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Nowadays, the total cost of cloud computing infrastructures for Web applications is calculated in 
deployment and production phases. Recently, the scientific community offers several methodologies to 
calculate the most suitable infrastructure at these stages to minimize its monetary costs while covering 
Service Level Agreement (SLA) constraints. On the other hand, Model Driven Web Engineering is taking 
advantages of code generation from Design level. With both concepts in the scene, in this work we show 
the first stage toward an approach to estimate the production costs in cloud computing infrastructures at 
Design phase, choosing the right infrastructure for the job. The process we have performed started defining 
the variables of the analysis, measuring the time needed in each different combination obtained, validating 
the confidence of results obtained and finally applying them to an illustrative example to exemplify the 
proposal in practical terms. 
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1 Introduction  

Currently, cloud computing infrastructure has become the most widely used solution for deploying 
Web applications, mainly due to the flexibility, agility and availability capabilities that it offers [5]. 
Cloud computing enables Web developers to use remote hosting services to improve onsite 
infrastructure. In that sense, the organization systems can be specified at a deep level of detail 
according to the service and quality level agreements that determine the kind of servers, its 
arrangement and its scalability options. In that sense, there are many factors that impact the pricing 
structures, mainly related to the resources used in each moment. As an example, high availability, high 
data volume and high number of concurrent users are key factors to be considered in data intensive 
Web applications deployment [12]. Thus, since cost is of utmost importance for the infrastructure, 
getting an optimal cloud infrastructure is critical, especially when this kind of Web applications comes 
into this scenario.  

Concretely, the definition of a deployment infrastructure for a Web application, previously 
implemented, is based on a general specification of a service level agreement (SLA) that is usually 
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defined in terms of [1]: (1) Network latency, (2) host CPU and throughput, (3) memory and (4) 
storage. Indeed, estimating the capacity of the infrastructure in a systematic and accurate manner at 
design level allows us to predict the behaviour of the infrastructure under critical load conditions. It is 
useful to identify the maximum performance expected and its better corresponding cloud 
infrastructure.  

On the other hand, data intensive Web applications development has been widely studied by 
Model Driven Web Engineering community (MDWE). In the last few years, different methodologies 
and tools have been presented for supporting the Web development process. Model Driven approaches 
can also reduce the need for technical and human resources and improve the quality of the final 
product. Among the many benefits provided by MDWE approaches, such as IFML/WebRatio [3], 
XANUI [6], LIQUIDXML [14] or OOHDM [11], it is worth to mention the automatic generation of 
the final application code from the design so that this phase (design) becomes the most important step 
in the software development process. Other advantages provided by these approaches include 
productivity improvements, an important increment in software quality or a reduction in costs to adapt 
the system to changes in requirements. However, these approaches do not support the identification or 
estimation of production costs for the Web application in a selected cloud infrastructure yet. This 
identification needs to be made in post-design software development lifecycle stages, such as 
performance-testing phase [7] neglecting the benefits of an earlier estimation.  

As an example, the identification at design level of design decisions that may have a relevant 
impact in the infrastructure costs may involve changes that would be accomplished before the final 
system has been generated. The identification of these decisions once the final system has been 
generated would imply higher cost changes [2]. 

Given this opportunity, we have formulated the following research question: can we estimate at 
design phase the costs of production for a given Web System, developed with a specific MDWE 
approach and given a service quality requirements specification, to determine a Cloud deployment 
infrastructure? 

The main goal of this paper is to present an approach for the definition of a cloud computing cost 
estimation model for Web applications during the design phase. In other words, a design-time 
evaluation of the infrastructure needed at the next production stage to cover a certain quality of service 
for the application. This approach would reduce the impact of changes due to decisions about the 
capabilities and costs of the cloud infrastructure on the development process. As a first step to carry 
out this estimation, this work presents an analysis of the throughput times of an application, based on 
different design decisions, in order to have more information to anticipate the impact of the design 
over infrastructure costs.  

