
OPT+: A Monotonic Alternative
to OPTIONAL in SPARQL

Sijin Cheng and Olaf Hartig∗

Department of Computer and Information Science (IDA),
Linköping University, Sweden
∗Corresponding Author
E-mail: sijin.cheng@liu.se; olaf.hartig@liu.se

Received 05 January 2019;
Accepted 05 March 2019

Abstract

Due to the OPTIONAL operator, the core fragment of the SPARQL
query language is non-monotonic. That is, some solutions of a query
result can be returned to the user only after having consulted all relevant
parts of the queried dataset(s). This property presents an obstacle when
developing query execution approaches that aim to reduce responses
times rather than the overall query execution times. Reducing the
response times–i.e., returning as many solutions as early as possible–
is important in particular in Web-based client-server query processing
scenarios in which network latencies dominate query execution times.
Such scenarios are typical in the context of integration of Web data
sources where a data integration component executes queries over a
decentralized federation of such data sources. In this paper we introduce
an alternative operator that is similar in spirit to OPTIONAL but
without causing non-monotonicity. We show fundamental properties
of this operator and observe that the downside of achieving the desired
monotonicity property is a potentially significant increase in query
result sizes. We study the extend of this trade-off in practice. Thereafter,

Journal of Web Engineering, Vol. 18 1-3, 169–206.
doi: 10.13052/jwe1540-9589.18135
c© 2019 River Publishers

170 S. Cheng and O. Hartig

we introduce different algorithms to implement the new operator and
evaluate them regarding their potential to reduce response times.

Keywords: Semantic web, linked data, query language, optimization.

1 Introduction

While the SPARQL query language has been designed primarily for
queries over a centralized collection of RDF data, it also has become the
prevalent language for declarative approaches to query RDF datasets
in decentralized settings. In fact, in its latest version the SPARQL
specification itself has been extended with a notion of subqueries to be
executed over a remote dataset on a different server [15]. Other typical
examples of adopting the SPARQL language to query decentralized
RDF data are queries over federations of SPARQL endpoints [1, 17],
over Linked Data on the Web [8, 18], and over data sources that expose
RDF via some Linked Data Fragments interface [19].

A feature of SPARQL that is particularly interesting for these use
cases is the OPTIONAL operator which allows users to indicate that
specific parts of a query can be ignored if no corresponding data
is available. This feature is important for querying and integrating
decentralized data because, due to the autonomous nature of the data
sources, we cannot always assume that their data is complete.

While the OPTIONAL operator is useful in this context in terms
of expressiveness, it is unsuitable in terms of another property that
is desirable for a language to query decentralized data; namely, such a
language should enable a query execution engine to employ approaches
that return as many elements of a query result as early as possible during
the query execution process. This property is important because, due
to network latencies, the execution times of queries over decentralized
data are typically greater than in a centralized setting [2, 9, 10] and, thus,
software applications that are based on such queries should be enabled
to achieve low user-perceived response times by presenting at least a
partial result soon after starting a query execution. Unfortunately, the
OPTIONAL operator is an obstacle in this context because the operator

OPT+: A Monotonic Alternative to OPTIONAL in SPARQL 171

PREFIX ex: <http://example.org/>
SELECT ?post ?text ?img WHERE { ex:post1 ex:hasText "Good ..."

?post ex:hasText ?text ex:post2 ex:hasText "I can..."
OPTIONAL { ?post ex:hasImage ?img } } ex:post1 ex:hasImage ex:sun.png

(a) (b)

Figure 1 Example query (left) and example data (right).

makes the core fragment of SPARQL non-monotonic as illustrated by
the following example.

Example 1. Assume a query execution engine executes the SPARQL
query in Figure 1(a) over a dataset of a remote data source, and during
this query execution, the engine receives the sequence of RDF triples
listed in Figure 1(b). After having received the first two of these triples,
the query engine may produce an intermediate query result that consists
of two solution mappings:

μ1 = {?post → ex : post1, ?text → "Good . . . "},

μ2 = {?post → ex : post2, ?text → "I can . . . "}.

However, after having received the complete sequence of triples, it
turns out that μ2 is a solution for the query but μ1 is not; instead, the
following new mapping is another solution in the (sound and complete)
query result:

μ3 = {?post → ex : post1, ?text → "Good. . .", ?img → ex : sun.png}.

This example shows that there may be solution mappings that are in
the result of a query over a subset of data, but the result of the query over
the complete dataset does not contain these mappings anymore.1 We
also notice that, due to this non-monotonic nature of the OPTIONAL
operator, the query engine in the example cannot output the mapping
μ2–which is indeed a correct solution of the final query result–until the
engine has received and processed all of the data that is relevant for the
optional pattern of the query.

1For some queries that contain multiple OPTIONAL operators we may even
observe cases in which the result for a subset of data contains a solution mapping
that is not anymore in the result for a bigger subset but that is contained again in the
result for the complete dataset.

172 S. Cheng and O. Hartig

At this point, one may wonder: If we were aiming to reduce user-
perceived response times of applications that query decentralized data,
we might permit the query engine in the example to already output
the solution mappings μ1 and μ2 as soon as these mappings have been
produced; if it turns out later that these mappings can be extended
based on data that matches the optional pattern (as it is the case for μ1

in the example), then the engine may output the extended mapping(s)
as well. Clearly, the final set of all solution mappings returned in this
way may not anymore be a sound query result in terms of the definition
of the OPTIONAL operator. However, the advantage of being able to
return some solution mappings earlier is worth investigating because
it appears to allow applications to query decentralized data using an
OPTIONAL-like query feature based on which the user-perceived
response times may be reduced.

In this paper we conduct such an investigation. To this end, we
define a new operator that we call OPT+ and that provides a formal
foundation for the alternative query evaluation outlined above. Like
the OPTIONAL operator, OPT+ has two subpatterns, one of which is
treated as mandatory and the other as optional. Informally, the result of
an OPT+ operator with two such subpatterns consists of all the solution
mappings that also are in the result of the OPTIONAL operator with
the same two subpatterns and, additionally, all the solution mappings
that can be obtained from the mandatory subpattern but that are not in
the result of the corresponding OPTIONAL operator. For instance, for
a version of the query in Figure 1(a) in which the OPTIONAL operator
is replaced by OPT+, the query result over the triples in Figure 1(b)
consists of all three solution mappings mentioned in Example 1 (i.e.,
not only μ2 and μ3, but also μ1).

It is not difficult to see that the OPT+ operator is monotonic
and the price we have to pay for achieving this monotonicity is a
possible increase in the size of query results (when compared to using
OPTIONAL). Our aim in this paper is to achieve an understanding of
this trade-off, including the potential gain of reduced query response
times. Hence, we focus on the following two research questions.

RQ1. How significant is the increase of the size of query results in
practice when using the OPT+ operator instead of OPTIONAL?

OPT+: A Monotonic Alternative to OPTIONAL in SPARQL 173

RQ2. How suitable is the OPT+ operator in terms of its potential for
query executions that return as many solutions of query results as
early as possible?

To address these questions we make the following contributions.

1. We define and analyze the OPT+ operator formally. Our analysis
shows properties (monotonicity, expressive power) that the core
fragment of SPARQL has if the OPTIONAL operator is replaced
by OPT+ (Section 3).

2. We provide an empirical analysis based on 10 real-world query
logs (with an overall of ca. 34M OPTIONAL queries) that shows
how OPTIONAL is used in practice (Section 4), and we compare
the result sizes obtained by queries in these logs when using either
OPTIONAL or OPT+ (Section 5).

3. We introduce two different approaches to implement the OPT+

operator natively in a physical query execution plan (Section 6)
and evaluate them experimentally. In addition to showing their
respective potential for returning as many solution mappings of
query results as early as possible, this evaluation shows–to our
surprise–that none of these approaches can achieve a signifi-
cant advantage over an approach to implement the OPTIONAL
operator (Section 7).

Before focusing on these contributions, we introduce exist-
ing relevant definitions and results (Section 2). The source code
and the data used for the work in this paper is available at
https://github.com/hartig/OptPlusExperiments.

2 Preliminaries

This section defines the relevant concepts of RDF and SPARQL
formally.

We assume four pairwise disjoint, countably infinite sets: U (URIs),
B (blank nodes), L (literals), and V (variables). An RDF triple is a tuple
(s, p, o) ∈ (U ∪ B) × U × (U ∪ B ∪ L). An RDF graph is a set of such
triples.

