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The proliferation of technology has empowered the web applications. At the same time,
the presences of Cross-Site Scripting (XSS) vulnerabilities in web applications have be-
come a major concern for all. Despite the many current detection and prevention ap-
proaches, attackers are exploiting XSS vulnerabilities continuously and causing signifi-
cant harm to the web users. In this paper, we formulate the detection of XSS vulner-
abilities as a prediction model based classification problem. A novel approach based
on text-mining and pattern-matching techniques is proposed to extract a set of features
from source code files. The extracted features are used to build prediction models, which
can discriminate the vulnerable code files from the benign ones. The efficiency of the
developed models is evaluated on a publicly available labeled dataset that contains 9408
PHP labeled (i.e. safe, unsafe) source code files. The experimental results depict the
superiority of the proposed approach over existing ones.

Keywords: Cross-Site Scripting vulnerability, Web Security, Vulnerability Detection,
Machine Learning.
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1 Introduction

Nowadays, the usage of web applications is increasing very rapidly and has marked their
presence in every sphere of our daily life [1]. At the same time, the security vulnerabilities
have become a major concern to all. It has been noticed that application-level vulnerabilities
are among the primary sources of Cybercrime. The exploitation of these vulnerabilities allow
an attacker to breach the integrity, availability, and secrecy of the web applications, and
resulting into some loss to the Internet users [2, 3].
acorresponding author

28



M.K. Gupta, M.C. Govil, and G. Singh 29

According to the WhiteHat Sentinel security testing report, approximately 56% of web
applications have security vulnerabilities [4]. Among the variety of security vulnerabilities,
XSS has been exhibited as the most critical vulnerability in web applications [5]. Authors of
recent survey papers [3, 6, 7] have concluded that despite many solutions, the XSS remains
a vital threat for web applications. They have urged for more research and real solutions for
the development of XSS free web applications.

Researchers in paper [8, 9] have stated that the vulnerability prediction models play sig-
nificant role in the detection of software vulnerabilities. The development of prediction model
requires one important task i.e. feature extraction. Researchers have extracted a variety
of features such as the line of code, code complexity, and other code attributes. The exist-
ing feature extraction approaches [10, 11, 12, 13] do not extract the features related to the
context-sensitivity of a user-input. These features are essential for precise detection of XSS
vulnerabilities (as explained in Section 2).

This paper proposes a novel approach for detecting vulnerable files in the web applications.
It employs text-mining and pattern-matching techniques to extract two types of features i.e.
Basic features and HTML context features from the source code files. The Basic features
are the code attributes that represent input, output, sanitization, and string functions in
the source code. And HTML context features represent the ways of referencing user-input
in output-statements. These features are then used in the generation of a prediction model,
which classifies unlabeled source code files into safe and unsafe categories.

To the extent of our knowledge, the proposed approach is first one that uses HTML context
information in the building of prediction model. We have chosen to work with the PHP as it
is the most commonly used language in web application development and prone to different
types of security vulnerabilities [14].

The remainder of this paper is structured as follows. Section 2 outlines the motivation for
the work. Section 3 summarizes the existing work in this area. The proposed vulnerability
detection approach is explained in Section 4. Section 5 presents the experimental settings,
dataset and performance measures. The results and observations are described in Section 6.
Finally, the paper is concluded in Section 7.

2 Motivation

This section shows the presence of cross-site scripting vulnerabilities in the different HTML
contexts through various code examples, and discusses the limitations of current vulnerability
detection approaches.

2.1 Cross-Site Scripting Vulnerabilities

Cross Site Scripting is a weakness or loophole in the source code of web applications. It occurs
when a user-input from an HTTP request, database, or any other files is used in an output-
statement without proper validation, sanitization, or escaping process. It allows a malicious
user to insert crafted scripting code into a vulnerable application that gets executed in the
legitimate user’s browser and leads to security threats [3].

Figure 1 shows a sequence of steps that can be used by an attacker to hijack the legitimate
user’s session.