This paper is structured as follows. In Section 2 we gather the steps and data used to carry out this 
first estimation as a function of throughput time. Section 3 analyses the data obtained and Section 4 
introduces the production cost estimation method. Section 5 presents the related work and, finally, 
Section 6 collects the conclusions and future work. 
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2 Working Environment 

In order to make concrete the conceptual framework that the work presented here relies on, we have 
analysed different MDWE approaches that were mature enough to be used by industry [13]. Among 
the current approaches, it is worth to mention IFML (Interactive Flow Modelling Language) ([3] that 
allows the design and development of data intensive Web applications. This standard has also become 
a reference for the industry in the data intensive web applications development area. WebRatio, the 
case tool that supports the development of applications by using IFML, allows managing and 
validating IFML models but it also provides engineers with the automatic generation of the final code 
of the application based on a particular J2EE target platform. WebRatio can be freely downloadeda. 
Furthermore, this study has been developed with the collaboration of a Software Development 
Company (Homeria Open Solutions, S.L.), which possesses a long experience in the usage of 
WebRatio for Web Application Development. This context led us to select IFML/WebRatio as the 
MDWE approach under study.  

Although we have performed this study using a concrete MDWE approach (IFML/WebRatio), it 
has intentionally defined independently from such approach. Therefore, following the process depicted 
herein, we may obtain data operation execution average times for different MDWE approaches to 
provide cost estimates at design time, which remains the main goal of this work. 

2.1 Study Design 

As a first step to answer this question, in this work we focus on assessing how different design and 
production parameters (independent variables of our study) impact the response time (dependent 
variable) of a Web application. 

To analyse the impact of the independent variables treatment in the study, we have defined a 
canonical design that will be used in all the assessments. This design consists of an IFML navigation 
model composed of a set of CRUD operations (Create, Read, Update, Delete). Note that CRUD 
operations represent the tasks that are most frequently repeated in IFML designs and, thus, the 
operations with a higher activity load in data intensive Web applications [10]. The model that has been 
designed follows the next pattern: first, a Create operation is executed; second, a Read is performed; 
next, an Update; and, finally, a Delete.  

Once the core design has been specified, the independent variables related to the design aspects 
that may affect its response time have been defined. Concretely, the variables are the next: (a) number 
of attributes in the data entity that the operation is performed over (in this case, we have considered 
values of 1, 10, 20, 30, 40, 50); (b) persistence type considered for the operation (data stored into the 
data base, data as session variable or data as application variable at memory level). For the sake of 
simplicity, the type range for data entity attributes has been blocked to string in this work.  

On the other hand, the production independent variables refer to the technical characteristics of the 
deployment infrastructure that may affect the response time of the application. In this case, the 
independent variables considered are: (c) computational capacity of the server instance were the tests 
are performed (two different machines are used: an EC2 t2.micro Amazon Web Services with a 2,5 

                                                 
a http://www.webratio.com 
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GHz Intel Xeon processor and 1 GB of RAM memory; an EC2 t2.small Amazon Web Services with a 
2,5 GHz IntelXeon processor and 2 GB of RAM memory); (d) the number of concurrent users that 
may launch a particular operation in the Web application (in our case, this parameter may have the 
values 1, 5 and 10 to cover different scenarios). Furthermore, the deployment software stack has been 
blocked to a concrete version of Tomcat and PostgresSQL, so they do not introduce undesired 
alterations to the measures.  

In order to provide a complete view of the problem domain, Table 1 presents a comprehensive list 
of design and production variables, which may have a clear impact on the dependent variable (response 
time), together with their domain range. Note that a significant subset of those independent variables 
has been fully considered in this study. The rest variables haven blocked or not considered here but 
their analysis is planned as a future work. Additionally, it is worth to mention that the variables 
considered are independent of any specific MDWE approach. Therefore, they remain valid in the case 
of performing the same study considering a different MDWE approach. 

 

Category  Considered Variable Range of values 

Design Yes CRUD operation C, R, U & D  

Design Yes Number of attributes of the entity 1, 10, 20, 30, 40 or 50 

Design Blocked Attribute Type float, integer, date, time, text, String, etc. 