174 S. Cheng and O. Hartig

For SPARQL we focus on the core fragment of the language and
adopt the formalization approach of this fragment as introduced by
Pérez et al. [13]; that is, we use the algebraic syntax and the multiset
query semantics defined by Pérez et al. [13]. We emphasize that
this formalization and the official specification of SPARQL [6] are
equivalent in terms of expressive power [3]. Hence, the foundations of
OPT+ as presented in this paper can be easily carried over to the syntax
and semantics of SPARQL as found in the specification. Moreover,
focusing on the core fragment of SPARQL is not a limitation either
because all language features are built on top of this core fragment [6].

The algebraic syntax of SPARQL defines SPARQL expressions
recursively: (i) A tuple (s, p, o) ∈ (V ∪ U) × (V ∪ U) × (V ∪ U ∪ L)
is a SPARQL expression called a triple pattern.2 (ii) If P1 and P2 are
SPARQL expressions, then so are (P1 AND P2), (P1 UNION P2), (P1

OPT P2), and (P1 FILTER R), where R is a filter condition [13].3

To denote the set of all variables in all triple patterns of a SPARQL
expression P we write vars(P).

The result of evaluating a SPARQL expression takes the form of a
multiset of solution mappings; that is, partial functions μ : V → U∪
B∪L. The subset of V for which such a mapping μ is defined is denoted
by dom(μ). Two solution mappings μ and μ′ are compatible if for every
variable ?v in dom(μ) ∩ dom(μ′) we have that μ(?v) = μ′(?v); in
this case, the combination of μ and μ′, denoted by μ ∪ μ′, is also a
solution mapping. Given a triple pattern tp and a solution mapping μ,
we write μ[tp] to denote the triple pattern that we obtain by replacing
the variables in tp according to μ. Notice that μ[tp] is an RDF triple if
vars(tp) ⊆ dom(μ).

The semantics of SPARQL expressions is defined based on a
set of operators over multisets of solution mappings. For the sake
of conciseness, we introduce only the set-specific versions of these
operators and refer to Pérez et al.’s work for the multiset versions [13].
Given two sets of solution mappings, Ω and Ω′, and a filter condition R,

2For the sake of simplicity we do not permit blank nodes in triple patterns.
In practice, each blank node in a SPARQL query can be replaced by a new variable.

3We do not define filter conditions in this paper because they are not relevant for our
work. For a formal definition of their syntax and semantics refer to Pérez et al. [13].

OPT+: A Monotonic Alternative to OPTIONAL in SPARQL 175

the operators join (��), union (∪), difference (\), and selection (σ) are
defined as follows.

Ω �� Ω′ = {μ ∪ μ′| μ ∈ Ω, μ′ ∈ Ω′ and μ and μ′ are compatible}
Ω ∪ Ω′ = {μ| μ ∈ Ω or μ ∈ Ω′}
Ω\Ω′ = {μ ∈ Ω| there exists no μ′ ∈ Ω′ such that μ and μ′

are compatible}
σR(Ω) = {μ ∈ Ω| μ satisfies R[13]}
Now we are ready to define the semantics of SPARQL expressions:

Definition 1. Given a SPARQL expression P and an RDF graph G,
the evaluation of P over G, denoted by [[P]]G, is defined recursively as
follows:

1. If P is a triple pattern tp, then [[P]]G is a multiset of solution
mappings that consists of the solution mapping from the following
set Ω and contains each of these mappings exactly once.

Ω = {μ| dom(μ) = vars(tp) and μ[tp] ∈ G}
2. If P is (P1 AND P2), then [[P]]G = [[P1]]G �� [[P2]]G.
3. If P is (P1 UNION P2), then [[P]]G = [[P1]]G ∪ [[P2]]G.
4. If P is (P1 OPT P2), then [[P]]G = ([[P1]]G �� [[P2]]G)∪

([[P1]]G\[[P2]]G).
5. If P is (P ′ FILTER R), then [[P]]G = σR([[P1]]G).

A SPARQL expression P is monotonic if for every pair G1, G2

of RDF graphs such that G1 ⊆ G2, it holds that [[P]]G1 is a sub-
multiset of [[P]]G2 . A SPARQL expression P is satisfiable if there
exists an RDF graph G such that [[P]]G contains at least one solution
mapping. It is trivial to show that every SPARQL expression that is
not satisfiable is monotonic, and every SPARQL expression that is
not monotonic is satisfiable. Furthermore, it is well known that both
satisfiability and monotonicity of SPARQL are undecidable, and that
SPARQL expressions without OPT are monotonic (see, e.g., [7]).

176 S. Cheng and O. Hartig

3 Formal Foundation

To define the OPT+ operator formally we extend the notion of a
SPARQL expression by adding the following case to the recursive
definition: (iii) If P1 and P2 are SPARQL expressions, then (P1 OPT+

P2) is a SPARQL expression.
Now, we need to define the semantics of SPARQL expressions with

OPT+. To this end, we extend the recursive definition of the SPARQL
evaluation function (cf. Definition 1) with an additional case for OPT+.

Definition 2. For every RDF graph G and every SPARQL expression P
of the form (P1OPT+P2), we define that [[P]]G = ([[P1]]G �� [[P2]]G) ∪
[[P1]]G.

Given these definitions, we can now show some fundamental
properties of SPARQL expressions with OPT+. We begin with a simple
rewriting rule.

Proposition 1. For every two SPARQL expressions P1 and P2, the fol-
lowing equivalence holds: (P1 OPT+P2) ≡ ((P1 AND P2) UNION P1).

Proof. The equivalence is a trivial consequence of Definitions 1
and 2. �

As a corollary of this equivalence we can show that adding the
OPT+ operator to SPARQL does not change the expressive power of
the language.

Corollary 1. For every SPARQL expression P, there exists a SPARQL
expression P ′ such that P ≡ P ′ and P ′ does not contain OPT+.

Proof (Sketch). The corollary can be shown by using the rewriting rule
of Proposition 1. That is, given a SPARQL expression with OPT+,
the rule can be applied repeatedly until all OPT+ operators have been
replaced using AND and UNION. �

A natural question at this point is: Given that we can capture the
idea of OPT+ by using AND and UNION, why do we need the OPT+

OPT+: A Monotonic Alternative to OPTIONAL in SPARQL 177

operator at all? There are two reasons: First, having an explicit OPT+

operator enables a query engine to use specific algorithms that imple-
ment this operator in a more efficient way than a generic combination
of algorithms that implement AND and UNION, respectively. Our
experiments in Section 7 verify this benefit. The second reason is
that expressions that capture the notion of OPT+ by using AND and
UNION may become unmanageably large. More specifically, there
exist expressions with OPT+ for which the size of the equivalent
expressions with AND and UNION are exponential in the size of the
OPT+ expressions. To show this formally in the following result we
define the size of a SPARQL expression P , denoted by |P |, to be the
number of triple patterns in P .

Proposition 2. For every n ≥ 2, there exists a SPARQL expression
P that contains OPT+ such that |P | = n and for every equivalent
expression P ′ without OPT+ (i.e., P = P ′), it holds that |P ′| ≥ 2n −1.

Proof. Consider a SPARQL expression Pn of the form

((. . . ((tp1 OPT+tp2)OPT+tp3) . . .)OPT+tpn).

That is, Pn contains a sequence of n−1 OPT+ operators with an overall
of n triple patterns that are all different from one another. Given Pn,
we prove the proposition by induction on n.

In the base case (n = 2), P2 is of the form (tp1 OPT+ tp2). We
rewrite P2 into P ′

2 = ((tp1 AND tp2) UNION tp1). Then, we have that
P ′

2 = P2 (cf. Proposition 1) and |P ′
2| = 3 ≥ 2n − 1. Similarly, every

other expression P ′′
2 obtained by rewriting P ′

2 without using OPT+ must
contain tp1 twice and tp2 once (assuming P ′′

2 ≡ P ′
2 and, thus, P ′′

2 ≡ P2).
For the induction step (n > 2), Pn is of the form (Pn−1OPT+tpn)

where Pn−1 is ((. . . ((tp1OPT+tp2)OPT+tp3) . . .)OPT+tpn−1). By
the induction hypothesis, there exists a P ′

n−1 without OPT+ such that
P ′

n−1 ≡ Pn−1 and |P ′
n−1| ≥ 2n−1 − 1. Then, by using P ′

n−1 instead of
Pn−1, we rewrite Pn into P ′

n = ((P ′
n−1 AND tpn) UNION Pn−1), for

which we know by Proposition 1 that Pn ≡ P ′
n. Now, it remains to

178 S. Cheng and O. Hartig

show that |P ′
n| ≥ 2n − 1.

|P ′
n| = 2 · |P ′

n−1| + 1
≥ 2.(2n−1 − 1) + 1
= 2 · 2n−1 − 2 + 1
= 2n − 1. �

Proposition 2 shows that representing OPT+ using AND and
UNION may increase the size of the resulting expressions expo-
nentially. We emphasize that this exponential increase is specific to
expressions that contain sequences of OPT+ operators. For instance,
for expressions in which OPT+ operators are nested, the increase is
linear as shown by the following result.