It shows that first legitimate user is logged into a mail server, and then an attacker sends
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Fig. 1. sequence model for reflected XSS attack

a mail containing designed URL to the legitimate user (step 2). When the legitimate user
clicks on (step 3) the created URL, the request goes to the mail server along with malicious
scripts as parameter values. The mail server program processes the request and sends back
the constructed script as a response to the legitimate user (step 4). The legitimate user’s
browser executes the script and sends victim’s session information to the attacker (step 6).
The attacker uses this information to hijack the legitimate user’s session.

2.2 Limitations of Vulnerability Detection Approaches

In the review process, it has been identified that the majority of the current vulnerability
detection approaches [15, 16, 17] consider the validation of a user-input by any standard san-
itization routine such as htmlspecialchars(), htmlentities as an absence of XSS vulnerability.
However, in current web applications, a user-input is referenced in an output-statement with
HTML code to produce a dynamic HTML document. This combination represents a HTML
context and enables the web browsers to interpret the HTML document differently. The com-
mon HTML contexts in which a user-input is referenced are HTML Element, Script, CSS,
HTML Attribute, and URL context. Each context has different characteristics and requires
different defense mechanisms to avoid XSS vulnerabilities [18].

For example, Listing 2.2 shows the code fragment of a vulnerable search engine application
that accepts user input and returns the relevant results. In this example, user input (line 3)
is used in an output statement (line 8) in the HTML element context.

Vulnerability in HTML element context

1 <html><body>
2 <?php
3 $mysearch= $_GET['myinput'];
4 // some database operations
5 $empty_results=1;
6 if ($empty_results)
7 {
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8 echo "no result found for $mysearch"; } ?>
9 </body></html>

A designed malicious search engine URL with attack payload

1 http://localhost/mycode/listing1.php?myinput=flower <script language= "JavaScript">
document.location="http://localhost/mycode/stealer.php?cookie="+ %2B document.
cookie; </script>

The exploitation of XSS vulnerabilities can be understood in the two steps. In the first
step, an attacker designs a malicious URL for the search engine application (as shown in the
Listing 2.2) and sends it to the legitimate user. This URL contains a variable myinput that
default value is a designed scripting code used for stealing the user’s cookie. In the second
step, the legitimate user accesses his e-mail account and clicks on the attacker’s designed
URL. When the URL opens in the browser, the value of myinput is assigned in the mysearch
variable of search engine (Listing 2.2, line 3) application. This value is used in the output
statement (Listing 2.2, line 8) to generate the server response, which contains the designed
script code. The execution of this code in the web browser transfers the user’s cookie to
the attacker’s server. Further, the attacker can use these values to access the victim’s mail
account. The certain manipulations of IMG or IFRAME HTML tags allow the loading of the
malicious code automatically in an HTML e-mail.

In our code testing experiments, it is found that a htmlspecialchars() is adequate to thwart
the XSS attack in HTML element context (Listing 2.2). As it eliminates the consequence of
special characters (e.g. <,> ) but fall short in other contexts. To illustrate this, consider
a guestbook application (in Listing 2.2) in which a user can write and display new messages
with color formatting preference.

Vulnerability in HTML CSS context

1 <!−− server−side code fragment −−>
2 <?php
3 $Color= $_GET['mycolor'];
4 $userName=$_GET['username'];
5 $message=$_GET ['msg'];
6 echo "<h1 style=\"color:$Color\">Welcome to $userName !!!</h1>";
7

8 // display a message
9 echo "<div style='background−color:$Color'>$message</div>";

10 ?>
11

12 <!−− Attack Vector 1
13 mycolor = red" > <script>alert("Attacked")</script> −−>
14

15 <!−− Attack Vector 2
16 mycolor= green ' onmouseover=window.location='http://localhost/mycode/flash_movie_player.exe' '

−−>

Here, at the client-side, a user writes a message, selects the background color from the drop-
down list, and then submits it to the server. At the server-side, the user’s inputs are used in
the output statements to generate an HTML document for displaying a message.

