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Web service is an important technology for constructing distributed applications. In order to provide more 
complex functionalities, services can be reused by applying service composition. A service composition can 
be designed and implemented through a centralization or decentralization strategy. When observing the 
decentralized service composition, several researchers found out that this kind of compositions has its own 
advantages. These findings promote the development of approaches for designing, implementing and 
applying decentralized service compositions. Process partitioning is a topic about dividing a process into a 
collection of small parts. The technique is applicable to partitioning a process in a centralized service 
composition, and the result can provide support to constructing a decentralized service composition. This 
paper presents a technique of process partitioning. The technique can be used for constructing decentralized 
service compositions, and it provides a graph transformation based approach to reorganizing a process which 
is represented as a process structure graph. Compared to existing approaches, the technique can partition 
well-structured and unstructured processes. Some issues about decentralized service compositions and 
performance tests of service compositions are discussed in this paper. Experimental results show that, when 
compared with the centralized service composition, the decentralized service composition can have lower 
average response time and higher throughput in runtime environment. 

Key words: process partitioning, graph transformation based algorithm, typed directed graphs 
Communicated by: B. White & O. Pastor 

 

1 Introduction  

Service-oriented architecture (SOA) is a paradigm for building distributed applications. The architecture 
requires that system components are built on web services. Service-based components in an application 
are assembled with little effort into a network of services that can be loosely coupled to create flexible 
dynamic business processes and agile applications [1]. When technicians design distributed applications 
which can be easily developed, managed and extended, services with smaller size are proposed and 
applied. These services are called as microservices, and they also promote the development of 
microservice architecture (MSA) [2]. Microservices in MSA-based applications have the following 
characteristics [3]: small in size, messaging enabled, bounded by contexts, autonomously developed, 
independently deployable, decentralized, built and released with automated processes. 

Service composition encourages and enables reusing existing services for providing more complex 
functionalities. Service orchestration and service choreography are two basic forms of service 
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composition [4]. The composition of services in an orchestration is controlled by a central component. 
Compared to it, service choreography does not need a central controller. It describes participating 
services from a global viewpoint, and then implements composition by exchanging messages. For SOA, 
WS-BPEL [5] is a service orchestration language, and WS-CDL [6] is a famous solution for service 
choreography. Both composition forms can be applied in MSA-based systems. But in MSA world, 
service choreography may have more “playgrounds” than before, since decentralization is a core 
characteristic of microservices. 

 

Figure 1 Service composition examples 

Decentralized service composition is a special service composition technique, and it may cover the 
following topics [7, 8, 9, 10]: designing decentralized composite services, decentralizing service 
orchestrations, deploying participating services, executing compositions, and others. This technique 
improves modularity of application systems. In addition, for a MSA-based application, it supports 
applying multiple different smaller services, and it can make development easier. The configuration of 
a decentralized service composition is different from that of a centralized composition. One example is 
shown in Figure 1. For a given task, the composition in Figure 1 (a) uses “Service1” as a controller. After 
sending a request “o1”, the controller requires message “i” for generating requests “o2” and “o3”, which 
can initiate “Service3” and “Service4” respectively. As shown in Figure 1 (b), the composition can be 
organized without a control component. In the decentralized composition, “Service1'” only needs to send 
a request “o1” (to “Service2'”), and then “Service2'” can initiate “Service3” and “Service4”. The 
example shows that centralized and decentralized compositions have different structures, and their 
participating services can have different functionalities. Existing research results show that if a 
decentralized service composition has reasonable structure, and all operational services are deployed 
properly, the composition may reduce network traffic [8], increase throughput of server [9], and reduce 
response time [10] when compared with the centralized service composition. 

