
Verification of the Instantiation
and Integration of Security Patterns

Tu Peng1,∗, Shuliang Wang1, Jing Geng1, Qinsi Wang2,
Yun Yang3 and Kang Zhang4

1School of Computer Science and Technology, Beijing Institute of Technology,
Beijing, 100081, China
2Department of Computer Science, Carnegie Mellon University, Pittsburgh, USA
3School of Software and Electrical Engineering, Swinburne University of
Technology, PO Box 218, Hawthorn, Melbourne, Australia 3122
4Department of Computer Science, University of Texas at Dallas, Richardson,
TX 75083, USA
E-mail: pengtu@bit.edu.cn; slwang2011@bit.edu.cn; janegeng@bit.edu.cn;
qinsiw@ cs.cmu.edu; yyang@swin.edu.au; kzhang@utdallas.edu
∗Corresponding Author

Received 26 May 2020; Accepted 02 June 2020;
Publication 14 August 2020

Abstract

As software applications suffer from increasing malicious attacks, security
becomes a critically important issue for software development. To avoid
security problems and increase efficiency, a large software system design
may reuse good security solutions for existing security patterns. While secu-
rity patterns document expert solutions to common security problems and
capture well-examined practices on secure software design, implementing
them in a particular context (pattern instantiation) and composing them with
other related patterns (pattern integration) are prone to flaws and may break
expected security properties. In this paper, we present an approach to verify
security patterns instantiation and integration automatically. We offer formal
definitions for security pattern instantiation and integration, and establish
rules to transform sequence diagrams (representing the behaviors of security

Journal of Web Engineering, Vol. 19 3-4, 521–556.
doi: 10.13052/jwe1540-9589.19347
© 2020 River Publishers



522 Tu Peng et al.

patterns) to expressions in Milner’s Calculus of Communicating Systems
(CCS). We prove the correctness of the proposed transformation, and propose
an algorithm to carry out this transformation automatically. In particular, we
formally specify the alternative flows of UML sequence diagrams guarded by
constraint conditions, which allows us to model choice making behaviors of
security patterns precisely. The properties of the instantiation and integration
can be verified by model checking against their CCS expressions. Flaws
of instantiation and integration can, therefore, be discovered early in the
design stage. We use two case studies to illustrate our approach and show
the capability to prove security in integration and detect design errors in
instantiation respectively.

Keywords: Software engineering; software safety; software verification.

1 Introduction

With increasing security attacks, security becomes a critical requirement for
the successful software system development. Studies (e.g. [29]) have shown
that design flaws and errors are commonly the main sources of security loop-
holes that can be taken advantage of by attackers. Therefore, safe software
architecture and design are at the heart of software security. Security patterns
[27] document good practices to solve security problems arising frequently
in software development, and encourage reusing expert solutions. A security
pattern is a recipe for solving a particular security problem. It is a design
pattern [12] that generally describes a group of participants as well as their
relationships and collaborations, which achieve some security goals. Each
participant in a group is defined generically in terms of the role that it plays
in the security pattern. The participants’ relationships are normally described
in UML class diagrams and their collaborative behaviors are described in
sequence diagrams. The benefits of defining security patterns include (1)
allowing the reuse of security design, and (2) documenting expert design
experience, security design tradeoffs, and security decisions, so as to improve
communication.

To use a security pattern in a particular application, one needs to instan-
tiate it with the application domain information. This instantiation process
may change the generic names of the participating classes into ones reflecting
the application. It may also change the number of the participating classes in
some prescribed way. Meanwhile, multiple security patterns can be integrated
into large software systems to solve compound security problems. Integrating



Verification of the Instantiation and Integration 523

security patterns may help to reuse expert solutions to different security
problems in the same system. Such integration may happen before or after
the pattern instantiation process. While each security pattern is forced to
respect some security laws, the integration of these security patterns will
sometimes break them. That is, since the patterns instantiation and integration
involve changing both structures and behaviors of generic security patterns
intensively, there can be inconsistencies among the instantiation and inte-
gration such that some critical security properties may no longer hold. The
inconsistencies may cause problems in the design. It is important to discover
these problems and errors early in the design stage, as such design errors are
very difficult to find and correct once they are transformed to implementation
errors. Analysis techniques that help to find such design errors are crucial
to the quality of the software systems. It is cost effective to prevent coding
problems in advance than to discover them later by testing. Although we can
translate diagrams into codes and make proofs in terms of codes, it is simply
slower and more expensive to do so. On the other hand, mistakes may be
introduced when translating sequence diagrams into codes. Moreover, soft-
ware design elements and design-level behaviors are originally represented
by UML sequence diagrams instead of codes. Thus, applying formal veri-
fication against UML sequence diagrams is comparatively straightforward.
Security pattern instantiation and integration are design-level behaviors that
are originally represented by UML diagrams. Hence it is reasonable to build
our approaches on verification of UML sequence diagrams.

For the past decades, noticeable achievements [14, 15, 18, 30, 31] have
been made on specification and verification of UML sequence diagrams. H.
Storrle [24] studied the semantics of UML sequence diagrams with a focus on
formalizing the semantics of sequence diagrams using set theory rigorously.
Kong et al. used graphic grammar to describe the behaviors of UML diagrams
including sequence diagrams, and demonstrated the ability to facilitate the
verification of design models against system requirements [15]. Li studied on
rigorous formal semantics for UML sequence diagram [17]. In details, the
structural information of sequence diagram was defined by set theory: the
message was defined as a tuple of source object, target object, action and
order; and behavioral information was defined by communicating sequential
processes (CSP). Based on formal specification of a sequence diagram, other
work employed verification techniques. Automatic verification of security
pattern composition by model checking sequence diagrams was discussed
in [4, 5]. Model checking UML sequence diagram by SPIN was presented
in [18]. A translator was implemented to automatically generate system
specifications for model checking. PROMELA [13] was used for system



524 Tu Peng et al.

specifications and Linear Temporal Logic (LTL) was used for properties
specification in model checker SPIN [13].

These previous work have demonstrated the significance and presented
methodologies of formal specification and verification of UML diagrams,
which leads to the work in our paper. However, these approaches do not
aim at exploring an automatable way of specifying the behaviors of security
patterns, particularly their instantiation and integration. Meanwhile, existing
approaches do not provide ways to set the values of the constraint conditions
(so that choice can be made) and verify each possible flow of alternative
flows, which are critical behaviors of security patterns.

In this paper, we propose an automatable (maybe you want to say “auto-
matic”?) way in specifying and verifying the instantiation and integration
of security patterns. We formally define the security pattern instantiation
and integration processes, and provide an automatable way of specifying
the instantiation and integration with CCS [22]. In addition, we offer two
methods to specify sequence diagrams with multiple alternative flows. One
method specifies all reachable branches of a sequence diagram; the other
specifies some particular branches guarded by the constraint conditions we
are interested in. The designer can choose between these two methods to
gain a complete system model with all state transitions or a trimmed model
with fewer state transitions for model checking. We prove that the CCS
specifications truthfully represent synchronous messages, asynchronous mes-
sages, and alternative flows of a UML sequence diagram. Model checking
is used to verify whether the critical properties are held in security patterns
instantiation and integration. The analysis results show that our approach is
able to improve the design reliability leading to secure software, and detect
design errors that may cause security flaws.

The remainder of this paper is organized as follows. The next section
describes our analysis techniques with respect to security patterns instan-
tiation and integration. Section 3 presents a case study to illustrate our
approach and show the discovery of several subtle security problems in
security patterns instantiation involving multiple alternative flows behaviors.
Another case study is given in Section 4 to show the verification of security
pattern integration involving multiple alternative flows behaviors. The last
two sections cover related work and conclusions.

2 Related Work

Existing work on security patterns is typically on the introduction of new
security patterns or the applications of security patterns in different systems.



Verification of the Instantiation and Integration 525

Steel et al. presented a comprehensive study on the reoccurred security
patterns in Java programming [27]. They recorded the intent, motivation,
problem context, structures and behaviors of each security pattern. Microsoft
published design solutions for problems reoccurred in web security appli-
cations [33]. Those security patterns concentrate on authentication, secure
message transmission and access control in web service. Rosado et al. pro-
vided a template to describe security patterns and a framework to compare
them in [22]. Several security patterns are presented in their template. They
also measure the security degree of the patterns and indicate the level that
each pattern fulfills the properties and attributes common to all security
patterns. No discussion of the security pattern integration is presented. To
develop secure and efficient distributed systems, Yoshioka et al. [25] propose
a method that uses patterns with security taken into account. They model
the performance data associated with each pattern and provide the selection
procedures for the detailed specifications. Their approach includes a pattern
library that consists of several security patterns for inter-company coordi-
nation systems. Their patterns are applied in the environmentally conscious
product design support system. However, their work does not formally ana-
lyze the integration of the security patterns. Yoshioka et al. [26] introduce
29 security patterns and classify them into either structural or procedural
patterns. Structural patterns can be implemented in an application whereas
procedural patterns aim at improving the development process of security-
critical software systems. Brown et al. [3] propose authenticator, a security
pattern, to describe a general mechanism for providing identification and
authentication to a server from a client. While these works introduce a
number of security patterns, the analysis of security patterns instantiation and
integration is not in their scopes.