Proposition 3. For every SPARQL expression P of the form

(PnOPT+(Pn−1OPT+(. . . (P2OPT+P1) . . .)))

in which no Pi contains OPT+ (for all i ∈ {1, . . . , n}), there exists a
SPARQL expression P ′ without OPT+ such that P ≡ P ′ and |P ′| = 2·
|P | − |P1|.
Proof. We show the proposition by induction. The base case (n = 2)
follows trivially from Proposition 1. For the induction step (n > 2) we
let P be (PnOPT+Q) where Q is (Pn−1OPT+(. . . (P2OPT+P1) . . .)).
By induction, there exists a SPARQL expression Q′ without OPT+ such
that Q ≡ Q′ and |Q′| = 2 · |Q| − |P1|. By using Q ≡ Q′, we have
P ≡ (PnOPT+Q′), and by Proposition 1, we have P ≡ P ′ where P ′

is ((PnANDQ′) UNION Pn) with:

|P ′| = 2 · |Pn| + |Q′|
= 2 · |Pn| + (2 · |Q| − |P1|)
= 2 · (|Pn| + |Q|) − |P1|
= 2 · |P | + |P1|. �

We complete our formal analysis of SPARQL expressions with
OPT+ by another corollary which follows from Proposition 1, and

OPT+: A Monotonic Alternative to OPTIONAL in SPARQL 179

which shows that, by using OPT+ instead of OPT, we achieve the
desired monotonicity.

Corollary 2. Every SPARQL expression without OPT (but possibly with
OPT+) is monotonic.

Proof. It is not difficult to verify that for a SPARQL expression
with OPT+ but without OPT, there exists an equivalent expression
without OPT+ (Corollary 1) that does not contain OPT either. Then, the
monotonicity follows from the monotonicity of SPARQL expressions
that use only AND, UNION, and FILTER [7] (cf. Section 2). �

As a final remark, we remind the reader of Pérez et al.’s results that
show that the complexity of the evaluation problem of expressions with
AND, UNION, and FILTER is NP-complete and it becomes PSPACE-
complete if we add OPT [14]. Hence, by Corollary 1, the complexity
of the evaluation problem drops to NP if we use OPT+ instead of OPT.

4 Usage of OPTIONAL in Practice

To understand the potential consequences of replacing OPTIONAL by
the OPT+ operator in queries over decentralized data it is important
at first to understand how OPTIONAL is used in practice. To achieve
such an understanding we have analyzed 10 real-world query logs with
an overall of more than 34M SPARQL queries with OPTIONAL. This
section describes our analysis and the results.

4.1 Query Logs

The query logs that we use are from three different sources. That is,
we use logs from the USEWOD datasets [11], from the LSQ dataset
[16], and from a dataset made available as part of a study of Wikidata
[12]. Each of these logs is from a different public SPARQL endpoint
that provides (or provided) SPARQL-based query access to a respective
RDF dataset. Hence, each log contains SPARQL queries that have been
sent to the corresponding SPARQL endpoint during the period of time
covered by the log. There are three logs in the USEWOD datasets for

180 S. Cheng and O. Hartig

Table 1 Information about the query logs used for our analysis
Name of log Endpoint/Dataset Source Period of Time
DBP3.3 DBpedia v.3.3 [11] 2009-07-01–2009-07-13
DBP3.4 DBpedia v.3.4 [11] 2009-11-18–2010-02-01
DBP3.5.1 DBpedia v.3.5.1 [11, 16] 2010-04-30–2010-07-20 [16],

2010-05-28–2010-07-20 [11]
DBP3.6 DBpedia v.3.6 [11] 2011-01-23–2011-06-10
DBP3.8 DBpedia v.3.8 [11] 2012-07-26–2012-11-01 and

2013-06-30–2013-08-07
SWDF Sem.Web Dog Food [11, 16] 2008-11-01–2013-01-22 [11],

2014-04-16–2014-11-12 [16]
LGD LinkedGeoData [11, 16] 2010-11-24–2011-07-06 [16],

2011-05-23–2011-11-24 and
2012-10-02–2014-01-12 [11]

BM British Museum [16] 2014-11-08–2014-12-01
WDall Wikidata [12] 2017-06-12 – 2017-09-03
WDorg Wikidata [12] 2017-06-12 – 2017-09-03

which the LSQ dataset contains another log from the same endpoint,
respectively. For our analysis we have combined the corresponding
logs into one. Table 1 provides provenance information about the logs
that we use, including the respective time periods covered by each of
the logs. The datasets related to these logs are the following:

• DBpedia contains data extracted from structured information in the
Wikipedia. Our analysis covers logs for five versions of DBpedia.

• The Semantic Web Dog Food dataset describes conferences
and workshops in the Semantic Web field, including data about
corresponding publications and authors.

• LinkedGeoData is a large spatial knowledge base consisting of
data collected by the OpenStreetMap effort.

• The British Museum dataset is a collection of data provided by the
British Museum.

• The Wikidata dataset is the result of collecting a large amount
of structured knowledge across all Wikimedia projects and lan-
guages. While the WDall log contains all queries that were issued
to the Wikidata SPARQL endpoint during the specified period of
time, the WDorg log is a subset from which all queries have been

OPT+: A Monotonic Alternative to OPTIONAL in SPARQL 181

removed that are assumed to be sent by bots [12]. It has been shown
that the queries in WDorg are structurally more diverse, whereas
WDall contains many trivial queries [12].

4.2 Statistics Collection

To process the logs and to collect relevant statistics from them we have
developed a program that uses the Apache Jena framework4 to parse
and to analyze SPARQL queries.As a first processing step, this program
simply extracts all the query strings from each of the logs. Thereafter,
for each query string, the program records whether the string contains
the keyword OPTIONAL and whether the exact same string has been
processed before. We use the latter as a simple approach to identify
duplicates. Next, if the query string contains the keyword OPTIONAL,
the program tries to parse the string into an object representation of a
SPARQL query. If the string can be parsed successfully, the resulting
query object is analyzed to record statistics about the use of OPTIONAL
in the given query. Hereafter, we call these queries analyzed queries.

4.3 Basic Statistics

Before going into the details of how exactly OPTIONAL is used in
the queries, we refer to Table 2 which shows how many queries in the
different logs use OPTIONAL and how many of them are analyzed
queries. While the percentage of queries with OPTIONAL differs
significantly for the different logs (ranging from 10.3% to 69.6%),
we observe that each log contains a non-negligible portion of them.
Hence, the OPTIONAL operator is indeed used in practice. Another
noteworthy observation is that for some logs (e.g., DBP3.3, SWDF)
almost all the queries with OPTIONAL are distinct whereas for other
logs (e.g., WDall, BM) there are many duplicates among these queries.

4.4 Number of OPTIONALs per Query

We now focus on the analyzed queries. First, we consider the number
of OPTIONAL operators in these queries. Figure 2 illustrates, for

4https://jena.apache.org/

182 S. Cheng and O. Hartig

Table 2 Statistics about the number of queries with OPTIONAL in the logs and
the subsets of these queries that could be parsed and, thus, can be analyzed. The
percentages in the table are calculated w.r.t. the total number of queries in the
respective log

Number Number of Distinct Parsed Distinct
of all Queries with Queries w/ Queries with Parsed w/

log Queries OPTIONAL OPTIONAL OPTIONAL OPTIONAL
DBP3.3 2,937,357 438,844 14.9% 325,957 11.1% 430,164 14.6% 322,053 11.0%
DBP3.4 2,640,253 472,295 17.9% 136,022 5.2% 461,556 17.5% 130,692 4.9%
DBP3.5.1 6,036,916 1,740,941 28.8% 630,004 10.4% 1,599,087 26.5% 574,720 9.5%
DBP3.6 8,384,677 2,308,730 27.5% 878,262 10.5% 1,429,332 17.0% 688,058 8.2%
DBP3.8 11,909,344 2,114,092 17.8% 960,060 8.1% 1,541,483 16.6% 608,090 5.1%
WDall 173,091,565 24,545,693 14.2% 3,049,023 1.8% 3,171,721 1.8% 358,318 0.2%
WDorg 661,505 326,662 49.4% 99,722 15.1% 88,046 13.3% 29,113 4.4%
LGD 12,719,055 1,315,085 10.3% 307,954 2.4% 1,135,630 8.9% 100,406 0.8%
SWDF 99,165 34,267 34.6% 34,267 34.6% 6,433 6.5% 6,433 6.5%
BM 1,589,840 1,106,750 69.6% 101,103 6.4% 1,106,710 69.6% 101,064 6.4%
total: 220,069,677 34,403,359 6,522,374 10,970,162 2,918,941

number of OPTIONAL operators per query

Figure 2 Percentage of all the analyzed queries with a given number of
OPTIONALs.

each of the query logs, the percentage of all the analyzed queries
that contain a given number of OPTIONAL operators. For all logs
together, we observe that the majority of queries contains a single
OPTIONAL operator only (namely, 69% of all the 10.9 M analyzed
queries; respectively, 53% of the 2.9 M distinct queries).