A process is a description about the execution of composite services in a composition. A process 
can be treated as an object in a process management system, or it can be implemented as a working 
component. When a process is represented as a directed graph, a well-structured process means that 
every node with multiple outgoing edges (a split) has a corresponding node with multiple incoming 
edges (a join), and vice versa, such that the set of nodes between the split and the join induces a single 
entry single exit (SESE) region [12]; in addition, the well-structuredness requires that a split and its 
corresponding join (or a join and its corresponding split) must have same type, i.e. if the split is an or-
split, the join must be an or-join; and if the split is an and-split, the join must be an and-join [13]. If the 
well-structured condition cannot be satisfied, the process is unstructured. Figure 2 shows some process 
examples. Process in Figure 2 (a) is unstructured, since node “E” is an or-split (which is represented as 
a triangle), and node “F” is an and-join (which is represented as a thin rectangle). The structure will lead 
deadlock, since node “F” will never work when the process is running. Process in Figure 2 (b) is 
unstructured, since node “F” is an and-split (which is represented as a thin rectangle), and “E” is an or-
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join (which is represented as a triangle). The structure will leave instances of “B” or “C” when the 
process is finished. Process in Figure 2 (c) is a well-structured process, since node “E1” and “E2” are 
or-split and or-join respectively, and node “B” or “C” can induce a SESE region. Process in Figure 2 (d) 
is a well-structured process, since node “F1” and “F2” are and-split and and-join respectively, and node 
“B” or “C” can induce a SESE region. Well-structured processes can be executed normally. However, 
not all processes in applications are well-structured, and researchers also have found out that not all 
unstructured processes can lead to deadlock or leave multiple instances of activity after they are finished 
[13]. 

 

Figure 2 Well-structured and unstructured process examples 

Process partitioning has been discussed in several researches. For example, paper [11] proposed an 
algorithm for transforming centralized workflow into decentralized work processes; and authors of paper 
[9] developed an approach for partitioning a composite web service written as a single BPEL program 
into an equivalent set of decentralized sub-programs. For different purposes, a process can be partitioned 
by using different methods, and the results also have different forms. Process partitioning can be applied 
in constructing decentralized service compositions, since partitioning a process will enforce reorganizing 
the configuration of a service composition. Many proposed approaches can be applied in partitioning 
well-structured processes for organizing decentralized service compositions. However, if a process is 
unstructured, it has to be restructured before applying those approaches. 

This paper proposes a technique of partitioning process for constructing decentralized service 
compositions. Unlike other existing approaches, the technique can handle unstructured and well-
structured processes. The technique represents a process as a typed directed graph, and forms a 
corresponding process structure graph (PSG) for the process model. The technique also has a graph 
transformation based algorithm for grouping nodes in a PSG. The output of the algorithm can provide a 
solution for partitioning the process. Technical issues about decentralized service compositions and 
performance tests are also discussed in this paper. Experimental results show that the decentralized 
composition can have lower average response time and higher throughput when compared to the 
centralized composition. 

The rest of this paper is organized as follows. Section 2 summarizes some related works. Section 3 
introduces basic tools and foundations of the technique. Section 4 presents the technique of process 
partitioning. Some issues about constructing decentralized service compositions are discussed in section 
5, and this section also provides experimental results of the performance test of service compositions. 
Section 6 concludes the whole paper. 
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2 Related works 

Techniques which are closely related to process partitioning and decentralized service compositions can 
be found in several researches. As mentioned before, a process can be partitioned by using different 
methods, and the results also have different forms for different purposes.  

At the program level, program slicing is a source code analysis and manipulation technique, and it 
is used to identify sub-programs according to certain slicing criterions [23]. It’s well known that program 
slicing can be transformed to a graph reachability problem, so reachability analysis in program 
dependence graphs (PDGs) [24] is a common method for program slicing [23]. Program slicing has been 
applied in the following fields [23]: testing and debugging, refactoring, reverse engineering, reuse, 
program optimization, and others. 