A study on model checking security pattern has been presented by Dong
[5–7]. It introduces a way to specify security pattern composition in CCS and
practice automatic verification of the sequence diagram against properties
in GCTL scripts by model checking. Although their specification methods
also use CCS as the specification algebra for sequence diagrams, it lacks the
following innovation aspects that are presented in this paper: (1) It does not
consider the verification of alternative flows. In most conditions, the behavior
of security pattern involves making choice according to certain constraints.
For example, we need to check password (constraints) in Authentication
Broker pattern, and balance amount in Safe Withdraw pattern. In those cases,
security patterns will behave in one way if constraints are satisfied and
another way otherwise. Making choice is a critical behaviour of security
pattern, but in [5, 8], it lacks specification and verification of it. In this



526 Tu Peng et al.

paper, we provide specification rules and verification rules (Theorem 4,
Theorem 7, Lemma 8) for choice-making behaviour (alternative flows).
Moreover, we provide a way of setting choices to our best interests. (2) It
does not formally define design pattern instantiation and integration, while
we present formal definitions for design pattern instantiation and integration.
(3) It does not show communicating messages, that is, the communicating
messages are specified as internal messages that do not subject to model
checking. For example, we cannot check the existence of a within P =
(a|′a)\{a}, because P shows no action that can be observed (P has an empty
set of traces). In this paper, we use a different approach. By introducing
communicating channels, we are able to check the existence of a within P =
(a.Channela|′Channela)\{Channela}. Communicating messages contribute
to a large portion of the message invocations of security pattern behaviours,
thus important for the verification.

A way of model checking for UML sequence diagram (with alternative
flows) by SPIN is presented in [18]. The destination and source of mes-
sages (send/receive events) is modeled as send and receive operations of
PROMELA elements. A translator software is implemented to automatically
generate system specification [18]. The verification is conducted by model
checking: the PROMELA [13] scripts and LTL (Linear Temporal Logic)
properties are sent to model checker SPIN [13], which then tells whether the
properties are satisfied. The alternative flows are randomly chosen by SPIN
before execution of the PROMELA script. It does not provide techniques
to control the values of the constraint conditions. Meanwhile, analysis of
security patterns instantiation and integration is not mentioned.

A UML profile (UMLSec) on security has been introduced in [16],
which can help to model security-related concerns in UML diagrams. For-
mal semantics have also been provided for a subset of each kind of UML
diagrams. In particular, the behavioral semantics of a simplified fragment of
UML sequence diagram was presented. However, it cannot specify alternative
flows, which is common in a sequence diagram. Model checking has been
applied to check the security properties, such as secrecy, integrity, authen-
ticity, and refinement, against the UMLSec specifications. The application
of a security pattern was also discussed. In contrast, our work focuses on
security pattern compositions rather than just the application of a single
security pattern. In addition, we analyze the compositions of security patterns
with model checking techniques, instead of general security properties check-
ing in UMLSec specifications. Furthermore, our behavioral semantics of



Verification of the Instantiation and Integration 527

sequence diagram can specify alternative flows. It can only specify sequential
behaviors.

Many works have addressed the necessity of formal verification on
sequence diagrams [16, 28, 29]. Other works have provided tools for veri-
fying UML diagrams [11, 16]. The semantics of UML sequence diagrams
has been studied by Storrle [24]. The interaction traces of UML sequence
diagrams are defined as a sequence of event occurrences, which are triples
of Lifelines, Actions, and Timepoints. The alternative flows are defined as
the union of two interaction fragments. Storrle’s work focuses on formaliz-
ing the semantics of sequence diagrams using set theory rigorously. Other
researchers also investigate the specification of UML sequence diagrams.
A sequence diagram has been specified as an Event Deterministic Finite
Automat (EDFA) [30], which captures the state transitions of the objects
interacting in the sequence diagram. In addition, automatic verification of
sequence diagrams by model checking for EDFA is provided. B method [1]
has been used for specification and verification of UML sequence diagrams
in industry. It uses predicate logic, preconditions and postconditions to define
the properties respected by method invocations in a sequence diagram.

The structural and behavioral aspects of design patterns in terms of
responsibilities and rewards are formally specified in [Soundarajan and Hall-
strom 2004]. Following the ideas of the design by contract approach in [21],
the structural and behavioral specifications are captured as responsibilities,
whereas the rewards capture the benefits of applying the pattern with the
expected behavior in a system. The composition of two design patterns based
on a specification language (DisCo) has been discussed in [19]. The behavior
of each pattern is formalized as a layer in DisCo. The composition of design
patterns is defined as a refinement on the layers of specifications. Formal
specification of design patterns and their composition based on the Language
of Temporal Ordering Specification (LOTOS) is proposed in [23]. In par-
ticular, the behavioral aspect of the Command and Composite patterns and
their combination is specified. Property patterns [9] have been proposed to
provide taxonomy of properties written in LTL, CTL and QRE. Each property
pattern is defined in terms of its scope, which is the extent of the program
execution over which the pattern should hold. Property patterns define general
properties whereas we focus on security-related properties. This research is
intended for formal specification and verification of general design patterns
behaviors and structures. It leads us to the research on verification of security
patterns instantiation and integration.



528 Tu Peng et al.

3 Security Analysis

Many security patterns have been identified to solve the recurring security
problems, such as authentication, authorization, confidentiality and integrity
during communication. Unsecured communications are often exposed to
eavesdropping, spoofing, sniffer, and replay attacks. In detail, confiden-
tiality means that communication cannot be eavesdropped by a malicious
third party. The replay attacks copy the legitimate transactions and resend
them. The sniffer attacks just capture sensitive information for later use.
Integrity means that changing, copying, or resending legitimate transactions
cannot cheat legal parties in the communication. Integrity is essential to
exclude man-in-the-middle attacks that harm not only the unsecured network
but also VPN where data is exposed at the end points. This exposed data is
subject to disclosure, modification, or duplication. Some of these attacks are
easy to be carried out, even for novices. As a consequence, these attacks may
result in huge losses for businesses that need to communicate sensitive data.

In this section, we introduce a motivating example followed by model
checking techniques. We then introduce our approach to modeling the behav-
ior of a security pattern, which may then be checked by a model checker.
We describe a general way to specify the instantiation and integration of
security patterns in CCS and prove the correctness of the transformation from
sequence diagrams of a security pattern to our specification. In particular, we
describe the way to specify security patterns with alternative flows guarded
by constraint conditions.

3.1 Motivating Example

Software verification is indispensable in the development of reliable software.
By proving certain design properties (e.g. safety and liveness properties), the
correctness of a design model can be assured. Otherwise, design mistakes
will be carried into the programming stage, and cause software malfunctions
that may hardly be discovered by testing. It is cost effective to prevent coding
problems in advance than to discover them later by testing. Although we can
translate diagrams into code and make proofs in terms of code correctness,
it is often slower and more expensive to do so. As a motivating example,
a simple sequence diagram depicting the behaviors of a security pattern
is shown in Figure 1. In this sequence diagram, a directed edge depicts a
method invocation. Expected call sequences are also shown. A call sequence
depicts an expected design property, and it is important to ensure the sequence
diagram satisfying it. If a call sequence can be matched with the exact order
in all branches of the sequence diagram, we say it is satisfied in all paths. If a



Verification of the Instantiation and Integration 529

Figure 1 Motivating example.

call sequence can be matched with the exact order in at least one branch, we
say it is satisfied in at least one path. If a call sequence has no exact match,
we say it is missed. In our approach, we will propose a formal model for a
sequence diagram and the expected properties. In addition, we will propose
searching algorithms suitable for property verification by model checking.