Design No Entity Relationships One-to-many and many-to-many 

Design Yes Persistence  Application, session or data base 

Design Yes Persistence  Application, session or data base 

Design No Transactions CRUD combinations 

Production Yes Computational capacity  EC2 t2.micro Amazon Web Services 
EC2 t2.small Amazon Web Services 

Production Blocked Software stack  Apache 
Postgresql 9.5.4  
(AWS db.t2.micro, or db.t2.small) 

Production Yes Number of concurrent users  1, 5 or 10 

Table 1 Independent variables for the study. 

2.2  Set-Up 

Based on the usage of IFML, our main research question, introduced in previous section, was refined 
as follows: can we estimate at design phase the costs of production for a given Web System, developed 
with IFML/WebRatio and given a service quality requirements specification, to determine a Cloud 
deployment infrastructure? 

Given the great amount of data and the existence of different combinations for the testing groups, 
all the results have been represented by means of a 5-dimension ROLAP [8] cube. In order to represent 
that cube we have specified a Data Model (see Figure 1) that comprises those five dimensions: (1) 
operation type by means of the entity Operation; (2) persistence type by means of the entity Duration; 
(3) attribute number by means of the entity NumAttributes; (4) number of concurrent users by means of 
the entity NumUsers; and (5) deployment machine features by means of the entity 
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ComputationalCapacity. All those previous entities are connected to an entity named CostRegistry, 
which stores the measurements obtained for each combination of the values of the five dimensions 
considered in terms of time.  

 

Figure 1 Data Model for managing the 5 dimensions used. 

On the other hand, to perform every CRUD operation we have specified all those data operations 
according to the usual patterns in IFML. At this point, concerning combination packaging and 
deployment, we have two main alternatives: 

(1) Creating four projects: one per each operation type. In practical terms, it means to create 
and deploy 864 war projects (=4 operations * 3 persistence types * 6 categories of 
attributes * 3 different sets of users * 2 deployments environments). 

(2) Specifying a single operation chain to sequentially perform the four types of data 
operations (C, R, U, D). In this case, we only have to manage 216 war projects. 
Therefore, this was the alternative finally selected. 

For the sake of simplicity, Figure 2 shows a reduced version of the IFML model specifying the 
second alternative approach. Note that every group of action units implementing every data operation 
is highlighted with grey squares. In general terms, the main idea is to measure the time needed in each 
operation by getting the time just before and after its execution. To this purpose, we have used a time 
unit placed before and after each operation unit. So, we can capture the exact time used for each 
operation. Additionally, in order to have a relevant set of data and to be able to dismiss abnormal 
results, each combination of values for the independent variables has been repeated 2.000 times. Thus, 
we have executed 2.000 create operations, then, 2.000 reads and so on. In this case, the loop unit is 
responsible of providing those iterations. The process starts at the point tagged as 1 in Figure 2, 
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concretely in the No Operation unit marked as Home. This unit is used to trigger the whole operations 
chain and to establish the number of iterations (2.000 in our study). Secondly, we show the units used 
to measure the Create in the grey square marked as 2 in the figure. The Read is placed in the square 3, 
the Update in 4 and Delete operation in 5. Finally, basic options to manage the results generated are 
placed in 6. 

 

Figure 2 Operation chain to perform the analysis. 

3     First Analysis 

Once the different tests are finished, all the resulting data have been statistically processed to assess 
their reliability/confidence, i.e., how similar the execution times of the same test throughout its 2.000 
repetitions are. We have applied the k-means method [9] to identify that the behavior was 
homogeneous in the great majority of the data (>86%) and to be able to discard not relevant outliers. 
The k-means process is useful for partitioning an N-dimensional population into k sets resulting 
partitions, which are relevant in the sense of our study. We have reached a value greater than 86% 
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using three (k=3) clusters. To facilitate this data analysis we have used the Rb  language by means of 
R-Environment. R is a language and environment for statistical computing and graphics and it provides 
an integrated suite of software facilities for data manipulation, calculation and graphical display. 
Figure 3 represents an excerpt of the resulting time plots for each CRUD operation for the case of 10 
attributes using data entity at session level and the t2.micro cloud infrastructure. For the sake of better 
graphical understandability, we have placed the results along the iteration used, depicted in the X axis 
from 1 to 500 for the sake of understandability, and the time needed for each operation in the Y axis. 