There are some logs (DBP3.3, DBP3.4, WDall, LGD, SWDF) in
which almost all of the analyzed queries contain only one OPTIONAL.
On the other hand, there also are logs (DBP3.5.1, DBP3.6, DBP3.8, WDorg,
BM) that contain a sizable fraction of analyzed queries with more
than one OPTIONAL. For instance, for both DBP3.8 and BM, more
than 60% of the analyzed queries have more than one OPTIONAL,

OPT+: A Monotonic Alternative to OPTIONAL in SPARQL 183

respectively. Among the 101K distinct analyzed queries in BM, 35%
of them have 3 OPTIONALs and 28.8% have 6, and among the 608K
distinct analyzed queries in DBP3.8, 35% have 3 OPTIONALs and
47.8% have 7. The maximum are 50 OPTIONALs per query, which is
the case for 16 of all 1.5M analyzed queries in DBP3.8.

4.5 Sequences and Nesting of OPTIONALs

For each of the subsets of queries with multiple OPTIONAL operators,
we now report how these operators are combined into sequences or by
nesting (including combinations thereof).

Regarding sequences, only 3032 of all multi-OPTIONAL queries
(across all the logs) do not contain a sequence! 99.9% contain one
sequence, and 0.01% contain two separate sequences (no query contains
more than two). The logs with the highest number of queries with
sequences are DBP3.8 (ca. 1.0 M, or 64%, of the 1.5 M queries in the
log), DBP3.5.1 (ca. 716 K, 44.8%), BM (ca. 675 K, 61.0%), and DBP3.6

(ca. 661 K, 46.2%). When it comes to the lengths of such sequences,
considering all logs, we observe that the lengths of the longest sequence
per query range from 1 (i.e., two OPTIONALs) to 49 (!), where most of
these (longest) sequences are short (e.g., 98% have a length smaller than
7 and 50% have a length smaller than 3). Queries with long sequences
(length >10) are in WDall, WDorg, DBP3.5.1, DBP3.6, and DBP3.8. When
considering only distinct queries, the observations regarding sequences
are essentially the same.

In contrast to the very high number of multi-OPTIONAL queries
with sequences, only very few queries contain nested OPTIONALs
(namely, only 3803 of all 10.9 M analyzed queries; respectively, only
1350 of all 2.9 M distinct queries).

5 Result Size Increase in Practice

We now are ready to focus on research question RQ1 about the
increase of query result sizes when using the OPT+ operator instead of
OPTIONAL. We answer this question based on an empirical analysis,
which we describe in this section.

184 S. Cheng and O. Hartig

5.1 Method

Our approach to conduct this analysis has been to use queries obtained
from some of the aforementioned query logs to create pairs of queries
consisting of an OPTIONAL version and an OPT+ version; then, we
execute these queries over the corresponding dataset and compare the
sizes of the query results.

We have created such a pair of queries for every distinct analyzed
query in the selected logs (recall that these queries use the OPTIONAL
operator). Given the WHERE clause of such a query, the first query for
the corresponding new pair of queries is created by simply combining
the WHERE clause with a SELECT clause of the form “SELECT *”.
This query becomes the OPTIONAL query of the pair. We use only the
WHERE clause (i.e., the query pattern) of the original query from the
log because additional query features such as DISTINCT and LIMIT
are irrelevant for our analysis and may even introduce bias. The other
query of the pair, called the OPT+-like query, is created as follows. We
copy the OPTIONAL query of the pair, replace every occurrence of
OPTIONAL by OPT+, and apply the rewriting rule of Proposition 1
repeatedly; then, we obtain a query that does not anymore contain
any OPT+ operator (nor OPTIONAL) but that is equivalent to the
OPT+-version of the OPTIONAL query. This rewriting is necessary
because the systems that we use for executing the test queries are
standard SPARQL systems and, thus, not aware of the OPT+ operator.
A downside of rewriting is that some of the resulting OPT+-like queries
are rather large (cf. Proposition 2).

For the analysis we have selected both Wikidata logs, DBP3.5.1, and
LGD. Hence, we have ca. 358 K pairs of test queries from WDall, ca.
29 K pairs from WDorg, etc. To execute these test queries we either
use the SPARQL endpoint of the corresponding dataset (Wikidata and
LGD) or a local triple store loaded with the dataset (DBpedia v.3.5.1).
If the execution of any of the two queries of a pair fails (e.g., a timeout
error from the SPARQL endpoint), we ignore this pair. Otherwise, we
record the respective size of the results of both queries in the pair and
calculate both the difference between these two sizes (i.e., the number
of additional solutions in the result of the OPT+-like query) and the

OPT+: A Monotonic Alternative to OPTIONAL in SPARQL 185

increase factor (i.e., the factor of how much greater the result size of
the OPT+-like query is).

5.2 Results

Table 3 summarizes the statistics that we have calculated from our
measurements. We first focus on statistics that consider all pairs of test
queries for which there were no errors (i.e., the first block of statistics
in the table).

We observe that for a large fraction of query pairs, the two queries
have the same result size. For instance, for ca. 66% of the pairs for
DBP3.5.1, the OPTIONAL query and the OPT+-like query in the pair
have a result of the same size (which, by the definition of OPT+, means
the two query results are equivalent). For WDorg and LGD it is even
more than 98%, respectively. For the pairs of queries from WDorg for
which there is a result size increase, the charts in Figure 3 illustrate the
respective differences and the respective increase factors (both ordered
from smaller to greater). We notice that there is a non-negligible number
of cases for which the result sizes increase substantially. The same holds
for the queries of the other logs (cf. Table 3).

Table 3 Statistics about the increase of query result sizes
% of Pairs At Most At Most At Most At Most
with Same 2x 10x 100x 1000x Greatest Greatest

log Result Size Increase Increase Increase Increase Increase Difference
All pairs of test queries (for which there were no errors)

DBP3.5.1 65,74% 71,23% 80,86% 91,46% 99,57% 6144x 35.768
WDall 67,19% 98,90% 99,88% 99,89% 99,90% 4806x 718.290
WDorg 98,73% 99,73% 99,95% 99,95% 99,95% 9.62x 455.588
LGD 98,46% 99,88% 100,00% 100,00% 100,00% 22.52x 19.682

Only the pairs whose OPTIONAL query did not contain sequences of OPTIONALs

DBP3.5.1 93,09% 100,00% 100,00% 100,00% 100,00% 2.00x 1.104
WDall 66,04% 99.99% 100,00% 100,00% 100,00% 2.94x 263.919
WDorg 99,08% 99.99% 100,00% 100,00% 100,00% 2.12x 159.622
LGD 98,57% 100,00% 100,00% 100,00% 100,00% 2.00x 19.682

Only the pairs whose OPTIONAL query did contain sequences of OPTIONALs

DBP3.5.1 65,41% 70,88% 80,63% 91,36% 99,56% 6144x 35.768
WDall 75,12% 91,35% 99,06% 99,17% 99,17% 4806x 718.290
WDorg 97,61% 98,88% 99,81% 99,81% 99,81% 9.62x 455.588
LGD 92,69% 93,67% 99,95% 100,00% 100,00% 22.52x 19.199

186 S. Cheng and O. Hartig

Figure 3 Query result size differences (left) and increase factors (right), both
ordered from smaller to greater, for the test queries of WDorg for which the result
sizes differ.