3.2 Model Checking

Model checking is a widely used technique for automatic verification of
software. A model checker automatically verifies the consistency between
system and properties. System and properties need to be specified in certain
languages required by a chosen model checker. In order to analyze the
integration of security design patterns, we apply model checking techniques.
In our case, we assume a logic model representing the security patterns and
their integration, as well as a logic formula representing a property to hold.
In order to determine whether a pattern-based system satisfies the properties,
it is checked whether the formula holds in the logic model of security pattern
integration or instantiation.

There are several model checking tools, such as SMV [18], SPIN [15],
XMC [21], and CWB-NC [2]. In this paper, we will concentrate on the
CWB-NC model checker since we can use it to specify security patterns
in process algebra and analyze their instantiation and integration by model
checking. CWB-NC requires the user to specify the systems in CCS and the
temporal properties with GCTL [20] (extension of computational tree logic,



530 Tu Peng et al.

CTL [10]). It will then check whether the system satisfies the properties. With
model checking, we are able to verify the security pattern instantiation and
instantiation.

The syntax of CCS is as follows: a CCS formula F defines a process in
communication. F is an expression of actions joined with CCS operators.
An action name is a user-defined id, which represents a system activity.
The prime symbol “′”, which is placed in front of an action name, denotes that
this action is an output of the system. The operations between actions include
sequential composition “.”, non-deterministic choice “+”, parallel (concur-
rent) composition “|”, and restriction “\”. A restriction is used together with
the parallel composition, to denote that the messages being restricted are
internal messages. For example, P = (P1|P2)\L defines a process P that is
the parallel composition of process P1, P2. L defines a set of channels used by
P1 and P2. L actually forces a synchronization between parallel composition
P1 and P2. To gain better understanding, suppose P1 = a.b, P2 = ′b.c, L =
{b} where a, b, c are actions. Then (P1|P2)\L = a.c.

3.3 Approach Overview

The behavior of a security pattern is normally described using a UML
sequence diagram. By modeling sequence diagram in CCS specification, we
obtain the formal model of security pattern. Multiple formal models can
be integrated using CCS concurrent composition, which naturally models
security pattern in integration.

Figure 2 illustrates our approach to analyze security pattern instanti-
ation and integration. The generic security pattern specifications capture

Figure 2 Overview of our approach.



Verification of the Instantiation and Integration 531

good design practice in a domain-independent way. These declarative rep-
resentations, which constitute the models of the security patterns, are then
instantiated into concrete domain-specific representations. In this way, secu-
rity design can be reused practically. In addition, the instances of security
patterns can be composed to form an integration of security patterns. To verify
the integration or instantiation of security patterns, one needs to transform
the integration or instance to a model M of CCS, which is then submitted to
a model checker. We use the model checker to check M against the property
specification P. The model checker outputs either true if M satisfies P, or a
counterexample if it does not.

The sequence diagram of security pattern is specified as the concurrent
composition of the participating objects interacting with each other. Each
object in the security pattern is modeled as a CCS process that inputs some
messages to the input channel, performs actions, and outputs some messages
to the output channel. A message represents a method/operation. An object
can send messages out to or receive messages from other objects. The mes-
sage that is being sent to the receiving object represents an operation/method
that the receiving object’s class implements. For example, Object1 receives
message B and sends message D, E, and F to Object2 in Figure 1. In this case,
CCS specifications of Object1 and Object2 are: Object1:=B.′ChD. ′ChE.ChF
and Object2:=ChD.D.ChE.E.ChF.F. The CCS specifications of them are:
Object1|Object2=B.′ChD.′ChE.ChF|ChD.D.ChE.E.ChF.F=B.D.E.F, which
is obtained by applying Milner’s Expansion Law [22]. Furthermore, we
can obtain the CCS specifications of the sequence diagram in Figure 1 as
Object1|Object2|Object3|Object4|Object5, which can be model checked.

3.4 Formal Specifications

The following rules are introduced to model a basic UML sequence diagram
(without alternative flows) with CCS specifications. Intuitively, we model a
UML object as a CCS process. The message passing (function invocation)
between objects are modeled as CCS concurrent composition. We will then
propose a way of modeling complex UML sequence diagram with alternative
flows. We will also prove the correctness of the CCS specifications.

Definition 1 (CCS Specification Rules). Let X be the sequence diagram, C
be the object set of X, and M be the message set of C. The rules to transform
S to CCS specifications (CCS(X)) are:

(1) For each object i ∈ C only consists of sequential control flow (e.g.,
no alternative flows and loops), its CCS specification (CCS(i)) is the
sequential composition of its message invocations by CCS operation



532 Tu Peng et al.

‘.’, in order of their temporal occurrences. That is, CCS(i) = m1.m2.
. . . . mk. Object i can carry its class name if needed, i.e., i = class-
name objectname. Message m can carry its implementation class name
if needed, i.e., m = classname messagename.

(2) An input message is specified as a sequential composition of a Channel
name and the message name. Suppose object i receives message m, then
CCS(i) = CHm.m, where CHm is the channel of receiving m, CCS(i)
represents that class of i implements method m.

(3) An output message is the Channel name prefixed with ‘′’. Suppose class i
sends out message m, then CCS(i) = ′CHm. CCS(i) represents an object
that i calls method m.

(4) For each m ∈ M, m = m1.m2, where m1 is message name and m2 is
its signature.

(5) For a class i ∈ C with alternative flows, its CCS specification is the
alternative composition of its sequential flows.

(6) The specification of S is given by CCS(X) =
∏
i∈C CCS(i)\L, where

L is the set of all message channels, CCS(i) is the CCS specifica-
tion of object i.

∏
i∈C CCS(i) = CCS(c1)j . . . jCCS(i)j . . . is the

concurrent composition of CCS(i), i ∈ C.
Definition 1 provides an algorithm to automatically specify complicate

behaviors of security patterns consisting of multiple objects and multiple
control flows, which is hard to specify by human hands otherwise. To prove
that CCS(X) is semantically equivalent to the sequence diagrams which
represent the behaviors of the security pattern, we continue to show that the
synchronous messages, asynchronous messages, and alternative flows of a
sequence diagram are faithfully transformed by Definition 1.

3.5 Synchronous and Asynchronous Messages Specification

In synchronous message passing scenario, the Message Caller (object a)
sends out a synchronous message and waits for the return before continuing,
which is shown in Figure 3 on the left. We use two messages, m and r, to
represent the synchronous message and the corresponding return message,
respectively. We use message p1 to represent any action that happens before
the synchronous message and message p2 to represent any action happens
after the return message. Message q represents any action performed by
object b before returning message r. While this synchronous property can
be observed intuitively in the sequence diagram, it is not clear whether the
derived CCS preserves it. That is, whether CCS(X) semantically indicates



Verification of the Instantiation and Integration 533

Figure 3 Synchronous message and asynchronous message.

the synchronous property that action p2 can only be invoked immediately
after receiving r.

Lemma 2 Let Syn be the sequence diagram containing object a (message
caller) and object b (message receiver). Let m be the synchronous message
from a to b. Let r be the return message. According to Definition 1, the
specification of sequence diagram Syn is CCS(Syn) = P(a)|P(b)\L, where
P(a) = p1.′CHm.CHr.r.p2, P(b) = CHm.m. q.′CHr, and L = {CHm, CHr}. It
is provable that CCS(Syn)

α−→ r.p2, which semantically indicates that p2 can
only be invoked immediately after receiving r (synchronous property).

Proof. CCS(Syn) = p1. ′CHm.CHr.r.p2|CHm.m.q.′CHr\{CHm, CHr}.
According to the Milner’s Expansion Law, p1 is not restricted by L. Thus,

it can be taken out of the concurrent operation. Hence we have

CCS(Syn) = p1.(′CHm.CHr.r.p2|CHm.m.q.′CHr)\{CHm, CHr}.

Based on Expansion Law, ′CHm and CHm communicate with each other
and can be merged to t, we have

CCS(Syn) = p1.t. (CHr.r.p2|m.q.′CHr)\{CHm, CHr}.

Since m and q are not restricted by L, it can be taken out of the concurrent
operation. Hence we have

CCS(Syn) = p1.t.m.q.(CHr.r.p2|′CHr)\{CHm, CHr}.

Based on Expansion Law, ′CHr and CHr communicate with each other
and can be merged to t, we have

CCS(Syn) = p1.t.m.q.t.(r.p2)\L.

Since r and p2 are not in L, we omit L

CCS(Syn) = p1.t.m.q.t.r.p2.



534 Tu Peng et al.

That is CCS(Syn)
α−→ r.p2, where α = p1.t.m.q.t.