 

Figure 3 Graphic plot composed using R-Environment for the case 10 attributes/session/t2.micro. 

Figure 3 shows that behaviors are highly stable. For the sake of better understanding, the Figure 3 
depicts an excerpt of the whole behavior since it is homogeneous for the 2.000 repetitions. Therefore, 
given a homogeneity coefficient greater than 86%, we can derive a relevant mean execution reference 
time for every operation. Then, these mean times can be used in the design phase of an application to 
estimate its production costs. For example, Table 2 shows the mean times (in milliseconds) for the 
CRUD operations considered, the two amazon machines used, all attributes number cases and given 1 
user.  

 

Figure 4 All-in-one mean execution times. 

                                                 
b https://www.r-project.org/ 
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Table 2 Mean execution times for CRUD operations. 

Figures 4, 5, 6, 7 and 8 visually present the results for the four CRUD operations, considering just 
1 user, for all the different combinations of values from the dimensions: machine, persistence and 
attribute number. 

Obviously, Figure 4 shows that, in general terms, working with a higher memory quantity reduces 
considerably the time needed, i.e., t2.small respect to t2.micro. Regarding the level of persistence, we 
can see how acting at database level needs always more time. The operations that consume more time 
are Create, Update and Delete, respectively.  
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Figure 5 Mean time values plot for every case. CREATE. 

 

Figure 6 Mean time values plot for every case. READ. 

 

Figure 7 Mean time values plot for every case. UPDATE. 
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Figure 8 Mean time values plot for every case. DELETE. 

From the data obtained, textually and visually given here, we can infer several interesting insights. 
On the one hand, CREATE and DELETE operations (Figures 5 and 8) behave properly with 
persistence at memory level (Session and Applications variables), i.e., both operations take really low 
portion of time for their execution, the memory size does not seem to be relevant to perform them. 

On the other hand, for both CREATE and DELETE operations when working on persistence at 
database level the time became a key factor and we can also notice that the size of the memory plays 
an important role in these cases, being slightly higher in the AWS t2.micro/db.t2.micro case. In 
addition, when the number of attributes increases, it has a significant impact on performance. 

Regarding READ operations (Figure 6), the scenario ranges from 0 to 1,6 milliseconds. We can 
observe that the execution of READ operations involves a really low portion of time but, in a particular 
way, the memory size is really relevant when reading from memory level. When the number of 
attributes ranges from 1 to 50, it does not significantly impact execution times since the time needed 
for the case of 50 attributes is close to the rest of cases. For all cases, but mainly in READ one, 
millisecond seems to be a measure with not enough level of detail to perform the study; at least 
nanoseconds level should be considered. 

As also expected, better hardware features set (more RAM, in this case) for the deployment 
machine implies a relevant reduction on the mean execution time for every considered case of the 
UPDATE operation (Figure 7). Conversely, a greater number of attributes implies higher execution 
times. Additionally, it may be noted the high impact of the RAM availability when data entities are 
stored inside session or application scopes.  

4     Production Cost Estimation 

From the first data obtained here we can take decisions in order to optimize the execution times of the 
CRUD operations groups at design phase and we can give the first step to estimate the throughput time 
to convey the general services level specification. In other words, once we have estimated the 
operation times from this initial study for the different combinations, it is possible to assign a concrete 
value to each particular operation that conforms an operation chain in the business logic of an 
application at design phase. We define an Operation Chain as the set of all of the CRUD operations 
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that are launched sequentially and that must be executed from the first to the last, as if it was a 
transaction. We do it by adding up all the operation times of each of the operations involved in such 
operation chain. 