After looking at all pairs of test queries as a whole, we have tried
to isolate the queries for which there is a notable result size increase.
It turns out that the differentiating characteristic is whether the queries
contain sequences of OPTIONALs or not. As shown by the statistics in
the second and the third block of Table 3, almost all of the queries for
which we observe the more significant results size increases are queries
with sequences of OPTIONALs.

6 Approaches to Implement OPT+

We now turn to research question RQ2 which is concerned with the
potential of reducing the response times when using OPT+ instead of
OPTIONAL. Since OPT+ is a logical operator, the crux of the question
is whether OPT+ enables a query execution engine to employ a specific
algorithm that implements OPT+ and is designed to return as many
solution mappings of query results as early as possible. If that is the
case, an additional aspect of research question RQ2 is whether this
algorithm allows the engine to return the first solutions for an OPT+

query earlier than the same number of solutions that the engine would
return for the corresponding OPTIONAL query (naturally, for the latter,
the engine has to employ an algorithm that implements the OPTIONAL
operator).

Our approach to answer RQ2 has been to use an existing SPARQL
query execution engine and extend it with algorithms for the OPT+

operator. We have selected the query engine of Apache Jena for this

OPT+: A Monotonic Alternative to OPTIONAL in SPARQL 187

purpose. That is, we have developed an OPT+-aware extension for
Jena. This extension consists of two different algorithms to implement
the OPT+ operator natively in query execution plans (i.e., in contrast
to implementing OPT+ by using AND and UNION as done for the
aforementioned OPT+-like queries).

In this section we describe the algorithms, including the algorithm
that Jena uses for OPTIONAL and that is the basis of two of the
four OPT+-specific algorithms. In the next section we compare these
algorithms experimentally.

6.1 Execution of OPTIONAL Queries in Apache Jena

Query execution in Jena is based on the well-known iterator model [5].
That is, every query execution plan is a sequence (or a tree) of
iterators that are connected as a pipeline. Each iterator in the pipeline
produces solution mappings by executing an algorithm that consumes
input solution mappings from the predecessor iterator. The approach
is synchronous; that is, the solution mappings are passed through the
pipeline in a pull-based manner.

While the query engine of Jena contains various types of iterators
for the different logical operators of SPARQL, we are concerned only
with the iterator used for SPARQL expressions of the form (P1 OPT
P2). The algorithm implemented by this iterator is a variation of a nested
loops join (NLJ) where the outer loop consumes an input iterator IL

that is created to produce the result of P1. Every solution mapping μ
obtained from IL is used to initialize an iterator Iμ

R for a version of P2 in
which variables have been replaced according to μ. Next, the algorithm
uses Iμ

R as the inner loop; during this loop, every solution mapping μ′

that can be consumed from Iμ
R is used to produce an output mapping

μ ∪ μ′. On the other hand, if Iμ
R does not return any solution mappings

(i.e., μ does not have join partners in the result of P2), then μ itself is
an output mapping (as per the semantics of the OPT operator).

Example 2. Let us revisit the example query and example data in
Figure 1. To execute the query, Jena would first create an iterator IL

that shall produce the result of the non-optional first triple pattern in
the query. Hence, for the example data, this iterator would return the

188 S. Cheng and O. Hartig

following two solution mappings:

μ1 = {?post → ex : post1, ?text → "Good . . . "},

μ2 = {?post → ex : post2, ?text → "I can . . . "}.

Next, Jena would create an iterator IOPT for the OPTIONAL operator
in the query and connect it to IL as its input iterator. Then, during
query execution, IOPT requests the mappings produced by IL one after
another. Suppose IL returns μ1 first. Based on μ1, IOPT substitutes the
variable ?post in the optional, second triple pattern of the query, which
results in the more specific triple pattern (ex:post1, ex:hasImage,
?img). Now, IOPT initializes a new iterator Iμ1

R to obtain the result of this
pattern. For the example data, Iμ1

R returns a single solution mapping,
μ′ = {?img → ex : sun.png}, with which IOPT produces its first
output mapping μ3 = μ1 ∪ μ′, i.e.,

μ3 = {?post → ex : post1, ?text → "Good. . .", ?img → ex : sun.png}.

Since Iμ1
R does not return any more mappings, IOPT closes Iμ1

R and
requests the next mapping from IL, which is μ2. When processing this
mapping, IOPT uses another new iterator, Iμ2

R , to obtain the result of
the triple pattern (ex:post2, ex:hasImage, ?img). However, this
result is empty for the example data. Therefore, after unsuccessfully
trying to obtain any solution mapping from Iμ2

R , it becomes clear that
μ2 is another output mapping of IOPT. Moreover, since IL has also been
exhausted at this point, μ2 is the last output.

6.2 Algorithm NLJ+

Our first algorithm for the OPT+ operator, which we call NLJ+, is
a simple adaptation of the aforementioned NLJ-based algorithm for
OPTIONAL. The only difference is the following: Whenever NLJ+

obtains a solution mapping μ from the input iterator IL, this mapping is
returned as an output mapping immediately (which is a correct behavior
for the OPT+ operator). Only after this step does NLJ+ initialize the
iterator Iμ

R for the inner loop, which then proceeds as described above
(cf. Section 6.1). That is, during this inner loop, μ is joined with all
mappings returned by Iμ

R. Then, after exhausting Iμ
R, NLJ+ directly

OPT+: A Monotonic Alternative to OPTIONAL in SPARQL 189

continues with the next solution mapping from IL (i.e., independent of
whether Iμ

R has returned solution mappings or not).

Example 3. Assume that the keyword OPTIONAL in the example
query (Figure 1) was replaced by a new keyword that denotes an
OPT+ operator. Then, for the evaluation of this operator we may use
an iterator INLJ+ that implements the NLJ+ algorithm. The input to
this iterator would be the same iterator IL as used in the previous
example (cf. Example 2). During the query execution, immediately after
obtaining the solution mappingμ1 from IL, INLJ+ returns μ1 as an output
mapping. Thereafter, exactly as done by the iterator IOPT in Example 2,
INLJ+ creates iterator Iμ1

R , consumes the mapping μ′ returned by Iμ1
R ,

and produces mapping μ3 = μ1 ∪ μ′ as the second output mapping.
Next, INLJ+ closes Iμ1

R , receives μ2 from IL, and directly passes μ2 on
as the next output mapping. Finally, INLJ+ creates iterator Iμ2

R , closes it
again after unsuccessfully trying to obtain any solution mapping from
it, and indicates that there are no more output mappings. Hence, by
using the algorithm NLJ+, the three solution mappings that make up
the complete query result are returned in the following order: μ1, μ3, μ2.

6.3 Algorithm mNLJ+

The second algorithm for OPT+, which we call mNLJ+, is a variation of
NLJ+ in which the mappings from the input iterator IL are materialized
into a list. In addition to appending each such mapping to this list, the
mapping is returned immediately as an output mapping. After IL has
been exhausted and, thus, all its mappings are in the list, the list is now
used for the outer loop and the NLJ-style processing begins. Of course,
in this case, solution mappings from the list are not returned again as
output mappings (but as join partners to be merged with mappings from
the inner-loop iterators).

Example 4. As in Example 3, assume that we aim to execute an OPT+

version of the example query in Figure 1. Now, however, we use an
iterator ImNLJ+ that implements the mNLJ+ algorithm. As before, the
input to this iterator would be the iterator IL of Examples 2 and 3.
During the query execution, ImNLJ+ obtains the solution mapping μ1

190 S. Cheng and O. Hartig

from IL, returns it as an output mapping, and adds it to the list of
mappings maintained by ImNLJ+ . Next, ImNLJ+ immediately obtains
the next solution mapping from IL, which is μ2.As for μ1, μ2 is returned
as an output mapping and added to the list of mappings. Now, IL has
been exhausted and, thus, ImNLJ+ proceeds to the next phase in which
each solution mapping μx that has been added to the internal list is
used to find join partners by creating a corresponding iterator Iμx

R as in
the previous examples. Hence, the result of this phase is that the third
output mapping μ3 is produced and returned. Therefore, in comparison
to the NLJ+-based query execution in Example 3, the mNLJ+-based
query execution returns the three solution mappings in a different order:
μ1, μ2, μ3.

7 Evaluation

Given our OPT+-aware extension for Apache Jena, we have conducted
an experimental evaluation. In this evaluation we compare query execu-
tions using the resulting OPT+-aware execution plans to executions of
corresponding OPTIONAL queries as well as corresponding OPT+-
like queries (see above). The goal of this evaluation is to gain an
understanding of the response times that can be achieved by such query
executions. In this section we describe the setup of the experiments and
the results.