That completes the proof. �

Different from a synchronous message, a message is asynchronous when
the Message Caller can send or receive other messages without waiting for
the return message. In this situation, asynchronous property means that object
a can send message p2 right after sending out message m. Message q and
message p2 may be invoked in any order. It may be possible for p2 to happen
before q, and also possible for q to happen before p2. In other words, the
asynchronous property allows either order of their occurrences. We have
proved that CCS(Asyn) semantically indicates the asynchronous property.

Lemma 3 Let Asyn be the sequence diagram containing object a (message
caller) and object b (message receiver) as in Figure 3 on the right. Let
m be the asynchronous message from a to b. According to Definition 1,
the specification of sequence diagram is CCS(Asyn) = P(a)|P(b)\L, where
P(a) = p1.′CHm.p2, P(b) = CHm.m.q, and L = {CHm, CHr}. It is provable
that CCS(Asyn) −→ p2.q + q.p2, which semantically indicates that action
p2 and q can happen in any order (asynchronous property).

Proof. It is similar to previous proof. �

3.6 Alternative Flows Specification

The behaviors of most security patterns include alternative flows that desig-
nate a mutually exclusive choice between two or more message sequences. In
order to model check behaviors of security patterns with alternative flows, we
need to model sequence diagrams with alternative flows in CCS. Sequence
diagram Xalt with alternative flows is shown in Figure 4, where message
a will be sent by Object1 if the condition is satisfied. Otherwise, message
b will be sent. We will not consider the runtime value of the condition. In
other words, our focus is on specifying control flows statically. The following
theorem specifies sequence diagram with alternative flows in CCS. It also
proves the CCS specifications semantically indicate the alternative behaviors
of the sequence diagram with alternative flows.

Theorem 4 Let CCS(Xalt) be the specification of sequence diagram Xalt
with alternative flows: if [condition] of Object1 is true, then message a is
sent; if the condition is not true, then message b is sent. Action A1 and action
B1 present actions before and after the alternative flow segment of Object1.
Action A2 and action B2 present actions before and after the alternative flow



Verification of the Instantiation and Integration 535

Figure 4 Alternative flows.

segment of Object2. Then

CCS(Xalt) = A1.(condTRUE. ′CHa + condFALSE.′CHb).B1|
A2.(CHa.a + CHb.b).B2)\{CHa, CHb}.

It is provable that CCS(Xalt) = CCS(X1) + CCS(X2), which seman-
tically indicates the alternative flows property: if the constraint is satisfied,
CCS(Xalt) behaves as sequence diagram X1. If not, CCS(Xalt) behaves as
sequence diagram X2.

Proof. Let L = {CHa, CHb}. Distributing operator ‘+’ out of ‘.’, we have:

CCS(Xalt) = (A1.condTRUE. ′CHa.B1 + A1.condFALSE. ′CHb.B1)
|(A2.CHa.a.B2 + A2.CHb.b.B2)\L.

Distributing ‘+’ out of ‘|’, we have

CCS(Xalt) = T1 + T2 + T3 + T4,

where

T1 = (A1.condTRUE.′CHa.B1|A2.CHa.a.B2)\L,
T2 = (A1.condFALSE.′CHb.B1|A2.CHa.a.B2)\L,
T3 = (A1.condTRUE.′CHa.B1|A2.CHb.b.B2)\L,
T4 = (A1.condFALSE.′CHb.B1|A2.CHb.b.B2)\L.

By Milner’s Expansion Law, condTRUE, A1 and A2 are not restricted
and can be taken out of the concurrent operation:

T1 = (A1.condTRUE|A2).(′CHa.B1|CHa.a.B2)\L.



536 Tu Peng et al.

By Milner’s Expansion Law, ′CHa and CHa communicate each other and
can be merged to empty action t:

T1 = (A1.condTRUE|A2).t.(B1|a.B2).

By Definition 1,

CCS(X1) = (A1.condTRUE|A2).t.(B1|a.B2).

Hence

T1 = CCS(X1).

By Milner’s Expansion Law, A1, condFALSE, and A2 are not restricted
and can be taken out of the concurrent operation:

T2 = (A1.condFALSE|A2). (′CHb.B1|CHa.a.B2)\L.

Since ′CHb and CHa cannot communicate each other and are restricted,
the term ′CHb.B1|CHa.a.B2\L has no transitions, which is trace-equivalent
to stop action nil:

T2 = (A1.condFALSE|A2).nil.

By Milner’s Expansion Law, A1, condTRUE and A2 are not restricted
and can be taken out of the concurrent operation:

T3 = (A1.condTRUE|A2).(′CHa.B1|CHb.b.B2)\L
= (A1.condTRUE|A2).nil.

Similarly:

T4 = (A1.condFALSE|A2).t.(B1|b.B2).

By Definition 1,

CCS(X2) = (A1.condFALSE|A2).t.(B1|b.B2) = T4.

Since T1 includes all transitions of T2 we have T1 + T2 = T1. Since T4
includes all transitions of T3 we have T3 + T4 = T4. Therefore

CCS(Xalt) = T1 + T2 + T3 + T4 = T1 + T4 = CCS(X1) + CCS(X2).

That completes the proof. �



Verification of the Instantiation and Integration 537

Since CCS(Xalt) proposed by Theorem 4 is the system model of sequence
diagram Xalt, we can apply model checking on CCS(Xalt) to verify the
behaviors of any design pattern presented by Xalt. By adding condTRUE
and condFALSE as tag actions (actions not involved in the state transitions
of sequence diagram X) in the CCS model, we are able to verify system
properties when constraint condition is satisfied (by adding tag condTRUE
in the GCTL formula) or not satisfied (by adding tag condFALSE in the
GCTL formula). It is important to notice that we use CCS(Xalt) as the system
formula in model checking instead of CCS(X1) + CCS(X2) because of the
problem of formula length. If we simply specify the sequence diagram with
n alternative flows as

∑2n

i=1CCS(Xi), we will have a CCS specification
whose length is too long for a model checker. To be more specific, CCS(X1)
+ CCS(X2) is twice as long as CCS(Xalt) when sequence diagram has 1
alternative flow.

∑2n

i=1CCS(Xi) is 2n times as long as CCS(Xalt) when
sequence diagram has n alternative flows.

4 Security Patterns Instantiation Verification

To use a design pattern in a particular application, one needs to instantiate
it with the application domain information. This instantiation process may
change the generic names of the participating classes into those reflecting
the application. It may also change the number of the participating classes in
some prescribed way.

Definition 5 (Design Pattern Instantiation). Let X < C, R, M, N > be the
behavior description of a design pattern, where N is the namespace including
all the class names and method names. C is the set of classes in X with C ⊂
N. R = {(f, g, r)|f ∈ C, g ∈ C, r ∈ {inheritance, association}} denotes the
relationship of classes in C. M = {(m, s, e) |m ∈ N, s ∈ C, e ∈ C}, where
s is the caller class (class that starts the call), e is the called class (class that
implements the method called), and m is the method name. The instance of
X is given by X′ < C′, R′, M′, N′ >, where N′ is the namespace including all
the class names and method names of X′. C′ is the set of classes in X′ with
C ′ ⊂ N ′. M′={(m, s, e) |m∈N′, s ∈ C′, e ∈ C′}. There exists a many-to-one
instantiation mapping I from N′ to N (I ∈ N ′ ×N ) such that

(1) I(R′) ⊆ R. In other words, for any class relation (f, g, r) in R′, class
relation (I(f), I(g), I(r)) must be in R. This property ensures that the class
relations (inheritance, association) are maintained in the instantiation.



538 Tu Peng et al.

This property allows one class to have more corresponding classes in
the instance.

(2) I(M ′) ⊆ M. In other words, for any method invocation (m, s, e) in M′,
method invocation (I(m), I(s), e) must be in M. This property ensures
that the relation of the caller class and callee class in a method invocation
is maintained by the instantiation.

For example, Safe Withdraw pattern is introduced in IBM’s lectures on
UML basis of sequence diagram [32]. It allows the user to withdraw a certain
amount of cash not exceeding his/her deposit. The behavior of the pattern
starts at the top, with the bank object getting the check’s amount and the
account’s balance. At this point in the sequence, the alternative combination
fragment takes over. Because of the guard “[balance >= amount]”, if the
account’s balance is greater than or equal to the amount, then the sequence
continues with the bank object sending the addDebit message to the account
object that consecutively calls reduceBalance. Otherwise, if the above condi-
tion does not hold, the sequence proceeds with the bank object sending the
chargeFee message to the account object, and the returnCheck message to
itself. The second sequence is called when the balance is less than the amount
because of the “[else]” guard.