 

The formula above obtains the estimated execution time (indicated as time) of the longest 
operation chain (Cj) by selecting the maximum value from the set of estimated execution times of all 
the Operation Chains (OC) in the design. The function time returns the mean time of every operation 
(Oi) inside the Operation chain Cj given its type, the number of attributes in the involved data entity, 
and its type of persistence. 

Following we present a specific example to illustrate the cost estimation process. Simplified 
versions of three typical operation chains defining common transactions are shown here. Those 
operation chains have been synthetized from samples extracted of more than 100 projects of Web 
applications developed by a Spanish software company, Homeria, S.L., which it is an official partner 
of WebRatioc.  

The first operation chain (OP1 – Figure 9) exemplifies a common transaction to consolidate a 
stream of incoming data into a new summary record in the database. In this case, we are just 
considering the following steps in such transaction: (1) a new summary instance is created (CREATE 
operation over an entity composed by 10 attributes and persisted into database); (2) new data item 
instances are created CREATE (CREATE operation over an entity with 30 attributes at session) within 
session representing the incoming data; (3) all those new data items are eventually read (READ 
operations over entities with 30 attributes at session) and processed; (4) results are consolidated into 
the summary record (UPDATE operation over an entity composed by 10 attributes and persisted into 
database); and (5), finally, all the data items at session level are deleted (DELETE operations over 
entities with 30 attributes at session). 

 

Figure 9 Operation chain OP1. 

For the second one (OP2 – Figure 10) the whole chain is composed sequentially by a CREATE (20 
attributes at data base) + an UPDATE (20 attributes at data base) + a DELETE (20 attributes at data 
base). In this case, we try to simulate common user transactions with a data entity persisted into 
database. They do not actually define a real operation chain, but a set of operations accessing the 
database so concurrency issues may be exposed. 

                                                 
c http://www.webratio.com/site/content/es/partners 



 

 

J.C. Preciado, R. Rodríguez-Echeverría, J.M. Conejero, F. Sánchez-Figueroa and A.E. Prieto      235

 

Figure 10 Operation chain OP2. 

For the last one (OP3 – Figure 11) the whole chain is composed sequentially by a CREATE (30 
attributes at data base) + a CREATE (10 attributes at application persistence level) + a READ (30 
attributes at data base) + an UPDATE (10 attributes at application). This case is just an example of 
generating temporal data from persisted data for processing or presenting them conveniently. 

 

Figure 11 Operation chain OP3. 

Let us suppose that the SLA establishes a maximum unitary user performance time of 420 
milliseconds –Time (ml)1u– with a runtime growth, following a logarithmic scale depending on the 
number of concurrent users, with a maximum performance peak of 3.95 seconds for attending 1.500 
users simultaneously –Time (ml)nu–. nu references the number of concurrent users. When reaching the 
Time (ml)nu the operating margin should be greater than 7% to establish the viability of each operation 
in the deployment infrastructure. Also as an example, we can assume that the economic viability of the 
project recommends a design that can be performed correctly in a t2.small deployment infrastructure 
when it is pos. 

 

Table 3 SLA coverage in OP1, OP2 and OP3. 
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Table 3 shows the operations for OP1, OP2 and OP3 and the values for each operation regarding 
persistence type and number of attributes. The column named as Time (ml)1u adds up the whole 
operation for each case and the column named ET(ml)un indicates the estimated time in milliseconds 
when working with the maximum number of concurrent users expected. Obviously, ET(ml)un value 
must be less than maximum performance peak value that SLA indicates. The column tagged like 
Viability un shows a green background colour when such operation could be performed in the 
deployment infrastructure attending the SLA operating margin, while it shows an orange background 
colour when the value is between 93%-100% and a red colour is used in those cases where the SLA is 
overpassed. The last column (Suitable) indicates if the deployment infrastructure evaluated is suitable 
to perform each operation according the SLA values. 