Listing 2.2 shows the server-side code fragment. In line 6 and 9, a user input, i.e., mycolor
is used in the style attribute of an HTML tag to set the foreground and background color of
text respectively. These lines represent a user-input in the CSS context. Suppose an attacker
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prepares a URL using an attack vector 1 (shown in Listing 2.2 at line 13) as a value of mycolor
and sends to a legitimate user. If the legitimate user clicks on the URL, then a simple pop-up
message will get appeared. It shows a vulnerability in line 6, which allows an attacker to
execute a malicious JavaScript code. This attack can also be prevented by using a standard
sanitization function. However, the attack vector 2 (shown in Listing 2.2 at line 16) bypasses
the standard sanitization functions and allows an attacker to perform malicious activity.

These examples conclude that the different defense mechanisms are required to avoid XSS
vulnerabilities in different HTML contexts.

3 Related Work

This section presents a summary of current vulnerability detection and prediction approaches.

3.1 Vulnerability Detection Approaches

Huang et al. [19] were among pioneers to propose a taint analysis based approach for detecting
the XSS vulnerabilities. Jovanovic et al. [20] proposed an approach based on the flow-sensitive
and inter-procedural based analysis. They implemented first static source code analyzer tool,
named Pixy [15] to detect many types of security vulnerabilities. In the review process,
we identified that it detects XSS vulnerabilities with high false positive. Wassermann et
al. [21] combined the taint analysis with string analysis to detect XSS vulnerability. However,
their approach could not work effectively for HTML context-sensitive code. Shar et al. [18]
employed a pattern-matching technique to handle the HTML context-sensitivity issue.

Most of these approaches rely on standard sanitization function and show the absence of
XSS vulnerability if any standard function is used in the code, which is the main reason for
high false results.

3.2 Vulnerability Prediction Approaches

Researchers in the papers [8, 9] discussed that the prediction models are used to detect vul-
nerable files in the code verification phase. Chowdhury et al. [9] proposed a framework to
automatically predict vulnerability-prone files in the Mozilla Firefox application using cyclo-
matic complexity, cohesion, and coupling software metrics. They evaluated the performance
of their prediction models built from four machine learning classifiers namely C4.5 Decision
tree, Random Forest, Logistic Regression, and Naive Bayes on 52 releases of the Mozilla
Firefox. They achieved an accuracy of 72% and recall values of 74% for C4.5 decision tree
algorithm.

Shin et al. [8] used various matrices, i.e., code complexity, code churn, and developer
activity to detect vulnerable source code files. They had built prediction model by using
logistic regression machine learning algorithm and achieved an average recall of 80%. They
examined that the complex programs are superfluous to vulnerability.

The above-discussed approaches showed that the probability of occurrence of vulnera-
bilities more in complex code. They used software metrics to build the prediction models
by using different classification algorithm. On the other hand, authors of paper [22] stated
that the utilization of an invalidated user-input is the primary source of XSS vulnerabilities.
Shar et al. [10] showed that the small and uncomplicated program has many XSS vulnerabil-
ities. Therefore, general vulnerability prediction models that use code metrics (such as code
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complexity, and code churn) are not workable for detecting XSS vulnerabilities.

Hovsepyan et al. [23] employed a text-mining approach to extract a set of features and
characterized each source code files using frequency of each feature. They applied this ap-
proach to detect vulnerable files in the source code of the software. The authors of paper [11]
analyzed software metrics and text-mining based features and asserted the superiority of
text-mining feature over the software-metrics feature in the detection of XSS vulnerabilities.

4 Proposed Vulnerability Detection Approach

Our goal is to develop a vulnerability prediction model for detecting the vulnerable files in
web applications. A file is considered as vulnerable if at least one XSS vulnerability is present
in it. It is defined in Eq. (1) as follows:

V ulnerable(file) =

{
yes, if number of XSS is ≥ 1

no, otherwise
(1)

The proposed XSS detection approach (as shown in Fig. 2) consists of two distinct phases -
prediction model building and vulnerability detection phase. In the prediction model building
phase, first, we prepare a training dataset of labeled source code files. Then, the basic and
context features are extracted from each file in the dataset. The details of the proposed
feature extraction algorithms are described in Subsection 4.1. Next, the joint feature sets
are obtained corresponding to each file by combining their basic and context features. These
feature sets are given to a machine-learning algorithm for the building of an XSS prediction
model.