The Safe Withdraw pattern is formally described by SafeWithdraw < C,
R, M, N >, where C = {bank, theUser, account}, R = {(bank, theUser, asso-
ciation), (bank, account, association)}, M = {(getBalance, bank, account),
(addDebit, bank, account),. . . }, N = {bank, theUser, account, getBalance,
addDebit, . . .}. In a practical situation, the user may start multiple withdraw
actions. The implementation of Safe Withdraw pattern (an instance) requires
adding more objects to represent multiple withdraw actions. In the instance,
the user can start with two withdraw actions that are represented by savingA
and savingB. The instance is formally described by SafeWithdraw′ < C′, R′,
M′, N′ >, where C′ = {bank, theUser, savingA, savingB}, R′ = {(bank,
theUser, association), (bank, SavingA, association), (bank, SavingB, asso-
ciation)}, M′ = {(getBalance, bank, savingA), (addDebit, bank, savingA),
(getBalance, bank, savingB), (addDebit, bank, savingB) . . . },N′ = {bank,
theUser, savingA, savingB, getBalance, addDebit, . . .}. The instantiation
mapping I ∈ N ′ × N is I = {(bank, bank), (theUser, theUser), (savingA,
account), (savingB, account), . . . }.

The instance is shown in Figure 5. In Safe Withdraw pattern, the most
important concern for the bank is to make sure that only when the constraint
condition is satisfied (balance > amount), the cash can be withdrawn and



Verification of the Instantiation and Integration 539

Figure 5 Problematic VS corrected sequence diagram.

the account balance is reduced accordingly. The violation of this property
(reduceBalance is not immediately called after addDebit) implies that the user
can withdraw cash exceeding his deposit amount that would cause financial
loss to the bank. This property satisfied by Safe Withdraw pattern can be
described by GCTL:

Prop designgoal = AG ({addDebit}→X{reduceBalance}) ∧
AG({condTRUE}→F{reduceBalance}).

The following are the CCS specifications of the sequence diagram of the
Safe Withdraw pattern’s instance obtain by Theorem 4 and Definition 1 (they
are automatically produced by the algorithm programmed in the Appendix):

CCS bank=′CHgetAmount.CHamount.amount.′CHgetBalanceA.CHbalanceA.
balanceA.′CHgetBalanceB.CHbalanceB.balanceB.(condATRUE.
′CHaddDebitA+condAFALSE.′CHchargeFeeA.returnCheckA).(condATRUE.
′CHaddDebitA+condAFALSE.′CHchargeFeeA.returnCheckA).nil,
CCS theuser=CHgetAmount.getAmount.′CHamount.nil,
CCS savingA=CHgetBalanceA.getBalanceA.′CHbalanceA.(CHaddDebitA.

addDebitA.
reduceBalanceA+CHchargeFeeA.chargeFeeA).nil,
CCS savingB=CHgetBalanceB.getBalanceB.′CHbalanceB.(CHaddDebitB.

addDebitB.
reduceBalanceB+CHchargeFeeB. chargeFeeB).nil,



540 Tu Peng et al.

CCS SD=(CCS bank|CCS savingA|CCS savingB|CCS theuser)\
{CHgetAmount,

CHamount,CHgetBalanceA,CHBalanceA,CHaddDebitA,CHchargeFeeA,
CHgetBalanceB,CHBalanceB,CHaddDebitB,CHchargeFeeB}
(bold fonts represent alternative flows).

In each of the above CCS expressions, the left part of the equation is a
CCS process name; the right part is its definition. Each label on the right part
is a message. A message prefixed with ′ is an outgoing message. Messages are
joined by CCS operators ‘.’ or ‘+’. Messages joined by sequential operator
‘.’ (e.g. x.y) defines consequentially actions (message x is followed imme-
diately by message y). Messages joined by choice operator ‘+’ (e.g. x+y)
defines non-deterministic choices (either message x or message y). Each label
(without ‘CH’) on the right part is a CCS message representing a message in
a sequence diagram. Each label with ‘CH’ is a CCS message representing a
channel used to pass that message. CH prefixed with ′ represents sending out
the message. For example, ′CHbalanceB is a channel that sends out message
balanceB.

In the instance, the safety property design goal is instantiated into two
properties:

prop designgoalA = AG ({addDebitA}→X{reduceBalanceA }) ∧ AG
({condTRUEA}→F{reduceBalanceA}),

prop designgoalB = AG ({addDebitB}→X{reduceBalanceB }) ∧ AG
({condTRUEB}→F{reduceBalanceB}).

The verification shows that design goal B is satisfied. Design goal A
is, however, not satisfied. In other words, if saving account A’s constraint
condition is satisfied and the user processes to withdraw cash, the balance of
savings account A is not immediately reduced after the cash is withdrawn by
the user. If the transaction system is programmed according to the instance,
the user is able to perform a malicious action before message reduceBalance,
e.g., the user could simply terminate the bank transaction and leave the
withdraw amount not reduced from the savings account. This can bring great
financial loss to the bank.

After studying the unsatisfied property and the sequence diagram for the
bank savings account, we identify the problem: the message addDebitA is not
synchronized. In a Safety Withdraw Pattern instance, although the invocation
of reduceBalanceA is immediately after addDebitA in a generic pattern, the
invocation of reducebalanceA may be delayed by the behaviors of object



Verification of the Instantiation and Integration 541

saving, which is shown in Figure 5 on the left. An attacker could exploit this
to withdraw money exceeding his saving amount. To do this, the attacker
initiates two withdraw actions (savingA and savingB) at almost the same
time. Immediate after he got his cash from savingA, e.g., addDebitA is called,
he asks for another withdrawal action. Since reducebalanceA has not been
called, his withdraw action (of savingB) will be granted because the guard
condition [Balance > Amount] is satisfied for savingB.

A correction is made by adding synchronizing message replyA immedi-
ately after the invocation of reduceBalanceA and adding replyB immediately
after reduceBalanceB respectively. The correction is shown in Figure 5 on the
right.

After the correction, the verification results show that both Design GoalA
and Design GoalB are satisfied. This case study has demonstrated how model
checking is performed to detect problems in security pattern instantiation,
which can be difficult to discover by observation.

5 Security Patterns Integration Verification

5.1 Web Security Patterns

Security patterns have been adopted in the software industry to reuse
expert design experience on solving security problems. Each security pattern
presents a good solution to a security problem. In particular, web security
patterns present solutions to reoccurred security problems in authentication,
authorization and assuring confidentiality among network interactions. One
particular type of authorization is introduced in the following context. The
client needs to access one or more Web services that are distributed across
a network. The Web services are designed so that access to additional
resources (such as a database or other Web services) is encapsulated in
the business logic of the Web service. The problem is that these resources
must be protected against the unauthorized access. In other words, we must
ensure that the client accessing the Web services cannot access the additional
Web resources directly. Trusted Subsystem pattern is the solution to this
problem.

As illustrated in Figure 6 on the left, the process of Trusted Subsys-
tem is described in the following steps: (1) The client submits a request
with client credentials to the trusted subsystem. (2) The trusted subsystem
authenticates the user. Authentication can be direct or brokered. (3) The trust
subsystem sends an access message accompanied with its credentials to the



542 Tu Peng et al.

Figure 6 Trusted subsystem pattern and brokered authentication pattern.

remote resources. (4) The resource authenticates and authorizes the trusted
subsystem. It then processes the request and issues a response to the trusted
subsystem. (5) The trusted subsystem processes the response and issues its
own response to the client.

The resource party must be able to verify that the mediate caller is a
trusted subsystem and not just any system process. Requiring this type of
verification enhances the security by making it more difficult for attackers to
simulate a trusted subsystem and perform a man-in-the-middle attack. Several
approaches can be used to implement trusted subsystem verification, such as
the direct and brokered authentication [34]. In the direct authentication, the
client directly proves its identity to the server. In the brokered authentication,
both client and server trust a third party that handles the authentication.
There are several protocols for brokered authentication, such as X.509 PKI
and Kerberos [34]. Brokered Authentication pattern provides a flexible solu-
tion for exchanging one type of security token for another to accomplish
a variety of goals in a Web service environment, such as authentication,
authorization, and exchanging session keys. The solution is not dependent
on any one mechanism, such as the Kerberos protocol or X.509 to secure
messages. This makes it easier to enable different authentication protocols to
be interchangeable.

