statement can be formed as (θ, π, ω). θ is the literal
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statement identifier, π is the meta knowledge property and ω is the range
value of π. The set K of RDF+ literal statements and the set M of RDF+
meta knowledge statements constitute a RDF+ theory, (K, M ) [50].

Bidirectional mappings between RDF and RDF+ are also defined
in [50]. Our running example is mapped to the RDF+ model and results
the following RDF+ literal statements and meta knowledge statement.
Please note that we also adapt the N-triple-like syntax for representing
a quintuple in the example. In addition, time intervals are assumed
available although the original work uses time instants.

# K <--RDF+ literal statements of
<:graph1> <:John> <:enrolled> <:SW> <:stmtID1>.
<:graph2> <:graph1> <:timestamp>
<[2/1/2016, 5/31/2016]> <:stmtID2>.

# M<--RDF+ meta knowledge statement
<:graph3> <:stmtID1> <:timestamp>
"[2/1/2016, 5/31/2016]".

In the above mapping, :graph1 and stmtID1 both identify the
original triple. :graph2 and :stmtID2 refer to the meta knowledge for
:graph1. The statement in :graph2 is further stored as the associated
meta knowledge in order to be compatible with standard RDF seman-
tics. The formal semantics for RDF+ is provided by ‘Meta Knowledge
Interpretation and Model’ [50] that combines a standard interpretation
Is for statements in K, and a Π-interpretation for meta knowledge
statements in M. An extension to SPARQL is also proposed. The
running example query can be written as follows:

SELECT ?x
WITH META :graph3
FROM NAMED :graph1
FROM NAMED :graph2
WHERE { GRAPH ?g { ?x :enrolled :SW }

The above extended SPARQL utilizes additional constructs: (1)
an optional WITH META clause specifying the graphs which contains
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the associated meta knowledge, and (2) the FROM NAMED clause
that specifies the target graph for quadruple pattern matching [50].
The query evaluation system binds the variable ?x to the matched
values based on the specified quadruple pattern. It further outputs
values for all meta knowledge associated with the pattern, such as the
following:

?x timestamp
---------------------------------
:John [2/1/2016, 5/31/2016]

5 Discussion

We have constructed a taxonomy depicted in Figure 13 for classifying
the proposed temporal extensions to RDF and OWL. Table 3 is a
concise summary of various characteristics. For summarizing and
comparing them, we use the following characteristics: (1) RDF,
RDFS or OWL extension of these proposals, (2) additional objects
required, (3) number of triples needed, (4) formal semantics specified
or not, (5) Time Domain, (6) Instant or Interval used, and (7) query
language.

Taxonomy of Temporal RDF Models

Explicit Reification

Gutierrez

TRDF [21, 23]

TRDF variants

[32, 47, 59]

RDF * [25]

YAGO 2 [30]

Implicit Reification

Instantiating-

Identifying

Concept/Relationship (IIR)

4D Fluents

[7, 8, 58]

tOWL [40]

Singleton

Property [41]

Relationship

Entity

Conversion (REC)

VT-OWL

[44]

N-ary [42]

FrameBase [48]

Named Graphs [11]

τ SPARQL

[53]

RDF+

[50]

Figure 13 Taxonomy of temporal rdf models.
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5.1 Taxonomy

The temporal models for the Semantic Web surveyed in this paper
use either explicit or implicit reification. In explicit reification,
RDF reification vocabulary or its equivalent is used, whereas in
implicit reification, some form of identification for a triple is
introduced.

Temporal RDF [21, 23] and its variants [32, 47] are based on explicit
RDF reification. RDF∗ introduces nested triples and needs an extension
to RDF/S specifications. However, nested triples in a RDF∗ graph can
be unnested to an explicitly reified RDF graph. Yago2 [30] reifies each
fact and assigns an idenfier to it to form a quintuple. In contrast, all the
other temporal models handle reification implicitly by using different
forms of transformation on a triple, relationship or graph. Such a trans-
formation does not rely on RDF/S reification vocabularies. The type
of transformation differentiates these RDF models: (1) Instantiating-
Identifying Concept/Relationship , (2) Relationship Entity Conversion
and (3) Named Graphs.

There are two temporal models in Instantiating-Identifying
Concept/Relationship models. 4D Fluents [7, 8, 58] introduces
temporal part for an entity changing over time. Each temporal part
corresponds to a distinguishable timestamp.Afluent property associates
two temporal parts. On the other hand, Singleton Property [41] ensures
every relationship to be universally unique. As a result, an ordinary
relationship, such as enrolled, becomes a relationship type. Each of its
instances, such as enrolled#1 in Figure 6, is used for an unique property
assertion.