In the detection phase, the same procedure as used in the previous phase is applied to
obtain feature sets from the test dataset, which consists of unlabeled source code files. These
feature sets are given to the prediction model that detects vulnerable files in the test dataset.

4.1 Feature Extraction Algorithms

In this section, two algorithms for extracting the basic and context features from the given
set of source code files are described. The algorithm 1 uses HTML DOM parser (http:
//simplehtmldom.sourceforge.net/) to determine a block context of each statement in
a source code file. A block context of a statement is a name of HTML block in which it
is present. In our approach, we have considered three block contexts namely Comment,
Script, and Style. Except for the statements in these three contexts, all other statements
are taken into account in HTML Body block context. The block contexts are very useful in
the determination of two-level context sensitivity of a user-input in the output statements.

http://simplehtmldom.sourceforge.net/
http://simplehtmldom.sourceforge.net/
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Algorithm 1: Proposed Feature Extraction Approach
INPUT : Set of source code files SFiles

OUTPUT : Set of feature vectors SfV ector

N : Number of source code files
Fi: ith source code file
Si,j : jth statement in Fi

BContext[]: An array of Block Contexts
Cblock: Block Context
Token[]: An array of tokens
Globalvar: A PHP global variable
FVcontext : Context features tk: kth token
tk,name: kth token name
tk,val: kth token value
FVi: ith feature vector
tToken: Tagged token string
IToken[]: An array of ignorable tokens
Ttcs = T_CONSTANT_ENCAPSED_STRING
Ttew= T_ENCAPSED_AND_WHITESPACE
for each source code file Fi in SFiles do

BContext[] = Extracted Block contexts for Fi

for each Cblock in BContext[] do
for each statement Si,j in Cblock do

Token[] = TokenGetAll (Si,j)
for each token tk present in Token[] do

if (tk,name is in IToken[]) then
No operation

else if (tk,name==T_VARIABLE) then
if (tk,val is in AgV ar) then

Add tk,val in FVi

else
tToken=concat(tk,name,Cblock)
Add tToken in FVi

else if (tk,name == T_ECHO) then
tToken=concat(tk,name,Cblock)
Add tToken in FVi

else if (tk,name==Ttcs ‖ tk,name==Ttew) then
if (tk,val contains HTML code) then

FVcontext=Call Context_Finder(tk,val,Cblock)
Add FVcontext in FVi

Next, each block statement is processed through a tailored tokenizing process, which
generates a set of tokens. A token represents the language reserved words, strings, inputs,
outputs, sanitization routine and other code attributes. The extracted block context is as-
sociated with statement’s tokens, and these tagged tokens are included as features in our
basic feature set. As mentioned earlier, a string in an output statement may represent an
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HTML context; hence a separate processing is needed. Except for the tokens that are re-
lated to the strings, all other tokens name or value are included in our basic feature set.
Algorithm 2: Extraction of Context Features
INPUT : A String S and Block Context Cblock

OUTPUT : Context features FVcontext

Cuser: user-input context in an output statement
DQ: Double Quote
SQ: Single Quote
NQ: No Quote
S: String
if (S contains a complete HTML Tag) then

FVcontext=Cblock;
return FVcontext;

else if (S begin with < and end by="| =′ | =) then
if (< follows any special tag (e.g. a|style|script) is in S) then

if (event handler is present or not ) then
Cuser =Cblock + "Event_Attr_Value";
Cuser= Cuser+[DQ|SQ|NQ];

else
Cuser =Cblock + "STag_Attr_Value";
Cuser= Cuser +(DQ|SQ|NQ);

else if (event handler is in S) then
Cuser =Cblock +"Tag_Event_Attr_Val";
Cuser= Cuser+ (DQ|SQ|NQ) ;

else if ( Is style keyword in string S) then
Cuser =Cblock + "Tag_CSS_Attr_Value";
Cuser= Cuser + (DQ|SQ|NQ);