7.1 Experimental Environment

For the experiments we have used HDT [4] as a back-end for storing
RDF data. Data in HDT can be accessed in terms of triple patterns.
Hence, using HDT as storage back-end bears similarities to accessing
data from a remote server that provides a Triple Pattern Fragments
interface [19]. The HDT java libraries come with a Jena connector
that we have employed to use the query execution engine of Jena–
with our OPT+-aware extension–on top of an HDT-stored RDF dataset.
We have integrated these components into a driver program that runs
the experiments. This program executes a given workload of queries
sequentially, one query at a time. For each query, the program records

OPT+: A Monotonic Alternative to OPTIONAL in SPARQL 191

the relevant measurements (see below). Query executions that take
longer than 10 seconds are stopped and recorded as timed out.

The experiments have been conducted on a computer that is
equipped with an Intel Core i7-2620M CPU (2.7 GHz) and 8 GB of
main memory. This computer runs the Ubuntu 12.04.5 LTS operating
system with Oracle Java 1.8.0 92. Our Jena-based experiment system
is implemented using Jena 3.7.0 and the latest version of the HDT Java
libraries from the HDT github repository.5 4 GB of main memory have
been assigned to the Java process of the experiment system.

7.2 Metrics

We have instrumented our experiment driver program to record a
timestamp and the number of triples retrieved from the HDT back-end
at any point at which a solution mapping is returned for the executed
query. After a query execution finishes, this data is used to produce the
following measurements:

RTX %: response time until the first 10% of all solutions (RT10%), until
the first 20% (RT20%), ..., until 100% of the solutions (RT100%);

TrX %: number of triples retrieved from the back-end to produce the
first 10% of all solutions (Tr10%), the first 20% (Tr20%), . . . ,
100% (Tr100%);

RT1stX : response time to return the first 10 solutions (RT1st10), the
first 20 solutions (RT1st20), . . . , the first 100 solutions (RT1st100).

Additionally, we measure the overall query execution time (QET).

7.3 Dataset and Queries

We have selected (uniformly at random) a collection of 60K pairs of
queries that we had created from the DBP3.5.1 query log for the result-
size analysis presented in Section 5. The reason for selecting the queries
from DBP3.5.1 is that the OPTIONAL queries in this log are comparably
diverse in terms of how they use OPTIONAL (cf. Section 4) and in
terms of result-size increase when replacing OPTIONAL by OPT+

(cf. Table 3). As a consequence of this choice of queries, we have to

5https://github.com/rdfhdt/hdt-java (last commit from May 10, 2018)

192 S. Cheng and O. Hartig

use the DBpedia dataset, version 3.5.1. Hence, the HDT back-end for
our experiments contains this dataset.

Recall that each pair of queries created for our result-size analysis
consists of an OPTIONALquery and a corresponding OPT+-like query;
the latter is a representation of the OPT+ version of the OPTIONAL
query that has been obtained by first replacing every OPT operator by
OPT+ and then rewriting every OPT+ operator usingAND and UNION
(cf. Proposition 1). Therefore, in our experiment we can also use these
OPT+-like queries to observe how their execution (using the standard
Jena query iterators for AND and UNION) compares to the executions
that use the OPT+-specific algorithms for the OPT+ version of the
OPTIONAL queries in the query pairs.

In addition to the pairs of real-world queries from the DBP3.5.1

log, we have created 4 more query pairs for which we handcrafted
new OPTIONAL queries (and then generated the corresponding OPT+-
like queries). These queries are listed in the Appendix. Each of these
handcrafted queries contains a single OPTIONAL and represents some
form of an extreme case:

Q1 The result of the optional part of this query is empty; thus, none
of the solutions for the non-optional part has join partners in the
optional part.

Q2 Every solution for the non-optional part of this query has exactly
one join partner in the result of the optional part.

Q3 Every solution for the non-optional part of this query has at least
one join partner in the result of the optional part; some have a few
join partners.

Q4 The non-optional part of the query is more complex, and every
solution for this part has several join partners in the result of the
optional part.

Table 4 presents statistics about the result sizes of the handcrafted
queries.

Table 4 Statistics about the query result sizes of the handcrafted queries
Query Q1 Q2 Q3 Q4
Result size OPT version 21,862 21,862 65,618 809,372
Result size OPT+ version 21,862 43,724 87,480 810,486

OPT+: A Monotonic Alternative to OPTIONAL in SPARQL 193

7.4 Comparison of OPT+ Approaches for the Handcrafted
Queries

We begin our analysis by taking a detailed look at the response times
measured for the executions of each of the handcrafted queries. The
charts in Figure 4 illustrate the times required by the different OPT+-
specific approaches to produce X% of the solution mappings contained
in the respective query results (i.e., RTX%), and the charts in Figure 6
illustrate the number of triples that the approaches had to retrieve
for producing these solution mappings (i.e., TrX%). Additionally, the
charts in Figure 5 illustrate the times required to produce the first X of
these solution mappings for Q1 and Q4 (i.e., RT1stX). The latter figure
does not contain the corresponding charts for Q2 and Q3 because, for
these queries, all RT1stX measurements are below 1ms and do not
show any significant differences between the approaches.

We first focus on Q1 for which we observe that the execution
of the OPT+-like version of this query has the greatest (i.e., worst)
RTX % values, while the mNLJ+-based execution of the OPT+ version

(a) Q1 (b) Q2

(c) Q3 (d) Q4

Figure 4 Response times for the handcrafted queries in terms of time to X% of all
solutions.

194 S. Cheng and O. Hartig

(a) Q1 (b) Q4

Figure 5 Response times to the first X solutions for the handcrafted queries
(log scale).

of Q1 achieves the best response times. To describe the behavior of
the approaches in detail we recall that the OPT+-like version of a
single-OPT+ expression (P OPT+ P ′) is of the form ((P AND P ′)
UNION P). Hence, the non-optional subexpression P of such queries
is contained–and, thus, executed–twice in the OPT+-like versions.

We first focus on the executions of the OPT+-like queries: Except
for query Q4, the RTX% values are the greatest (i.e., worst) for these
executions (cf. Figure 4), and the same holds for the RT1stX values in
the case of Q1 (cf. Figure 5(a)). To explain this behavior we recall that
the OPT+-like version of an expression (P OPT+ P ′) is of the form
((P AND P ′) UNION P). Hence, the non-optional subexpression P of
such queries is contained–and, thus, executed–twice in the OPT+-like
versions: first in the (P AND P ′) part and second as the right argument
of the UNION operator used in the OPT+-like queries. This double
effort does not only lead to typically higher query execution times
(as shown in Figure 7) but it also means that the triples for executing
the non-optional subexpression P are retrieved twice from the storage
back-end (as indicated by the comparably higher TrX% values shown
in Figure 6) and that the response times may be affected negatively.

As an example of the latter, consider query Q1. For this query, the
result of the optional part P ′ is empty. Thus, executing the (P AND
P ′) part of the OPT+-like version of this query does not produce any
solution mappings; yet it requires time (namely, ca. 81 ms as can be
seen in Figures 4(a) and 5(a)). Only after this time, the query execution

OPT+: A Monotonic Alternative to OPTIONAL in SPARQL 195

(a) Q1 (b) Q2

(c) Q3 (d) Q4

Figure 6 Number of triples retrieved for X% of all solutions for the handcrafted
queries.

(a) Q1 (b) Q2 (c) Q3 (d) Q4

Figure 7 Overall query execution times for the handcrafted queries.

proceeds to the second argument of the UNION operator and starts
producing the first output.

The execution of the OPT+-like version of Q4 is also interesting.
For this query, ca. 90% of the solution mappings of the query result
are produced by executing the join between the optional and the
non-optional part. For the remaining 10%, the non-optional part has
to be executed again in the case of the OPT+-like version of Q4,
which explains the sudden rise at the end of the corresponding curves

196 S. Cheng and O. Hartig

in Figures 4(d) and 6(d). In contrast, by using the dedicated OPT+

algorithms (NLJ+ and mNLJ+) it becomes unnecessary to produce the
solution mappings for the non-optional part twice.