If we analyze Table 3, we can observe that the level of 1 user in SLA is fulfilled for the three 
operations if we use a t2.small machine (179ml in OP1, 417 ml in OP2 and 291 in OP3, all of them 
marked in green colour). All of them are lower than 420ml. 

However, when we plan the results up to 1,500 users we can appreciate that the three operation 
chains (OP1: 3.379,09 ml, OP2: 3.930,31 ml, OP3: 3.695,21 ml) could be executed in a t2.small 
deployment infrastructure within the required parameters (referred in green colour in the cells of the 
ET(ml)un column) but, unfortunately, none of them could be carried out in a t2.micro deployment 
infrastructure (referred in red colour in the cells of the ET(ml)un column). Conversely, only the OP1 
fulfils the operating margin as indicated in the Viability column (85,55%). 

At this point we may determine that although the three operation chains could be performed in a 
t2.small infrastructure we should choose a higher deployment infrastructure to not force the SLA. 
Notwithstanding, and trying to fulfil the economic recommendation of the project (a design that can be 
performed correctly in a t2.small deployment infrastructure when it is possible), we may try to re-
design mainly the OP2 to evaluate if it could be feasible. 

In conclusion, as noted, the development process is not actually altered. Engineers keep following 
the same stages and accomplishing the same activities as before. However, our approach provides them 
with additional information in order to make the rightest decisions at design time, according to 
infrastructure cost estimates for every operation chain they are specifying. Such information may be of 
great help to lead, for example, the refactoring of extremely expensive operation chains 

5     Related Work 

Optimization of cloud computing infrastructure in the Web at production phase has been addressed in 
the last years by several works. We can find several authors that tried to face this issue from different 
perspectives. 

Concretely, in [1] and [4] the authors propose different methods for estimating the cloud 
infrastructure pricing, once the application has been developed. 

In [1], a probabilistic model is introduced to determinate the pricing, performance and reliability 
given a set of service requirements. This information is combined with the real cloud provider prices to 
find the most suitable cloud infrastructure. A wide range of executions with different values for the 
parameters used must be performed over the final application to identify the most suitable 
infrastructure combination. Similarly, [4] presents a model based on the characteristics of three 



 

 

J.C. Preciado, R. Rodríguez-Echeverría, J.M. Conejero, F. Sánchez-Figueroa and A.E. Prieto      237

purchasing options provided by Amazon EC2, which can be used for guiding the capacity planning 
activity. In both cases, the proposals act once the application has been developed and is ready to be 
deployed. 

On the models domain hand, a slightly more similar solution to our work is proposed in [7], where 
the authors describe also an approach to calculate operating cost and performance needs to suggest a 
suitable cloud computing infrastructure but at design phase in this case. It can be performed by means 
of a UML extension that collects the cloud computing infrastructure capabilities for designing the 
infrastructure combinations. They model the infrastructure expected with a UML activity diagram. 
From that model, this approach incorporates a cost estimation algorithm to calculate the production 
pricing, that uses previously known values for factors like load, storage, concurrency, peaks, and so on, 
that is, the deployment infrastructure is modeled and the cost is calculated from there. 

In [5], the authors propose a heuristic algorithm to help the developer in the decisions related to 
the placement of the tasks when deploying a web application into a cloud infrastructure. The algorithm 
deals with the placement of the subtasks in the different nodes of the virtual machines in order to 
reduce data transmission and communication traffic. The authors claim that the algorithm provides 
important benefits in terms of completion time of the web applications. Unlike our work, this 
algorithm would be executed once the system (and its resources) has been completely generated. 

Other interesting approach that uses model driven engineering for managing and configuring 
software systems at runtime to satisfy desired quality attributes is StratusML [15]. StratusML is a 
modeling framework for cloud applications and it provides views of the different cloud application 
concerns through utilizing the concept of layers facilitating visual modeling of adaptation rules, and 
using template-based transformation to deal with platforms heterogeneity.  