FVcontext=Cuser;
return FVcontext;

else if (Is S =="<Non_special_tag" ) then
Cuser =Cblock + "Attr_Name";
FVcontext=Cuser;
return FVcontext;

else if (Is S==” < ” ) then
Cuser =Cblock + Tag_Name;
FVcontext=Cuser;
return FVcontext;

else
Terms= A set of terms in the strings
Cuser =Cblock + Term;
add Cuser in FVcontext

return FVcontext

The Algorithm 2 is designed to process the strings. Firstly, it determines HTML contexts
of user input. Then the extracted contexts are tagged with the block context and are included
as the context feature in the feature set. If the defined condition does not match with a string
that contains HTML code, then that string is further tokenized into a set of terms. These
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terms are tagged with a block context and included as the context features in our feature
set. Further, for each file, a set of unique features with their frequencies is determined and
considered them into a joint feature set for the corresponding source code file. Finally, all
joint feature sets are given to a machine-learning algorithm to build an XSS prediction model.

An extensive analysis of many source code programs was done, and efforts were made
for extracting HTML contexts for all practically possible patterns. The proposed HTML
context identification rules are working for all patterns except a situation, where PHP code
is embedded into an HTML tag. The asymptotic complexity of context finding algorithm
is O(1). Therefore, addition or revision of any rules requires the designing the new regular
expressions for those patterns, which is not a very difficult task.

4.2 Example

We compare our approach with a text-mining based feature extraction approach by taking an
example given in Listing 4.2. In this example, a user-input is utilized in output statements
with different HTML contexts. The existing text-mining based approach (proposed by Walden
et al. [12]) tokenizes a source code file and considers all the PHP tokens in it feature set. It
does not deduce the context-sensitivity of a user-input and extracts the same set of features
for the different output statements, which use user-input in the different HTML contexts.

HTML context-sensitive code statements

1 <?php
2 $input= $_GET['userData'];
3 echo "Simple Hello \n";
4 echo "No result for $input,try again ";
5 echo "<span style=\"color:$input\"> Welcome </span>";
6 echo "<a href=\"$input\">login2</a>";
7 echo "<input name='slno' type='text' value='".htmlspecialchars($input)."'>";
8 echo "No result for ".htmlspecialchars($input);
9 echo "<a href=".urlencode($input).">login1</a>";

10 echo "<input name='slno' type='text' value='".htmlspecialchars($input,ENT_QUOTES)."'>";
11 ?>

For example, the output statements (line 4, 5, and 6) include the user-input in the different
contexts. However, they extract the same set of features. Authors of this approach have
also considered the same feature i.e. T_STRING for different built-in functions (line 8,
htmlspecialchars and line 9, urlencode), and parameters (ENT_QUOTES, line 10 ). However,
the different built-in functions and their parameters can be used to avoid XSS attack in the
different contexts. We have considered all these differences in the proposed feature extraction
approach.

5 Experiments

The performance of the proposed approach is assessed with two approaches given by Hov-
sepyan et al. [23] and Walden et al. [12]. First, we build the distinct feature sets, namely
uni-word feature set (F1), walden feature set (F2), and proposed feature set (F3), by apply-
ing Hovsepyan et al., Walden et al., and the proposed feature extraction approach respectively
on the same dataset. Then, several XSS prediction models are built by using each of the fea-
ture sets with different machine-learning algorithms. In our experiments, a data-mining tool
(WEKA) [24] with its default parameter setting is used for constructing and evaluating the
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performance of the vulnerability prediction models.