The following steps describe the process of Brokered Authentication
depicted in Figure 6 on the right. (1) The client submits an authentication
request to the authentication broker. (2) The authentication broker contacts
the identity store to validate the client’s credentials. (3) The authentication
broker responds to the client, if the authentication is successful, it issues
a security token. The client can use the token to authenticate requests to
the service throughout the lifetime of the token. (4) Request message with



Verification of the Instantiation and Integration 543

the token is sent to the service. (5) The service authenticates the request by
validating the token. (6) The service returns the response to the client.

5.2 Integration of Security Patterns

A security pattern may be integrated with other patterns to solve multiple
security problems in a software application. The integration of two security
patterns describes the particular ways that the two groups of classes are com-
bined, which may include stringing (connecting them by some relationships)
or overlapping (overlapping them at some classes).

Definition 6 (Design Pattern Integration). Let X1 < C1, R1, M1, N1 > and
X2< C2, R2, M2, N2> be two design patterns. Their integration XT< C, R,
M, N > is obtained by a many-to-one integration mapping T from (N1∪N2)
to N with the following properties:

(1) CT = T (C1) ∪ T (C2) is the set of classes in the integration. In
overlapping integration, T (C1) ∩ T (C2) is a non-empty set. A class
can carry its pattern name if needed, e.g., each class in C1 is written
as X1 classname.

(2) RT = T (R1) ∪ T (R2) is the set of class relations of the integration.
That is, any class relation in X1 and X2 is preserved in X. For example,
let (A,B,r) ∈ R1, then (T(A),T(B), r) ∈ RT. Similarly, let (C, D, r2) ∈
R2, then (T(C),T(D),r2) ∈ RT. This property is especially meaningful
for overlapped classes. Suppose B and C are overlapped classes, let
Bc=T(B)=T(C). We have (T(A),Bc,r) ∈ RT and (Bc,T(D), r2) ∈ RT.
This means class Bc is related to T(A) and T(D), and thus forms a
composition.

(3) MT = T (M1)
⋃
T (M2) is the set of methods invocations of the integra-

tion. That is, the caller class and called class of any method invocation
in X1 and X2 are preserved in XT. For example, let (m, s1, e1) ∈ R1,
then (T(m),T(s1), T(e1)) ∈ RT.

An application requires the integration of security patterns is presented
[33]: Global Bank provides a customer account management application that
allows client to access a centralized account management database through
a Web service. The client must authenticate with the Web service to use
the account management database. In this scenario, the Web service acts
as a trusted subsystem by using its own credentials to access the account
management database. The client application cannot log in to the account
management database because this violates the security policy and bypasses



544 Tu Peng et al.

Figure 7 Patterns and their integration.

the business logic. Web service needs to authenticate client and the database
needs to authenticate Web service. The authentication protocols used by
Web service and database can be different and changeable. Hence the appli-
cation requires the integration of Trusted Subsystem pattern and Brokered
Authentication pattern, which is illustrated in Figure 7.

To overlap the classes in Brokered Authentication pattern and Trusted
Subsystem, let the integration mapping be T = {(X1 Service, WebService),
(X2 WebService, WebService), (X1 Client, Client), (X2 Client, Client)}
and we obtain the following integration: XT < C, R, M, N >, where
CT = {X509Broker, Client, CertificateStore, WebService, Database}, RT =
{(Database, X509Broker, association), (Database, WebService, association),
WebService, Client, association), (WebService, X509Broker, association)},
MT = {(requestCC, Client, WebServce), (authenticateCC, WebService,
X509Broker),. . . }.

5.3 Security Analysis by Model Checking Alternative flows

Security patterns integration involves pattern instantiation and class overlap-
ping. Integration’s behaviors become complicated because alternative flows
and more classes are introduced. Hence it is important to ensure that the



Verification of the Instantiation and Integration 545

access control has been correctly implemented by the integration. The access
control properties can be presented as: if the client fails to provide correct
certification or the Web service fails to provide correct certification, the
database must not pass information to the client. To apply model checking
techniques to verify the access control property, we need the system model
which describes the state transitions of the integration. We can obtain CCS
specifications for integration by Theorem 4. However, the Theorem 4 CCS
specifications represent all the transitions of the alternative flow system. If
a system has n alternative flows, the Theorem 4 CCS model would have 2n
state transition branches, each of which corresponds to an alternative flow.
2n state transitions can be exhausted by model checker, which is called state
exposition problem. In order to avoid state explosion, we propose the follow-
ing theorem that provides concise CCS specifications for alternative flows
by introducing an extra expression (not appear explicitly in the sequence
diagram) to set the value of the constraint condition.

Theorem 7 Suppose pattern Xalt contains alternative flows: if [condition] of
Obj1 is true, then message a is sent; otherwise message b is sent. action1
and action2 present actions before and after the alternative flow segment. The
CCS specification of Xalt is

CCS(Xalt)=condvalue|CCS(Obj1)| CCS(Obj2)\L1∪L2, where
CCS(Obj1)=action1.(TRUE.′CHa+FALSE.′CHb).action2 (CCS of Obj1),
CCS(Obj2)=CHa.a.CHb.b (CCS of Obj2),
condvalue ∈ {′TURE,′FALSE} (process for setting value of the constraint

condition),
L1={TRUE, FALSE} (set of condition value passing channels),
L2={CHa, CHb} (set of internal communicating channels).

It is provable that

CCS(Xalt)
t−→ action1.(a.action2+action2.a) when condvalue=TRUE,

CCS(Xalt)
t−→ action1.(b.action2+action2.b) when condvalue=FALSE,

which semantically indicate the alternative flows property: if constraint is
satisfied, a is activated asynchronously with action2, if constraint is not
satisfied, b is activated asynchronously with action2.

By using condition value expression condvalue to set constraint condition
values, we reduce the number of choice-making branches of CCS(Xalt).
In other words, while CCS(Xalt) in Theorem 4 models all possible state
transition branches in the sequence diagram, CCS(Xalt) in Theorem 7 models



546 Tu Peng et al.

only state transition branches corresponding to the constraint condition values
set by condvalue. Condition value expression condvalue allows us to specify
a system in some certain conditions that we are interested in.

Lemma 8 Suppose sequence diagram X has n alternative flows with con-
straint conditions cond1,cond2,. . . , condn, CCS expression of the condition is

condvalue = condvalue1|. . . | condvaluen, where condvaluei∈ {′condiTURE,
′condiFALSE}.
The condition value channels L = ∪ni=1Si, where Si={condiTURE, condi

FALSE}. �

By applying Lemma 8, the CCS specification for object Database is
obtained:

PROC DATABASE=CHaccessTSC.accessTSC.′CHauthTSC.CHdbCert.
dbCert.dbValidate.CHdbvTRUE.′CHinfo.nil.

The specifications for object WebService, Client, X509 Broker, Certifi-
cate Store are:

PROC WSERVICE=CHrequestCC.requestCC.′CHauthCC.CHserviceR.
serviceR.wsValidate.CHwsvTRUE.CHinfo.info.′CHinfo.nil.
PROC CLIENT=′CHrequestCC.CHclientCert.clientCert.′CHserviceR.

CHinfo.info.nil.
PROC XBKR=CHauthCC.authCC.CHccredits.CHccResult.ccResult.

CHccTRUE.
′CHclientCert.CHauthTSC.authTSC. ′CHwscredits.CHwsResult.
wsResult.CHwsTRUE.′CHwsCert.nil.
PROC CSTORE=CHccredits.ccredits.′CHccResult.CHwscredits.wscredits.
′CHwsresult.nil.

The underlined channel names refer to the channels used to accept the
constraint values of the alternative flows. Depends on the system model that
we need to verify, we may select constraint condition values. In this case, we
are interested in how the system behaves:

If both the Client and Web Server succeed in obtaining the certificates
from X509 broker, the CCS specification for process condition value is

PROC CONDVALUE1=′CHwsvTRUE|′CHccTRUE|′CHwsTRUE|
′CHdbvTRUE.

If the Client fails to get the certificate from the X509 Broker, the CCS
specification for process condition value is



Verification of the Instantiation and Integration 547

PROC CONDVALUE2=′CHwsvTRUE|′CHccFALSE|′CHwsTRUE|
′CHdbvTRUE.

If the Web Server fails to get the certificate from the X509 Broker, the
CCS specification for process condition value is

PROC CONDVALUE3=′CHwsvFALSE|′CHccTRUE|′CHwsTRUE|
′CHdbvTRUE.