Also in [18], [17], [16] the authors propose the use of Model Driven Development for featuring the 
capabilities of the deployment infrastructure by mean of model and metamodels. E.g., applications 
developed using the framework in [18] are designed at a high level to abstract from the targeted Cloud, 
and then semi-automatically translated into code able to run on multi-Cloud platforms. 

Cloud Computing Infrastructures allow provisioning the developer with multiple instance types 
that provide different combinations of CPU, memory, disk and networks. These proposals use 
models/metamodels to get a catalog of capabilities of deployment infrastructures and to model the 
concrete final schema. They act once the application has been developed and is ready to be deployed. 
Hence, according to the features of that application these approaches allow to design an infrastructure 
on a specific cloud provider. However, in all these works the deployment infraestructure is modelled or 
generated according to the final application so that the system is not optimized to fulfil a particular 
SLA. This is exactly where our approach comes to the scene since different design decisions may be 
taken in order to accomplish such as SLA and the performance of the application may be subordinated 
to the underlying infrastructure or to the limitations of architecture and software. In other words, 
despite the contributions provided by the previous works that have been aforementioned, none of them 
have addressed the problem that is faced in this work. 
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6     Conclusions and Future Work 

In this paper, an approach for estimating production costs and cloud infrastructure for data intensive 
Web applications has been presented. To estimate these costs, a study has been developed where the 
execution times of different CRUD operations have been measured based on a series of design and 
production parameters. This analysis shows interesting and promising results regarding the possibility 
of establishing a first infrastructure estimation based on the significant (independent) variables 
considered in the study. The variables considered in the study included the operation type, number of 
attributes, persistence type, potential users and deployment machine capabilities. Based on these 5 
different dimensions we observed how they impact the execution time of a canonical system so that the 
developer may extrapolate the results to other systems and anticipate, in the early stages of design, the 
computing needs and cloud infrastructure that the application will need for its later deployment and, 
thus, take the corresponding decisions before deploying the system. To the best of our knowledge, 
there is not a similar approach for IFML nor other MDWE approach in the literature so that the one 
presented here comes to bridge this gap. 

As a different contribution, we also identified several aspects that can influence the effectiveness 
of cost estimation such as database type, cache capabilities, the ability to scale the application on 
several machines by elastic growth or resources sharing by other applications, as well as the 
correlations between these aspects and the throughput time. The evaluation of these aspects is also 
planned in our roadmap for future work. Similarly, we also plan to monitor the behavior of the 
processor, RAM and storage capacity at each point in the execution of the operation chain in order to 
evaluate the quality requirements in these aspects. 

Due to the study is focused on the basic CRUD operations and the executions of them out of a 
transaction, it could be interesting to replicate the execution of complex transactions that could cover a 
large amount of data intensive Web applications including a subset of transactions like the creation of 
complex entities, remove complex entities, and so on.  

Complementary, we are planning to evaluate the impact for each type of attribute placed in an 
entity (float, integer, date, time, text, etc.) and to identify how their different combinations may affect 
the results. Regarding the data model, we also need to identify the performance data when using 1:N 
(one to many) and N:M (many to many) relationships.  

We will also work in a plugin for WebRatio that will provide the designer with automatic 
suggestions about what cloud infrastructure is estimated as necessary based on the identification of the 
design parameters discussed in this work. Morever, by means of connecting to the AWS (Amazon 
Web Services) infrastructure cost calculatord, the plugin could also automatically calculate 
infrastructure pricings based on the selected operating parameters. Even, the plugin could suggest a 
first visual infrastructure proposal by connecting to AWS Cloudcrafte . Finally, in the long-term, we 
plan to apply the study to other MDWE proposals or even Web development frameworks so that we 
would be able to estimate, at design time, the infrastructure costs of different frameworks and to 
compare them, supporting the decision making regarding the chosen infrastructure. 

                                                 
d AWS Calculator, 2017. https://calculator.s3.amazonaws.com/index.html 
e Amazon CloudCraft, 2017. https://cloudcraft.co/ 
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