5.1 Dataset Used

To evaluate the performance of different approaches, we use a publicly available dataset repos-
itory containing 9408 PHP source code files [26]. It has 5600 safe (i.e. non-vulnerable) and
3808 unsafe (i.e. vulnerable) code files. Evaluation of the different approaches is performed
on this dataset that contains the variety of sample code files with their vulnerability labels.In
addition to this, each code file has only one sensitive sink statement, which allows us to
compare proposed approach with the statement level approaches.

The dataset is very suitable as compared to other repositories such as NVD (https://
nvd.nist.gov/) and Bugzilla (https://www.bugzilla.org/) for evaluating the performance
of different approaches. Because, these repositories provide only the vulnerability information
and do not have the source code, which is required in our experiments. In addition, NIST
(http://www.nist.gov/) also provides a dataset, but it has only 80 PHP source code files,
which are insufficient to build an efficient prediction model.

5.2 Machine Learning Algorithms

A feature set with different machine learning algorithms generates the different prediction
models and may produce different results. In our experiments, we have used seven machine-
learning algorithms- Naive-Bayes (NB), Random Tree, Random forest, JRip, J48, Support
Vector Machine (SVM), and Bagging - with the default parameter values to evaluate their
prediction performance with the different feature sets. The details of these algorithms can be
found in [25].

5.3 Experimental Setting

To evaluate the performance of different approaches a 10-fold cross-validation methodology is
applied. In which, the chosen dataset is randomly divided into two disjoint training set and
testing set containing 90% and 10% samples respectively. All the experiments are repeated
ten times with a random selection of training and testing sets. Finally, the average results
are accounting the concluding performance.

5.4 Performance Measures

The recall, precision, F-measures and accuracy measures are evaluated to conclude the effi-
ciency of the prediction models. These measures can be described with the help of confusion
metrics defined in Table 1, which shows the relationships between actual and prediction results
as follows.

Table 1. Confusion Metrics

Predicted
unsafe

(vulnerable)
safe

(non-vulnerable)

Actual unsafe
(vulnerable)

True Positive
(TP)

False Negative
(FN)

safe
(non-vulnerable)

False Positive
(FP)

True Negative
(TN)

https://nvd.nist.gov/
https://nvd.nist.gov/
https: //www.bugzilla.org/
http://www.nist.gov/
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1. Recall: Recall is defined in Eq. (2) as a fraction of the number of accurately determined
unsafe files to the actual number of unsafe files. It measures a vulnerable file detection
rate.

Recall =
TP

(TP + FN)
(2)

2. Precision: Precision is defined in Eq. (3) as a fraction of accurately determined unsafe
files to total number files which are predicted as unsafe. It measures the correctness of
predictor to identify unsafe files.

Precision =
TP

(TP + FP )
(3)

The value of precision and recall parameters must be high for an efficient machine
learning model.

3. Accuracy: Accuracy is defined in Eq. (4) as a fraction of accurately determined safe or
unsafe files to total tested files (i.e. safe or unsafe). It represents the correct classification
rate of the predictor.

Accuracy =
(TP + TN)

(TP + TN + FP + FN)
(4)

4. F-Measure: it is defined in Eq. (5) as a weighted average of precision and recall:

FBmeasure = (1 +B2)
(Precision ∗ recall)

((B2 ∗ precision) +Recall)
∗ 100 (5)

Here B represents relative weight of recall and precision. In our evaluation, we have
used F1 measures in which recall weights is equal to the precision.

6 Results and Discussion

Various experiments are performed to compare the predictor’s performance in many ways.
From our experiments, it is observed that the proposed feature set produces the highest
performance as compared to the feature sets of the existing approaches.
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6.1 Prediction Performance for Vulnerable Class Files

Our objective is to correctly detect the most of the vulnerability-prone files with minimum
false positive and negative results. Many prediction models based on proposed features and
different Machine-Learning(ML) algorithms are developed for evaluating prediction perfor-
mances. Table 2 shows the results of different predictors performance measures for vulnerable
class files. As mentioned earlier, recall and precision value must be high for an efficient
prediction model.