In enterprise applications, the technique of decentralized workflow is discussed for enabling 
distributed workflow applications and management. Paper [11] presented a scalable, rigorously founded 
approach to enterprise-wide workflow management, based on the distributed execution of state and 
activity charts. An algorithm of workflow partitioning is proposed in [11], and the algorithm can partition 
a workflow specification which is represented by using state and activity charts. In the research of [10], 
a decentralized workflow model is presented. In the model, a workflow is divided into partitions called 
self-describing workflows, and handled by a light weight workflow management component, called the 
workflow stub, located at each organization. A workflow partitioning algorithm is also proposed in [10], 
and the algorithm is designed on the basis of finding sub-graphs in a graph-based workflow model. 
Researchers also proposed a dependency table based methodology for transforming a centralized process 
specification into a form that is amenable to a distributed execution and to incorporate the necessary 
synchronization between different processing entities [22].  

In the world of web services, proposals have been made to decentralize the service composition 
execution. An intuitive approach is proposed for partitioning a composite web service written as a single 
BPEL program into an equivalent set of decentralized sub-programs [9]. The work in paper [9] uses a 
threaded control flow graph (TCFG) to model a process, and generates a program dependence graph 
(PDG) of the process. Based on the PDG, an algorithm for merging portable tasks is proposed, and the 
decentralization of a web service composition can be formed on the output of the algorithm. A process 
can also be partitioned according to its working conditions. A method presented in [25] can form 
partitions of a process by selecting activities, and the selection takes the following properties into account: 
communication costs between partitions and Quality of Service (QoS) of services.  

Compared to these works, the technique presented in this paper has its own characteristics. It is 
developed on the basis of typed graphs and graph transformation. The approaches in the technique can 
describe and partition a well-structured or unstructured process directly and intuitively. 

3 Preliminaries 

This section introduces typed directed graphs and graph transformation. For clarity, the concepts are 
introduced by using category-based tools. Another topic in this section is the program structure tree, and 
it will be used in Section 4. 
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3.1 The category of typed directed graphs 

A typed directed graph is a directed graph, whose vertices and edges have different types. The definition 
of a directed graph is summarized as follows. 

Definition 1 (directed graph and digraph homomorphism) [15]: a directed graph (or a digraph) G is 
a quadruple (𝑉, 𝐸, 𝑠𝑟𝑐, 𝑡𝑔𝑡), where V is the vertex set of G; E is the directed edge set of G; 𝑠𝑟𝑐: 𝐸 → 𝑉 
is the source function, and 𝑡𝑔𝑡: 𝐸 → 𝑉 is the target function.  

If 𝐺 = (𝑉, 𝐸, 𝑠𝑟𝑐, 𝑡𝑔𝑡) and 𝐺′ = (𝑉′, 𝐸′, 𝑠𝑟𝑐′, 𝑡𝑔𝑡′) are two digraphs, a homomorphism from G to G' 
is a map 𝑓: 𝐺 → 𝐺′, which includes two functions 𝑓଴: 𝑉 → 𝑉′ and 𝑓ଵ: 𝐸 → 𝐸′ such that the following 
diagrams commute: 

 

Based on the digraph, a typed digraph is defined as follows. 

Definition 2 (typed digraph and typed digraph homomorphism): a typed digraph 𝐺෨  is a triple 
(𝐺, 𝑇, 𝜏), where: 

(1) G is the underlying directed graph;  

(2) 𝑇 ∶= (𝑇௏ , 𝑇ா) is the type set for G, and TV, TE are the type sets for vertices and edges in G 
respectively; 

(3) 𝜏 ≔ (𝜏௏ , 𝜏ா) is the typing function with 𝜏௏: 𝑉 → 𝑇௏  and 𝜏ா: 𝐸 → 𝑇ா. 

For two typed digraphs 𝐺෨ = (𝐺, 𝑇, 𝜏), 𝐺෨′ = (𝐺′, 𝑇′, 𝜏′) and a homomorphism 𝑓 = (𝑓଴, 𝑓ଵ): 𝐺 → 𝐺′, a 
homomorphism from 𝐺෨ to 𝐺෨′ is a map 𝑓ሚ: 𝐺෨ → 𝐺෨′ which includes function 𝑓ሚ଴: 𝜏௏(𝑉) → 𝜏ᇱ

௏ᇲ(𝑓଴(𝑉)) and 
𝑓ሚଵ: 𝜏ா(𝐸) → 𝜏ᇱ

ாᇲ(𝑓ଵ(𝐸)). 
 