N-ary relations, FrameBase and OWL Temporal Model are
examples of Relationship Entity Conversion models. N-ary rela-
tions [42] convert each relationship to an entity. FrameBase forms a
semantic frame for each N-ary relation. Frame properties are asserted
as semantic roles [18, 42]. OWL Temporal Model [44] is also based
on N-ary relations. Lastly, Named Graphs are in RDF and RDFS
specifications. A set of RDF/S triples can be identified with an IRI, that
is, the graph name. Thus, graph level identification becomes available.
As a result, additional properties for the graph can be associated through
the graph’s IRI.
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5.2 RDF, RDFS, OWL Extension and Compliance

The majority of models extend RDF/S to gain temporal expressiveness.
For instance, Temporal RDF [21, 23] and its variants [32, 47] introduce
a set of temporal vocabularies to use explicit reification. The model
provides a coverage of formal semantics of temporal graphs, query
language prototype and complexity analysis. Similarly, 4D Fluents
[7, 8, 58], N-ary relations [42] and Named Graphs [11] can all be
implemented by RDF, RDFS and OWL vocabularies. These models
benefit from available ontology tools, such as reasoners.

On the other hand, there are models that require formal extensions
to RDF and RDFS specifications. For instance, Singleton Property [41]
introduces rdf:singletonPropertyOf for instantiating a Singleton Prop-
erty from its generic property type. Every Singleton Property is made
universally unique. RDF* adopts nested triples to transform a triple to
an entity. Nested triples informally allow triple level identification that
is not available in RDF/S or OWL. As a result, RDF* requires syntactic
and semantic extensions to RDF/S and OWL specifications. Similarly,
Annotated RDFS [59] and RDF+ [50] require extensions to both RDF/S
syntax and semantics. tOWL [40] extends OWL-DL to cover concrete
domain for representing both time instants and intervals. Furthermore, it
also incorporates Allen’s temporal relations [5] to increase the model’s
temporal expressivity.

5.3 Additional Objects and Triples

When additional objects are required for a temporal model, they may
cause quicker storage depletion or make writing standard queries more
complex. The proliferation of objects is common in reification-based
modeling approaches. In Temporal RDF model [21, 23], eight triples:
four for reification and four for temporal assertions, are required to asso-
ciate a time interval to an ordinary triple. 4D Fluents [7, 8, 58] use seven
triples to cover temporal parts of an entity. Singleton Property [41]
requires fewer triples (five triples). Named-Graphs [11] require only
five temporal assertions, two triples for time instants, three for intervals.
Since RDF+ has a form of quintuple [50] that can be mapped to standard
RDF triples via explicit RDF reification, it requires at least eight triples.
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5.4 Semantics

Typically, a temporal model extending RDF/S or OWL requires
additional semantics, so temporal entailment can be defined. For
instance, Temporal RDF [21, 23] specifies a temporal entailment
semantics by using RDF and RDFS graphs.Additionally, this semantics
extended to Enhanced Temporal RDF [32] and tRDF for Indeterminate
Triples [47] with added temporal entailment scenarios, i.e., anonymous
timestamp and indeterminate triples respectively.

In contrast, formal extensions to RDF/S or OWL semantics are
introduced by extended vocabularies in other models. For instance,
Annotated RDF [59] extends RDFS semantics by defining an algebraic
structure for annotation domain, and also provides a deductive system.
Singleton Property [41] requires RDF/S semantics extension to cover
its SingletonPropertyOf interpretation. tOWL [40] requires a semantic
extension for the translations between rational numbers, Q, and XML
datetime data types. τSPARQL [53] relies on Named Graphs where
the identifier of a graph is a timestamp instead of an IRI. RDF+
[50] introduces additional semantics for its RDF+ literal and meta
knowledge statement.

5.5 Time Domain

OWL-Time ontology includes class TemporalEntity [12] which is
made-up of Instants and Intervals. Some of the temporal models use
OWL-Time as their time domain. 4D fluents [58], extended 4D fluents
[7, 8] and τSPARQL[53] all employ OWL-Time. The rest of the models
do not use OWL-Time. They typically define a time domain or a time
ontology of their own. For instance, the time domain in Temporal RDF
[21, 23] is defined based on natural numbers. tOWL [40] uses the set
of rational numbers, and provides a mapping to actual XML datetime
type. Nevertheless, there are models that do not explicitly adopt a time
domain specification. Instead, the time definition is left to applications.