When comparing the two native OPT+ approaches, we observe
that the mNLJ+ executions achieve better response times for Q1–Q3,
whereas, for Q4, the NLJ+ execution is better. In some ways, the
behavior of the mNLJ+ algorithm is the opposite of how the OPT+-
like versions of the queries are executed; that is, mNLJ+ first returns
all solution mappings for the non-optional part before it tries to find
corresponding join partners in the optional part (but without having to
re-execute the non-optional part). This strategy is beneficial in cases in
which most (or even all) of the solution mappings for the non-optional
part have a few join partners only (like in Q2 and Q3) or no join partner
at all (as in Q1). If, in contrast, most of the solution mappings for the
non-optional part have many join partners, the strategy becomes less
suitable. In such cases (with Q4 being one of them), the idea of NLJ+

is more effective in terms of achieving small response times.

7.5 Comparison of OPT+ versus OPT for the Handcrafted
Queries

We now compare the executions of the OPT+ versions versus the OPT
versions of the handcrafted queries. Since the query results for the
two versions may have a different size (cf. Section 5 and Table 4),
comparing the query executions in terms of their response times to
return a particular percentage of the respective query results is an
apples-to-oranges comparison. Therefore, we focus on the response
times to return a fixed number of solution mappings (i.e, RT1stX).
Figure 5 illustrates the corresponding measurements.

For Q1, the executions of the OPT+ version achieve slightly better
response times than the execution of the OPT version. For the NLJ+

execution this observation may be surprising, given that the NLJ+

algorithm is very similar to the algorithm used for the OPT operator
(cf. Sections 6.1 and 6.2). However, recall that the none of the solution
mappings for the non-optional part of Q1 has a join partner in the
optional part. Then, the NLJ+ algorithm returns each of these solution

OPT+: A Monotonic Alternative to OPTIONAL in SPARQL 197

mappings before the unsuccessful attempt to find join partners, whereas
the algorithm for the OPT operator first tries to find join partners and,
thereafter, checks whether it has found some or not.Although this check
presents only a very small overhead, it adds up when iterating over the
solution mappings obtained for the non-optional part.

For Q4, this small advantage of NLJ+ over the OPT algorithm
becomes insignificant for the following reason. Each solution mapping
obtained for the non-optional part of Q4 does have join partners in
the optional part. As a consequence, processing each of these solution
mappings takes more time overall, which makes the overhead of the
additional check negligible.

In comparison to the NLJ+ executions, the mNLJ+ executions
achieve response times that are more different to the response times
of the OPT executions, and these differences may be either positive (as
in the case of Q1) or negative (Q4). The reasons for these differences
are the same as the aforementioned reasons for the differences between
mNLJ+ and NLJ+ (because of the similarity of the algorithm for the
OPT operator and the NLJ+ algorithm).

In summary, this experiment with the handcrafted queries shows
that there are cases in which replacing the OPT operator by OPT+ is
beneficial in terms of response times (assuming a native implementation
of OPT+). This benefit may be more substantial if the mNLJ+ algorithm
is chosen to implement OPT+ (instead of the NLJ+ algorithm). How-
ever, there are also cases in which this choice can have the opposite of
the desired effect (see Q4).

7.6 Comparison of OPT+ Approaches for the Real-World
Queries

While the handcrafted queries allow us to reason in detail about how
the different approaches behave in specific cases, we now discuss our
observations for the large workload of real-world queries obtained from
the DBP3.5.1 query log. We begin with a comparison of the OPT+

approaches.
First, we notice that a number of query executions have hit our

timeout threshold of 10 seconds (for details refer to the table in

198 S. Cheng and O. Hartig

(a) # of cases of having the best RTX% (b) avg. RTX% for 20,797 queries (log scale)

(c) avg. differences between RTX% values

approach # of timeouts
OPT+ -like 359

OPT+ (NLJ+) 167

OPT+ (mNLJ+) 166

OPT 144

(d) number of timeouts

Figure 8 Comparison of the OPT+ approaches for the real-world queries of the
DBP3.5.1 log.

Figure 8(d)). Additionally, many of the queries whose executions did
not time out have the empty query result. For these cases it is impossible
to compare the approaches in terms of our response time metrics
(RT1stX and RTX%). As a consequence, out of the 60K queries there
are only 20,797 for which we have relevant measurements. For these
queries, Figure 8(a) illustrates the number of cases in which each
approach has achieved the smallest (i.e., best) RTX% value among the
three approaches, and Figure 8(b) illustrates the average RTX% values
that each of the three approaches has achieved for the 20,797 queries.

We observe that the OPT+-like approach cannot compete with
the other two approaches. That is, its average response times are
two orders of magnitudes greater (i.e., worse) and, for every X ∈
{10, 20, . . . , 100}, there are less than 100 queries for which the
approach has achieved the best RT1stX value. The reasons for this
behavior have already been mentioned above.

Regarding the NLJ+ approach versus the mNLJ+ approach, there
is a significantly higher number of queries for which mNLJ+ achieves

OPT+: A Monotonic Alternative to OPTIONAL in SPARQL 199

better response times; on the other hand, however, NLJ+ is slightly
better in terms of average response times. To analyze these observations
further we refer to Figure 8(c) which illustrates the average differences
(in ms) between the RTX% values achieved by both approaches for
the cases in which mNLJ+ was better than NLJ+ (light blue curve) and
for the cases in which NLJ+ was better than mNLJ+ (brown curve).
Our conclusion of this comparison is two-fold: First, while there are
more cases in which mNLJ+ achieves better response times than NLJ+,
the differences in these cases typically are not particularly significant.
Second, there are a notable number of cases in which NLJ+ achieves
better response times than mNLJ+, and in these cases the response
times are significantly different.

7.7 Comparison of OPT+ versus OPT for the Real-World
Queries

To compare the OPT-based executions versus OPT+-based executions
of the real-world query workload we, again, focus on the RT1stX
measurements only (as the RTX% measurements are not comparable
due to the differences in the query result sizes; cf. Section 5). Then,
from the 20,797 queries that have a nonempty result, there are only 41
for which the query result of the OPT version contains at least 100
solution mappings. Since this number of solution mappings is needed
to obtain RT1stX measurements with an X of up to 100, we use these
41 queries for the comparison of OPT+ versus OPT.

We separately consider both of the two OPT+-specific approaches
for this comparison because none of them turned out to be a clear
winner over the other one–neither for the handcrafted queries (cf.
Section 7.4) nor for the real-world queries (cf. Section 7.6). For the
NLJ+ approach, Figure 9(a) illustrates the number of cases in which
the RT1stX values of the OPT+-based executions are better than for the
OPT-based executions and vice versa; Figure 9(c) provides the same
type of chart for the mNLJ+ approach.

For both, NLJ+ and mNLJ+, we make very similar observations.
That is, there are significantly more cases in which the respective OPT+-
based executions of the 41 queries achieved better RT1stX response
times (cf. Figures 9(a) and 9(c)). However, the average differences

200 S. Cheng and O. Hartig

(a) # of cases of having the best RT1stX (b) avg. differences between RT1stX values

(c) # of cases of having the best RT1stX (d) avg. differences between RT1stX values

Figure 9 Comparison of OPT+ versus OPT for the real-world queries of the
DBP3.5.1 log.

between the response times in all of these cases are below 1ms (cf.
Figures 9(b) and 9(d)).

8 Conclusions

In this paper we have analyzed a monotonic alternative to the
OPTIONAL feature of SPARQL, which we have formalized as a new
query operator called OPT+. The main use case for this alternative are
Web data integration components that execute queries over RDF-based
data sources on the Web.

The trade-off of using the OPT+ operator instead of OPTIONAL is
that it may increase the size of query results. Regarding the question of
how significant this increase can be in practice (i.e., research question
RQ1), we conclude that:

C1.1 For a large fraction of the real-world queries we analyzed, there
would be no result size increase at all if these queries were using
OPT+ instead of OPTIONAL.

OPT+: A Monotonic Alternative to OPTIONAL in SPARQL 201

C1.2 However, there is also a sizable fraction of queries for which the
result size would increase.

C1.3 For many of these queries, the result sizes would increase no
more than 2x, but there is also a non-negligible number of queries
for which the result sizes would increase substantially. Almost
exclusively, the latter are queries with sequences of OPTIONALs.

The motivation for introducing this alternative operator was to
enable dedicated implementations that can reduce the response times of
query executions in comparison to implementations of the OPTIONAL
feature (i.e., returning a first fraction of the respective query results
earlier). Regarding the question of how suitable the OPT+ operator
actually is for achieving this goal (research question RQ2), our main
conclusion is that:

C2.1 Surprisingly, for the dedicated OPT+ implementation approaches
that we have considered we cannot confirm any significant
advantages in terms of response times; although there are some
differences, they are all below 1 ms.
Other, more specific conclusions that we draw from our evalua-
tion are:

C2.2 Implementing the idea of the OPT+ operator by simply using the
semantically equivalent expressions with AND and UNION is
not an efficient approach; typically, it results in worse response
times and also increases the amounts of data (triples) that have to
be retrieved from the storage back-end (or from the remote server
in case of a client-server architecture or in a decentralized query
processing context).