Table 2. Vulnerability prediction performance for vulnerable class files
Machine-Learning
Algorithm Precision Recall F-Measure Accuracy

NB 67.77 47.01 55.5 69.5
SVM 89.34 82.69 85.88 88.99
Bagging 93.59 86.87 90.09 92.6
JRip 99.29 61.48 75.53 83.6
Random Forest 82.52 83.1 82.8 87.62
J48 93.31 86.59 89.8 92.04
Random Tree 77.23 79.27 78.22 82.12

For recall values, bagging based model outperforms all other models. For example, the
bagging algorithm recall is 86.87%, which is the best among all the other algorithm’s recall,
i.e., 47.01%, 82.69%, 61.48%, 83.1%, 86.59%, and 79.27% for NB, SVM, JRip, Random Forest,
J48, and Random Tree algorithms respectively. In contrast, many vulnerable-prone files may
remain undetected if a prediction is made using a NB based model. It is also observed
that there is not a significant variation between recall results of SVM and Random Forest
algorithms.

Considering precision as a performance measure, JRip based model produces the highest
precision, i.e., 99.29%. It indicates that JRip does not produce false positive results (non-
vulnerable as vulnerable). However, JRips recall, i.e., 61.48% indicates that it does not detect
all the vulnerable files correctly and report some of them as non-vulnerable (false negative),
which is not accepted for a good vulnerability prediction model.

For a more explicit representation,the recall, precision and F-measure for different pre-
diction models is shown Fig. 3. It represents that there is a trade-off between precision and
recall. As already mentioned, the sole consideration of recall or precision may be mislead-
ing. Therefore, the performance of any model can be best justify by using F-measure. In
our experiments, it is observed that bagging based model gives the highest recall as well as
F-measure as compared to other predictors. (shown in Fig. 3).

6.2 Comparison with Current Related Approaches

This section compares the results of the proposed approach with related state-of-art text-
mining approaches on the same dataset. Hovsepyan et al. [23] proposed a text-mining based
prediction model for predicting vulnerable files in the source code of software application.
They treated unique words in source code files as independent variables. Walden et al. [12]
assumed all unique PHP tokens in source code files as independent variables and employed
only the random forest algorithm to build a prediction model. In this paper, three feature
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Fig. 3. precision v/s recall of different prediction models

sets are extracted by applying different approaches on the same dataset.
Table 3 shows the weighted average results of three approaches with various performance

measures- precision, recall, accuracy, and F-measure.

Table 3. Weighted average performance measures for prediction models
uni-word features (F1), unique-token features (F2), proposed features (F3)

Precision Recall F-Measure Accuracy
ML
Algo F1 F2 F3‘ F1 F2 F3 F1 F2 F3 F1 F2 F3

NB 61.6 63.7 69.2 61.4 64.7 69.5 61.5 62.9 68.2 61.4 64.6 69.5
SVM 68.8 70.5 88.9 68.7 70.9 88.9 68.7 70.5 88.9 68.7 70.9 88.9
Bagging 69.4 70.9 92.7 69.3 71.3 92.6 69.2 70.8 92.6 69.3 71.2 92.6
Random
Forest 67.9 68.9 87.6 67.6 69.4 87.6 67.8 68.8 87.5 67.6 69.4 87.6

J48 70.3 71.2 92 70.1 71.6 92 70.2 71.1 91.9 70.1 71.6 92
JRip 65.5 69.3 86.9 65.3 69.7 83.6 65.4 69.1 82.6 69.7 69.7 83.6

It depicts that the proposed feature set produces the best accuracy, as high as, 92.6%,
which is significantly higher to 69.3% and 71.2% for the uniword (F1) and uni-token(F2)
feature sets, respectively, with the bagging machine-learning algorithm. From the Table 3, it
is observed that the proposed feature set also produces better results as compared to other
considered feature sets with the other machine-learning algorithms. The proposed approach
outperforms the other approaches because it uses HTML context of user input in determining
the feature set, while others have not.