Graph transformation is a technique of rule-based modification of graphs [14]. The most common 
approaches can be double-pushout (DPO) based, single-pushout (SPO) based, and others. For two 
morphisms with one common domain in a category, a diagram can be formed on the basis of these 
morphisms, and a pushout is a colimit of the diagram. The definition is summarized in Definition 3. 

Definition 3 (pushout) [15]: it supposes that two morphisms 𝑓: 𝐴 → 𝐵 and 𝑔: 𝐴 → 𝐶 can be given 
in a category C, where A, B and C are objects of C, i.e. 𝐴, 𝐵, 𝐶 ∈ 𝑂𝑏(𝑪). The pushout of f and g includes 
an object D and two morphisms 𝑖଴: 𝐵 → 𝐷 and 𝑖ଵ: 𝐶 → 𝐷 in category C such that: 

(1) 𝑖଴ ∘ 𝑓 = 𝑖ଵ ∘ 𝑔; 

(2) for any object E, and two morphisms ℎ: 𝐵 → 𝐸, 𝑗: 𝐶 → 𝐸 in category C with ℎ ∘ 𝑓 = 𝑗 ∘ 𝑔, there 
is a unique morphism 𝑖: 𝐷 → 𝐸, and two morphisms ℎ = 𝑖 ∘ 𝑖଴, 𝑗 = 𝑖 ∘ 𝑖ଵ can be get. 

 

The SPO graph transformation is defined on a pushout diagram. Each transformation depends on a 
transformation rule, and the rule can contribute to generating a new graph from the original graph. 
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Definition 4 (rule based graph transformation) [16, 17]: a transformation rule is a partial morphism 
𝑟: 𝐿 → 𝑅, where L and R are left side and right side of the rule r respectively. A match for the rule r into 
graph G is a total morphism 𝑚: 𝐿 → 𝐺.  

For a given rule 𝑟: 𝐿 → 𝑅 and a match 𝑚: 𝐿 → 𝐺, if the graph G can be transformed into graph H, 
then H is an object in the pushout of r and m, i.e. the following diagram commutes: 

 
 

A category can be formed for typed digraphs, and the category contains a collection of typed 
digraphs and morphisms.  

Definition 5 (the category of typed digraphs): the category of typed digraphs, which is denoted as 
DGrphT, consists of the following entities: 

(1) a collection 𝑂𝑏(𝑫𝑮𝒓𝒑𝒉𝑻), whose elements are typed digraphs; 

(2) for any typed digraphs 𝐺෨, 𝐻෩ ∈ 𝑂𝑏(𝑫𝑮𝒓𝒑𝒉𝑻), a set 𝐻𝑜𝑚൫𝐺෨, 𝐻෩൯, which is a set of morphisms 

from 𝐺෨ to 𝐻෩; a morphism from 𝐺෨ to 𝐻෩ is a homomorphism from 𝐺෨ to 𝐻෩; 

(3) for every 𝐺෨ ∈ 𝑂𝑏(𝑫𝑮𝒓𝒑𝒉𝑻), an identity morphism on 𝐺෨; the morphism is denoted as 𝚤𝑑෩ ෨ீ ,and 
𝚤𝑑෩ ෨ீ ∈ 𝐻𝑜𝑚(𝐺෨, 𝐺෨); 

(4) for every three typed graphs 𝐺෨, 𝐻෩, 𝐼ሚ ∈ 𝑂𝑏(𝑫𝑮𝒓𝒑𝒉𝑻) , a binary operation ∘: 𝐻𝑜𝑚൫𝐻෩, 𝐼ሚ൯ ×

𝐻𝑜𝑚൫𝐺෨, 𝐻෩൯ → 𝐻𝑜𝑚(𝐺෨, 𝐼ሚ), which is called as the composition of morphisms; a composition of 𝑚෥ : 𝐺෨ →

𝐻෩ and 𝑛෤: 𝐻෩ → 𝐼ሚ is written as 𝑛෤ ∘ 𝑚෥ . 