C2.3 For each of the two OPT+-specific algorithms, NLJ+ and mNLJ+,
there exist cases in which it is better than the other in terms of
achieving smaller response times. More specifically, our results
show that mNLJ+ achieves better response times than NLJ+ in
a greater number of cases, but the differences in these cases
typically are not particularly signif- icant. On the other hand, in the
cases in which NLJ+ achieves better response times than mNLJ+,
which are notably many, the response times are significantly
different.

202 S. Cheng and O. Hartig

Acknowledgements

This work has been funded by the CENIIT program at Linköping
University (project no. 17.05).

Appendix

8.1 A1 Handcrafted Benchmark Queries

Q1 SELECT ?x ?o2 WHERE {
?x a <http://dbpedia.org/ontology/Band>.
OPTIONAL { ?x <http://example.org/thisProperty
DoesNotExist> ?o2 }

}

Q2 SELECT ?x WHERE {
?x a <http://dbpedia.org/ontology/Band> .
OPTIONAL { ?x a <http://dbpedia.org/ontology/
Band> }

}

Q3 SELECT ?x ?o2 WHERE {
?x a <http://dbpedia.org/ontology/Band> .
OPTIONAL { ?x a ?o2 }

}

Q4 SELECT ?x WHERE {
?x a <http://dbpedia.org/ontology/Band> ;

<http://dbpedia.org/ontology/recordLabel>
?rl ;

<http://www.w3.org/2000/01/rdf-schema
#label> ?l .

?rl <http://www.w3.org/2000/01/rdf-schema#label>
?lrl

FILTER (strStarts(?lrl, "A"))
OPTIONAL { ?b2 <http://dbpedia.org/ontology/
recordLabel> ?rl }

}

OPT+: A Monotonic Alternative to OPTIONAL in SPARQL 203

References

[1] Maribel Acosta, Olaf Hartig, and Juan Sequeda. Federated RDF
Query Processing. In Sherif Sakr and Albert Zomaya, editors,
Encyclopedia of Big Data Technologies. Springer, 2018.

[2] MaribelAcosta, Maria-Esther Vidal, Tomas Lampo, Julio Castillo,
and Edna Ruckhaus. ANAPSID: An Adaptive Query Processing
Engine for SPARQL Endpoints. In The Semantic Web – ISWC
2011 – 10th International Semantic Web Conference, Bonn, Ger-
many, October 23–27, 2011, Proceedings, Part I, pages 18–34,
2011.

[3] Renzo Angles and Claudio Gutiérrez. The expressive power of
SPARQL. In The Semantic Web – ISWC 2008, 7th International
Semantic Web Conference, ISWC 2008, Karlsruhe, Germany,
October 26–30, 2008. Proceedings, pages 114–129, 2008.

[4] Javier D. Fernández, Miguel A. Martínez-Prieto, Claudio Gutiér-
rez,Axel Polleres, and MarioArias. Binary RDF representation for
publication and exchange (HDT). J. Web Sem., 19:22–41, 2013.

[5] Goetz Graefe. Query Evaluation Techniques for Large Databases.
ACM Comput. Surv., 25(2):73–170, 1993.

[6] Steve Harris, Andy Seaborne, and Eric Prud’hommeaux.
SPARQL 1.1 Query Language. W3C Recommendation, Online
at http://www.w3.org/TR/sparql11-query/, March 2013.

[7] Olaf Hartig. Querying a Web of Linked Data: Foundations and
Query Execution. PhD thesis, Humboldt-Universität zu Berlin,
Germany, 2014.

[8] Olaf Hartig, Christian Bizer, and Johann Christoph Freytag. Exe-
cuting SPARQL Queries over the Web of Linked Data. In The
Semantic Web – ISWC 2009, 8th International Semantic Web
Conference, ISWC 2009, Chantilly, VA, USA, October 25–29,
2009. Proceedings, pages 293–309, 2009.

[9] Olaf Hartig and M. Tamer Özsu. Walking without a map: Ranking-
based traversal for querying linked data. In The Semantic Web –
ISWC 2016 – 15th International Semantic Web Conference, Kobe,
Japan, October 17–21, 2016, Proceedings, Part I, pages 305–324,
2016.

204 S. Cheng and O. Hartig

[10] Lars Heling, Maribel Acosta, Maria Maleshkova, and York
Sure-Vetter. Querying large knowledge graphs over triple
pattern fragments: An empirical study. In The Semantic Web –
ISWC 2018 – 17th International Semantic Web Conference,
Monterey, CA, USA, October 8–12, 2018, Proceedings, Part II,
pages 86–102, 2018.

[11] Markus Luczak-Roesch, Saud Aljaloud, Bettina Berendt, and
Laura Hollink. USEWOD 2016 Research Dataset. University of
Southampton, 10.5258/SOTON/385344, 2016.

[12] Stanislav Malyshev, Markus Krötzsch, Larry González, Julius
Gonsior, and Adrian Bielefeldt. Getting the Most Out of Wiki-
data: Semantic Technology Usage in Wikipedia’s Knowledge
Graph. In The Semantic Web – ISWC 2018 – 17th International
Semantic Web Conference, Monterey, CA, USA, October 8–12,
2018, Proceedings, Part II, pages 376–394, 2018.

[13] Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. Semantics
of SPARQL. Technical Report TR/DCC-2006-17, Department of
Computer Science, University of Chile, 2006.

[14] Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. Seman-
tics and Complexity of SPARQL. ACM Trans. Database Syst.,
34(3):16:1–16:45, 2009.

[15] Eric Prud’hommeaux and Carlos Buil-Aranda. SPARQL
1.1 Federated Query. W3C Recommendation, Online at
http://www.w3.org/TR/sparql11-federated-query/, March 2013.

[16] Muhammad Saleem, Muhammad IntizarAli,Aidan Hogan, Qaiser
Mehmood, and Axel-Cyrille Ngonga Ngomo. LSQ: The Linked
SPARQL Queries Dataset. In The Semantic Web – ISWC 2015 –
14th International Semantic Web Conference, Bethlehem, PA,
USA, October 11–15, 2015, Proceedings, Part II, pages 261–269,
2015.

[17] Muhammad Saleem, Yasar Khan, Ali Hasnain, Ivan Ermilov,
and Axel-Cyrille Ngonga Ngomo. A Fine-Grained Evaluation
of SPARQL Endpoint Federation Systems. Semantic Web, 7(5):
493–518, 2016.

[18] Jürgen Umbrich, Katja Hose, Marcel Karnstedt, Andreas Harth,
and Axel Polleres. Comparing Data Summaries for Processing

OPT+: A Monotonic Alternative to OPTIONAL in SPARQL 205

Live Queries over Linked Data. World Wide Web, 14(5–6):
495–544, 2011.

[19] Ruben Verborgh, Miel Vander Sande, Olaf Hartig, Joachim
Van Herwegen, Laurens De Vocht, Ben De Meester, Gerald
Haesendonck, and Pieter Colpaert. Triple Pattern Fragments:
ALow-Cost Knowledge Graph Interface for the Web. J. Web Sem.,
37–38:184–206, 2016.

Biographies

Sijin Cheng is a Ph.D. student at Linköping University since Spring
2019. She holds a double Master’s degree in Computer Science and
Software Engineering from Linköping University, Sweden, and the
Harbin Institute of Technology, China. Sijin’s Ph.D. work focuses on
problems related to querying federations of graph data sources with
heterogeneous forms of data access interfaces.

Olaf Hartig is an Associate Professor in Computer Science at
Linköping University. He holds a Ph.D. in Computer Science from the
Humboldt-Universität zu Berlin and has been awarded the academic
qualification Docent in Computer Science from Linköping University.

206 S. Cheng and O. Hartig

His research focuses on data on the Web and on graph data, as
well as on problems in which the data is distributed over multiple,
autonomous and/or heterogeneous sources. Regarding these topics,
Olaf’s interests range from systems-building related research to theoret-
ical foundations. For his Ph.D. dissertation “Querying a Web of Linked
Data: Foundations and Query Execution” he was honored with the
2015 Distinguished Dissertation Award of the Semantic Web Science
Foundation (SWSA), and he has received several best research paper
awards (ESWC2009, ESWC2015, ISWC2017, Semantics2018).

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