From the Table 3, it can be seen that the SVM algorithm confer superior results in
comparison to NB, random forest and JRip algorithms with different feature sets. It also
depicts that the bagging algorithm results are very close to the J48 algorithm results in the
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different experiments. Further, we also found that the uni-word(F1) and unique-token(F2)
feature set produces the higher performance with J48 machine-learning algorithm as compared
to the other considered algorithms. For example, the uni-token feature (F2) set produces an
accuracy of 71.6%, which is the best among all the other algorithm’s accuracy i.e. 64.6%,
70.9%, 71.2%, 69.4%, and 69.7% for NB, SVM, bagging, Random Forest, and JRip algorithms
respectively.

6.3 Performance of Different Machine-Learning Algorithms

This subsection presents the results of a statistical significance test, which is used to determine
whether the difference in performance measures for different prediction models (i.e. predic-
tors) are statically significant or not. It provides a pair-wise comparison of predictors using a
corrected standard t-test. The Random Forest based predictor is considered as a baseline to
perform a standard t-test at 0.05 significance. Because in the literature, a corrected standard
t-test at a significance level of 0.05 or less than is considered statistically significant [9].

The results of mean and the standard deviation in accuracy for different machine-learning
algorithms are shown in Table 4. It depicts the statistical significance test results for accuracy
performance measures. We have used "Yes+", "Yes-" or "No" annotations to represent the
statistical test results. A statistically better or worse result from the baseline predictor result
is represented by the "Yes+" or "Yes-" annotations respectively. On the other hand, when
the value of two results are different and a difference in the result is statistically insignificant,
then it is represented by the "No" annotation.

Table 4. Prediction accuracy, standard deviation and T- test results
Machine-Learning

Algorithm
Mean

Accuracy
Standard
Deviation

T-Test
Result

Random Forest 87.62 1.39
SVM 88.99 1.44 Yes+
Bagging 92.6 1.47 Yes+
JRip 83.6 1.98 Yes-
NB 69.5 1.8 No
J48 92.04 1.81 Yes+
Random Tree 82.12 1.83 Yes-

From the Table 4, we can infer many points. First, the all prediction models accuracy is
more than 80%. It shows the usefulness of the proposed features in the building of a vul-
nerability prediction model. Second, the standard deviations in accuracies for different ML
algorithms are very low, which shows that there is low variation in accuracy for different
training and testing sets in cross-validation experiments. Third, the bagging algorithm per-
formance is better than the other considered algorithms and it is very close to J48 algorithm
performance on the same dataset. For example, the bagging algorithm produces an accuracy
of 92.6%, which is the best among all the other algorithm’s accuracy i.e. 69.5%, 82.12%,
83.6%, 87.62%, 88.99% and 92.04% for NB, Random Tree, JRip, Random Forest, SVM and
J48 algorithms respectively.
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7 Conclusion and Future work

This paper proposed a novel feature extraction approach to extracts the basic as well as con-
text features from source code files. The experimental results have shown that the proposed
approach produced the highest accuracy as compared to the existing feature extraction ap-
proaches in the detection of XSS vulnerabilities. The reason for the superiority of proposed
approach can be attributed to the consideration of the context-sensitivity of user input in
determining feature set. The proposed approach can assist the web software engineers to
detect the probable vulnerable code files during development life cycle and save their time by
focusing more on only those files to mitigate the vulnerabilities.

The certain limitations of the approach and the results are as follows: First, the pro-
posed approach could be used to detect reflected and stored XSS vulnerability-prone files and
does not work for DOM XSS vulnerability-prone files. Second, in our experimental work,
all the performance measures results are obtained using default parameter setting of the
machine-learning algorithms. Though, the efficiency of these models may vary by changing
the parameters values. However, we have not attempted to identify the most efficient pa-
rameter settings of the prediction models. As our objective is to determine the usefulness
of proposed features in the vulnerability-detection task, which are already justified in the
results and discussion section. In future, the same approach will be exercised to analyze SQL
Injection vulnerabilities.
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