Based on the entities above, the following rules must be satisfied: 

(a) for any morphism 𝑚෥: 𝐺෨ → 𝐻෩ and 𝐺෨, 𝐻෩ ∈ 𝑂𝑏(𝑫𝑮𝒓𝒑𝒉𝑻), 𝑚෥ ∘ 𝚤𝑑෩ ෨ீ = 𝑚෥  and 𝚤𝑑෩ ு෩ ∘ 𝑚෥ = 𝑚෥  can be 
get; 

(b) for any three morphisms 𝑚෥ : 𝐺෨ → 𝐻෩ , 𝑛෤: 𝐻෩ → 𝐼ሚ , 𝑜෤: 𝐼ሚ → 𝐽ሚ  and 𝐺෨, 𝐻෩, 𝐼ሚ, 𝐽ሚ ∈ 𝑂𝑏(𝑫𝑮𝒓𝒑𝒉𝑻) , 𝑜෤ ∘

(𝑛෤ ∘ 𝑚෥) = (𝑜෤ ∘ 𝑛෤) ∘ 𝑚෥  can be get.  
 

In DGrphT, the following colimits can be found. 

Proposition 1: DGrphT has coproducts. 

Proof: It supposes that 𝐺෨ଵ = (𝐺ଵ, 𝑇ଵ, 𝜏ଵ) and 𝐺෨ଶ = (𝐺ଶ, 𝑇ଶ, 𝜏ଶ) are two typed digraphs in DGrphT, 
where 𝐺ଵ = (𝑉ଵ, 𝐸ଵ, 𝑠𝑟𝑐ଵ, 𝑡𝑔𝑡ଵ) , 𝑇ଵ = (𝑇௏

ଵ, 𝑇ா
ଵ) , 𝜏ଵ = (𝜏௏

ଵ , 𝜏ா
ଵ) ; and 𝐺ଶ = (𝑉ଶ, 𝐸ଶ, 𝑠𝑟𝑐ଶ, 𝑡𝑔𝑡ଶ) , 𝑇ଶ =

(𝑇௏
ଶ, 𝑇ா

ଶ), 𝜏ଶ = (𝜏௏
ଶ, 𝜏ா

ଶ). 

Let 𝐺෨  be the disjoin union of 𝐺෨ଵ  and 𝐺෨ଶ , i.e. 𝐺෨ ≔ 𝐺෨ଵ⨆𝐺෨ଶ . For 𝐺෨ , the underlying digraph G is 
(𝑉ଵ⨆𝑉ଶ, 𝐸ଵ⨆𝐸ଶ, {𝑠𝑟𝑐ଵ, 𝑠𝑟𝑐ଶ}, {𝑡𝑔𝑡ଵ, 𝑡𝑔𝑡ଶ}), the type set T is (𝑇௏

ଵ⨆𝑇௏
ଶ, 𝑇ா

ଵ⨆𝑇ா
ଶ), and the typing function 𝜏 

is ({𝜏௏
ଵ , 𝜏௏

ଶ}, {𝜏ா
ଵ , 𝜏ா

ଶ}) . For 𝐺෨ଵ  and 𝐺෨ଶ , two inclusion morphisms 𝜄ଵ̃: 𝐺෨ଵ → 𝐺෨  and 𝜄ଶ̃: 𝐺෨ଶ → 𝐺෨  can be 
defined. 