Let L1 be the set of messages channels and L2 be the set of constrain
values, the CCS specification for the Integration is as

PROC SYS1= (DATABASE|WSERVICE|CLIENT|XBKR|CSTORE|
CONDVALUE1)\L1∪L2,

PROC SYS2= (DATABASE|WSERVICE|CLIENT|XBKR|CSTORE|
CONDVALUE2)\L1∪L2,

PROC SYS3= (DATABASE|WSERVICE|CLIENT|XBKR|CSTORE|
CONDVALUE3)\L1∪L2.

where

L1={CHaccessTSC, CHauthTSC, CHdbCert, CHinfo, CHrequestCC, CHau-
thCC, CHserviceR, CHclientCert, CHauthCC, CHccredits, CHccResult,
CHwscredits, CHwsResult, CHwsCert, CHccResult, CHwscredits},
L2={CHwsvTRUE, CHwsvFALSE, CHccTRUE, CHccFALSE, CHw-
sTRUE, CHwsFALSE, CHdbvTRUE, CHdbvFALSE}.

The security property that we need to check against system model SYS1
is declared as SYS1|- EF {information}, which means that there exists a path
of the SYS1 transitions where information will be sent finally to the Client.
The security property that we need to check against system model SYS2 is
declared as SYS2 |-not EF {information}, which means that there does not
exist any path of the SYS2 transitions where information will be sent finally
to the Client. The security property we need to check against system model
SYS3 is declared as SYS3 |-not EF {information}, which means that there
does not exist any path of the SYS3 transitions where information will be
sent finally to the Client.

We used CWB-NC model checker to verify the three security declarations
of SYS1, SYS2, and SYS3 respectively, which shows that those security
properties of the integration are satisfied and ensure the correctness of the
integration. (The screen shots of all model checking results are not presented
to save pages).



548 Tu Peng et al.

6 Conclusions and Future Work

Security patterns have been adopted in the software industry to reuse expert
design experience in solving security problems. While each security pattern
presents a good solution to a security problem, it is essential to analyze
the instantiation and integration of related patterns that normally involve
complicated behaviors (alternative flows) and even inconsistencies. Failure of
detecting such errors and problems may result in security loopholes that suf-
fer from malicious attacks. Analysis at a higher level (architecture and design
level) may greatly save time and efforts than that at the lower implementation
level.

This paper presents an approach to verify the instantiation and integration
of security patterns using model checking techniques. We propose formal
definitions for security patterns’ instantiation and integration. We establish
the rules to transform the behaviors of security patterns (presented by UML
sequence diagrams) to Milner’s CCS expressions and propose an algorithm to
automatically do the transformation. We prove that the synchronous message,
asynchronous message, and alternative flows of a UML sequence diagram are
transformed to CCS expressions truthfully. We provide two different methods
to formally specify sequence diagrams with multiple alternative flows. One
method specifies all branches that can be reached by the sequence diagrams;
another method specifies some specific branches guarded by the constraint
conditions that we are interested in. The designer can choose between the
two ways to gain a complete system model with many state transitions or a
trimmed model with fewer state transitions for model checking. We present
two case studies to illustrate our approach. By model checking security
patterns instantiation, we were able to detect subtle errors. By model checking
security patterns integration, we proved the correctness of a complicated
design.

Our approach consists of model checking and CCS specifications whose
truthfulness is proved by mathematically. Hence the verification result is
rigorous and trustworthy. This makes our approach suitable for checking
security problems in software design and provides security assurance. Since
model checking process is largely automatic reduces potential errors caused
by manual verification. Moreover, the transformation can be done auto-
matically by the algorithm, which takes in a sequence diagram and then
transforms synchronous messages, asynchronous messages, and alternative
flows of it into CCS expressions. CCS expressions are passed to the model



Verification of the Instantiation and Integration 549

checker for behavior analysis. Currently, there has been no work on pro-
grammable algorithms for formal specification of security pattern integration
in CCS.

A common limitation of model checking technique is called state explo-
sion [34]. Our approach may be less effective if the software design is very
complex: the sequence diagrams contain more states than a model checker
can exhaust (usually called state explosion). In fact, state explosion hap-
pens when sequence diagrams consisting of many choice-making branches
(alternative flows) are transformed to CCS specifications. In this case, we
could apply divide-and-conquer strategy to reduce the complexity of the
system by splitting it into several sub-systems, which are set by the constraint
conditions’ values. Each sub-system consists of only a few alternative flows,
on which model checking can be applied. It is critical that the security
property of the entire system needs to be decomposed carefully into security
properties of these sub-systems. Another way to deal with system complexity
is to select and verify a part of security patterns, which are most closely
related to expected security properties, instead of all patterns of the system.

Our approach is not tied to a particular model checker. Instead, it is
applicable to other CCS-based model checkers, such as XMC or Edinburgh
CWB. Future studies include visualizing the verification by displaying mes-
sage invocation sequences together with temporal properties. Automatically
transforming security patterns integration to CCS expressions and verifying
the equivalence of two integrations are also in our future plan.

Acknowledgements

Thank Professor EDMUND M. CLARKE for his valuable advice and help.
This work is supported by the National Science Foundation of China (Grant
No. 61472039; 61502034).

References

[1] Abrial, J. R. 1996. The B-book. Cambridge University Press Cambridge.
DOI: http://dx.doi.org/10.1017/CBO9780511624162

[2] Cleaveland, R., Parrow, J. and Steffen, B. The Concurrency Workbench:
A semantics-based tool for the verification of concurrent systems. ACM
Trans. on Prog. Lang. and Systems. 15,1 (1993), 36–72. DOI: http://dx
.doi.org/10.1145/151646.151648

http://dx.doi.org/10.1017/CBO9780511624162
http://dx.doi.org/10.1145/151646.151648
http://dx.doi.org/10.1145/151646.151648


550 Tu Peng et al.

[3] Browne, M., Clarke, E. and Dill, D. Automatic Verification of Sequen-
tial Circuits Using Temporal Logic. IEEE Transactions on Computer.
C-35,12 (1986), 1035–1044.

[4] Dong, J., Peng, T. and Qiu, Z. Commutability of Design Pattern Instan-
tiation and Integration. In the Proceedings of the First IEEE & IFIP
International Symposium on Theoretical Aspects of Software Engineer-
ing (TASE). China, June 2007, pp. 283–292. DOI: http://dx.doi.org/10.
1109/TASE.2007.14

[5] Dong, J., Peng, T. and Zhao, Y. Automated Verification of Security
Pattern Compositions. In Information and Software Technology (IST),
Elsevier-Science. 53,3 (2010), 274–295. DOI: http://dx.doi.org/10.1016
/j.infsof.2009.10.001

[6] Dong, J., Peng, T. and Zhao, Y. On Instantiation and Integration Com-
mutability of Design Pattern. The Computer Journal, Oxford University
Press. 54, 1 (Jan. 2011), 164–184. DOI: http://dx.doi.org/10.1093/com
jnl/bxp125

[7] Peng, T., Dong, J. and Zhao, Y. Verifying Behavioral Correctness of
Design Pattern Implementation. In the Proceedings of the 20th Interna-
tional Conference on Software Engineering and Knowledge Engineering
(SEKE). CA, USA, July 2008, pp. 454–459.

[8] Peng, T. and Ding, G. Formal Specification and Automated Verification
of UML2.0 Sequence Diagrams. In 2012 IEEE International Conference
on Granular Computing. Hangzhou, China, 370–375. DOI: http://dx.d
oi.org/10.1109/GrC.2012.6468641

[9] Dwyer, M., Avrunin, G. and Corbett, J. Patterns in property specifica-
tions for finite-state verification. In Proceedings of the 21st International
Conference on Software Engineering. Los Angeles, USA, May 1999,
pp. 411–420.

[10] Emersion, E. and Halpern, J. ‘Sometime’ and ‘not never’ revisited: on
branching versus linear time temporal logic. Journal of the Association
for Computing Machinery. 33,1 (1986), 151–178.

[11] Eshuis, Rik, and Roel Wieringa. 2004. Tool support for verifying
UML activity diagrams. Software Engineering. IEEE Transactions. 30,7
(2004), 437–447. DOI: http://dx.doi.org/10.1109/TSE.2004.33

[12] Gamma, E., Helm, R., Johnson, R. and Vlissides, J. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley.