5.6 Querying

SPARQL[24, 46] and SQWRL[43] or their extended forms are are used
in querying temporal RDF data. SQWRLis for querying an OWL-based
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ontology. Temporal RDF [21, 23] provide a query language sketch in
rulelike form. An equivalent SPARQL query can be written directly,
as it is based on RDF reification. Extensions to SPARQL syntax and
semantics are needed for Singleton Property [41], RDF∗ [25], enhanced
Temporal RDF [32, 47], RDF+ [50], τSPARQL [53], annotated RDF
[59] and Extended 4D Fluents [7]. In general, such extension needs to
accommodate additional patterns of syntax and query specifications.
For instance, SPARQL∗ requires additional notation for nested triple
while RDF+ adds With Meta and From Named constructs for querying
its meta knowledge statements. A dedicated query language TOQL [6]
is proposed for Extended 4D Fluents [7]. AnQL [36] is the query
language tailored for Annotated RDFS [59]. SPARQL 1.1 directly
supports Named Graphs, so there is no need for a new query language
for Named Graphs [11].

6 Conclusion

Temporal models for the Semantic Web reported mainly extend RDF,
RDFS or OWLto represent temporal data.These extensions use Explicit
Reification and Implicit Reification which are the basis of a taxonomy
we have developed to classify these models. While Explicit Reification
is a method included in RDF standard, Implicit Reification aims at
generating identity by which additional data can be specified in RDF.
We expect that this taxonomy would be a base for better understanding
of temporal RDF models.

Additionally, we have summarized various characteristics of these
models and provided them in Table 3. Thus, Table 3 allows comparisons
of the models and would be useful for the researchers and practitioners
of the Semantic Web.ARDF, RDFS or OWL compliant temporal model
can be implemented directly and also benefits from available tools, such
as triple stores and reasoners. However, representing temporal data
and knowledge definitely requires additional triples. The proliferation
of triples causes performance, maintenance and storage issues. The
ideal solution would be to reduce the number of additional triples to a
minimum for representing temporal data.Also, this would make writing
queries more intuitive and less complex.
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There are several directions we plan to investigate. We will use
the result of this survey to develop a new RDF model for repre-
senting temporal data that addresses the issues we have observed in
the proposed models. We also plan to add other time dimensions to
RDF. The majority of temporal models focuses on valid-time aspect
of temporality. Nevertheless, being able to incorporate other temporal
dimensions, such as transaction time, would allow richer implemen-
tation in temporal semantics in Web applications. A top-level time
ontology that provides enough temporal expressivity, and facilitates
more powerful temporal reasoning would be highly desirable. We also
plan to investigate the possibility of how temporal support can be
included in a top level ontology.
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Jorge Pérez. Foundations of Semantic Web Databases. Journal of
Computer and System Sciences, 77(3):520–541, 2011.

[23] Claudio Gutierrez, Carlos A Hurtado, and Alejandro Vaisman.
Introducing Time into RDF. IEEE Trans. on Knowledge and Data
Engineering, 19:207–218, February 2007.

[24] Steve Harris, Andy Seaborne, and Eric Prudhommeaux. SPARQL
1.1 Query Language. W3C Recommendation, 21, 2013.

[25] Olaf Hartig and Bryan Thompson. Foundations of an Alternative
Approach to Reification in RDF. In Proceedings of the 11th
Alberto Mendelzon International Workshop on Foundations of
Data Management and the Web, 2017.

[26] Katherine Hawley. Temporal Parts. Stanford Encyclopedia of
Philosophy, 2008.

[27] Patrick Hayes and Peter F. Patel-Schneider. RDF 1.1 Semantics.
W3C recommendation, 2014.

[28] Patrick J Hayes. The Second Naive Physics Manifesto. 1985.
[29] Jerry R. Hobbs and Feng Pan. An Ontology of Time for the

Semantic Web. ACM Transactions on Asian Language Informa-
tion Processing, 3:66–85, 2004.

[30] Johannes Hoffart, Fabian M Suchanek, Klaus Berberich, and
Gerhard Weikum. YAGO2: A Spatially and Temporally Enhanced
Knowledge Base from Wikipedia. Artificial Intelligence, 194:28–
61, 2013.

[31] Ian Horrocks, Peter F Patel-Schneider, Harold Boley, Said Tabet,
Benjamin Grosof, Mike Dean, et al. SWRL: A Semantic Web



164 Hsien-Tseng Wang and Abdullah Uz Tansel

Rule Language Combining OWL and RuleML. W3C Member
submission, 21:79, 2004.

[32] Carlos A. Hurtado and Alejandro A. Vaisman. Reasoning with
Temporal Constraints in RDF. In PPSWR, pages 164–178, 2006.

[33] Christian S Jensen, Curtis E Dyreson, Michael Böhlen, James
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