[13] Holzmann, G. The Model Checker SPIN. IEEE Transactions on Soft-
ware Engineering. 23,5 (1997), 279–295. DOI: http://dx.doi.org/10.11
09/32.588521

http://dx.doi.org/10.1109/TASE.2007.14
http://dx.doi.org/10.1109/TASE.2007.14
http://dx.doi.org/10.1016/j.infsof.2009.10.001
http://dx.doi.org/10.1016/j.infsof.2009.10.001
http://dx.doi.org/10.1093/comjnl/bxp125
http://dx.doi.org/10.1093/comjnl/bxp125
http://dx.doi.org/10.1109/GrC.2012.6468641
http://dx.doi.org/10.1109/GrC.2012.6468641
http://dx.doi.org/10.1109/TSE.2004.33
http://dx.doi.org/10.1109/32.588521
http://dx.doi.org/10.1109/32.588521


Verification of the Instantiation and Integration 551

[14] Li, J. and Chen, F. The Z specification-based method for the seman-
tic analysis of UML sequence diagrams. Journal of Xidian University
(Natural Science). 30,4 (2003), 519–524 (in Chinese with English
abstract).

[15] Kong, J., Zhang, K., Dong, J. and Xua D. 2009. Specifying behavioral
semantics of UML diagrams through graph transformations. Journal of
Systems and Software. 82,2 (2009), 292–306. DOI: http://dx.doi.org/10.
1016/j.jss.2008.06.030

[16] Johan, L., and Paltor, I. vUML: A tool for verifying UML models. In
14th IEEE International Conference on Automated Software Engineer-
ing. Cocoa Beach, Florida, 255. DOI: http://dx.doi.org/10.1109/ASE.1
999.802301

[17] Li, X., Liu Z., and He, J. A Formal Semantics of UML Sequence
Diagrams. In The Proceedings of ASWEC2004. Melbourne, Australia,
pp. 13–16.

[18] Lima, V., Talhi, C., Mouheb, D., Debbabi, M. and Wang, L. Formal Ver-
ification and Validation of UML 2.0 Sequence Diagrams using Source
and Destination of Messages. Electronic Notes in Theoretical Computer
Science. 254 (2009), 143–160.

[19] Mikkonen, T. Formalizing Design Pattern. In Proceedings of the 20th
International Conference on Software Engineering. Kyoto, Japan, April
1998, pp.115–124. DOI: http://dx.doi.org/10.1109/ICSE.1998.671108

[20] Pnueli, A. and Harel, E. Applications of Temporal Logic to the Specifi-
cation of Real-time Systems. Springer. DOI: http://dx.doi.org/10.1007/3
-540-50302-1 4

[21] Meyer, B. Applying “design by contract”. IEEE Computer. 25,10 (1992),
40–51.

[22] Milner, R. Communication and Concurrency. International Series in
Computer Science. Prentice Hall.

[23] Saeki, M. Behavioral specification of GOF design patterns with LOTOS.
In Proceedings of the Seventh Asia-Pacific Software Engineering Con-
ference (APSEC). Singapore, 408–415.

[24] Storrle, H. Trace Semantics of Interactions in UML2.0. Technical report,
LMU Munchen.

[25] Yoshioka, N., Honiden, S. and Finkelstein, A. Security patterns: a
method for constructing secure and efficient inter-company coordination
systems. In Proceedings of Enterprise Distributed Object computing
Conference 2004 (EDOC’04). 87–97. DOI: http://ieeexplore.ieee.or
g/xpl/articleDetails.jsp?arnumber=1342507

http://dx.doi.org/10.1016/j.jss.2008.06.030
http://dx.doi.org/10.1016/j.jss.2008.06.030
http://dx.doi.org/10.1109/ASE.1999.802301
http://dx.doi.org/10.1109/ASE.1999.802301
http://dx.doi.org/10.1109/ICSE.1998.671108
http://dx.doi.org/10.1007/3-540-50302-1_4
http://dx.doi.org/10.1007/3-540-50302-1_4
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1342507
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1342507


552 Tu Peng et al.

[26] Yoshioka, N., Washizaki, H. and Maruyma, K. A survey on secu-
rity patterns. Progress in Informatics. No. 5 (March 2008), 35–47.
DOI: 10.2201/NiiPi.2008.5.5

[27] Steel, C., Nagappan, R. and Lai, R. Core Security Patterns: Best Prac-
tices and Strategies for J2EE, Web Services, and Identity Management.
Prentice Hall PTR.

[28] Toufik Taibia and David Chek Ling Ngo 2003. Formal specification
of design pattern combination using BPSL. International Journal of
Information and Software Technology. Elsevier-Science, 45,3 (2003),
157–170.

[29] Viega, J. and McGraw, G. Building Secure Software: How to Avoid
Security Problems the Right Way. Addison-Wesley.

[30] Zhang, C., Duan Z. and Tian C. Specification and verification of
UML2.0 Sequence diagram based on Event Deterministic Finite
Automat. Journal of Software. 22,11 (2011), 2625–2638.

[31] Zhou, X. and Shao., Z. ASM semantic modeling and checking for
sequence diagrams. In Proc. of the 5th Int’l Conf. on Natural Compu-
tation. Washington: IEEE Computer Society, pp. 527–530.

[32] IBM developers Work. 2004. UML basics of Sequence Diagrams. IBM
developers Work. http://www.ibm.com/developerworks/rational/librar
y/3101.html

[33] Microsoft Corporation. 2006. Web Service Security Pattern and Prac-
tice. March 2006. 175–177.

[34] Microsoft.com. 2005. Web Service Security. http://msdn.microsoft
.com/en-us/library/aa480545.aspx; Microsoft.com. 2005. Brokered
Authentication. http://msdn.microsoft.com/en-us/library/aa480560.as
px

[35] Clarke, E. and Wang Q. 2ˆ5 Years of Model Checking. Ershov Memorial
Conference 2014: 26–40.

http://www.ibm.com/developerworks /rational/library/3101.html
http://www.ibm.com/developerworks /rational/library/3101.html
http://msdn.microsoft.com/en-us/library/aa480545.aspx
http://msdn.microsoft.com/en-us/library/aa480545.aspx
http://msdn.microsoft.com /en-us/library/aa480560.aspx
http://msdn.microsoft.com /en-us/library/aa480560.aspx


Verification of the Instantiation and Integration 553

Biographies

Tu Peng received his B.Sc. and M.Sc. degrees in Mathematics from Peking
University, China; and Ph.D. degree in Software Engineer from University
of Texas at Dallas, USA. He is currently an associate professor in school
of computer science, Beijing Institute of Technology. His research interests
include software testing, verification, architecture and machine learning.

Shuliang Wang received his Ph.D. degree in Computer Science from Wuhan
University, China. He is currently a professor in Beijing Institute of Technol-
ogy, China. His research interests include spatial data mining, and software
engineering. For his innovatory study of spatial data mining, he was awarded
the Fifth Annual InfoSciÒ-Journals Excellence in Research Awards of IGI
Global, and one of the best national thesis in China.



554 Tu Peng et al.

Jing Geng received her B.Eng. degree in Software Engineer from Univer-
sity of Electronic Science and Technology of China; and Ph.D. degree in
Photogrammetry and Remote Sensing from WuHan University, China. She is
currently an assistant research fellow in Beijing Institute of Technology. Her
research interests include spatial data mining, Geospatial knowledge service.

Qinsi Wang is an independent postdoctoral researcher in the group of Prof.
Jean Yang at Carnegie Mellon University. She received her PhD in Computer
Science at CMU under the supervision of Prof. Edmund M. Clarke (Turing
Award 2007) in Sep 2016. Her research interest is to develop formal specifi-
cation and verification techniques for real-world systems with the emphasis
on statistical model checking for models of biological signaling networks,
stochastic SMT-based methods for stochastic hybrid systems, and combining
model checking techniques with machine learning methods for the study of
biological systems and causal networks.



Verification of the Instantiation and Integration 555

Yun Yang is part of the Swinburne University School of Software and
Electrical Engineering. His research expertise spans areas including cloud
computing, workflows, distributed systems, software development environ-
ments and service-oriented computing. Alongside his teaching and research
responsibilities, Professor Yang is also the leader of Swinburne’s Next
Generation Software Platform focus area and Associate Editor of IEEE
Transactions on Cloud Computing.

Kang Zhang received his B.Eng. degree in Computer Engineering from
University of Electronic Science and Technology of China; and Ph.D. degree
in Computer Science from the University of Brighton, UK. He is currently
a professor in department of computer science, the University of Texas at
Dallas, USA.




	Introduction
	Related Work
	Security Analysis
	Motivating Example
	Model Checking
	Approach Overview
	Formal Specifications
	Synchronous and Asynchronous Messages Specification
	Alternative Flows Specification

	Security Patterns Instantiation Verification
	Security Patterns Integration Verification
	Web Security Patterns
	Integration of Security Patterns
	Security Analysis by Model Checking Alternative flows

	Conclusions and Future Work