For any other cospan 𝐺෨ଵ

ప̃
→ 𝐺෨′

ఫ̃
← 𝐺෨ଶ, there is a morphism 𝑠̃௜,௝: 𝐺෨ → 𝐺෨ ′ such that 𝚤̃ = 𝑠̃௜,௝ ∘ 𝜄ଵ̃ and 𝚥̃ =

𝑠̃௜,௝ ∘ 𝜄ଶ̃. If there is another morphism 𝑚෥: 𝐺෨ → 𝐺෨′ such that 𝚤̃ = 𝑚෥ ∘ 𝜄ଵ̃ and 𝚥̃ = 𝑚෥ ∘ 𝜄ଶ̃, then 𝑚෥ = 𝑑 ∘ 𝑠̃௜,௝ 

L 
r 

R 

G H 
r' 

m m' 
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and 𝑠̃௜,௝ = 𝑑′ ∘ 𝑚෥  can be defined. In the case of 𝑚෥ = 𝑑 ∘ 𝑠̃௜,௝, since 𝑠̃௜,௝ ∘ 𝜄ଵ̃ = 𝚤̃ = 𝑚෥ ∘ 𝜄ଵ̃ =  𝑑 ∘ 𝑠̃௜,௝ ∘ 𝜄ଵ̃, 
so d is an identity morphism. Similarly, in the case of 𝑠̃௜,௝ = 𝑑′ ∘ 𝑚෥ , since 𝑚෥ ∘ 𝜄ଵ̃ = 𝚤̃ = 𝑠̃௜,௝ ∘ 𝜄ଵ̃ = 𝑑′ ∘

𝑚෥ ∘ 𝜄ଵ̃, so d' is an identity morphism.  

Therefore, 𝑠̃௜,௝ is unique, and 𝐺෨ is a coproduct of 𝐺෨ଵ and 𝐺෨ଶ. 
 

Proposition 2: DGrphT has coequalizers. 

Proof: It supposes that 𝐺෨ଵ = (𝐺ଵ, 𝑇ଵ, 𝜏ଵ) and 𝐺෨ଶ = (𝐺ଶ, 𝑇ଶ, 𝜏ଶ) are two typed digraphs in DGrphT, 
and 𝑓ሚ, 𝑔෤  are two parallel morphisms from 𝐺෨ଵ  to 𝐺෨ଶ , i.e. 𝑓ሚ, 𝑔෤: 𝐺෨ଵ → 𝐺෨ଶ . Let 𝐺෨ = (𝐺, 𝑇, 𝜏) be a typed 
diagraph and a morphism 𝑐̃: 𝐺෨ଶ → 𝐺෨ in DGrphT such that 𝑐̃ ∘ 𝑓ሚ = 𝑐̃ ∘ 𝑔෤. 

Since 𝑐̃: 𝐺෨ଶ → 𝐺෨, an equivalence relation 𝑐̃(𝑒) = 𝑐̃(𝑒′) can be found on 𝐺෨ଶ, where e and e' are typed 
edges in 𝐺෨ଶ. Considering that 𝑐̃ ∘ 𝑓ሚ = 𝑐̃ ∘ 𝑔෤, equivalence relation 𝑓ሚ(𝑥)~ 𝑔෤(𝑥) can be get, and the x is 
any one of typed edges in 𝐺෨ଵ. For the diagram, a new typed digraph 𝐺෨′  and 𝑞෤: 𝐺෨ଶ → 𝐺෨′  can be generated. 
Each typed edge in 𝐺෨′ is corresponding to an equivalence class of ~, so 𝑞෤ ∘ 𝑓ሚ = 𝑞෤ ∘ 𝑔෤.  

A morphism 𝑛෤: 𝐺෨′ → 𝐺෨ for 𝑐̃ = 𝑛෤ ∘ 𝑞෤ can be defined. If there is another morphism 𝑛෤′: 𝐺෨′ → 𝐺෨ that 
satisfies 𝑐̃ = 𝑛෤′ ∘ 𝑞෤ , then 𝑛෤ = 𝑑 ∘ 𝑛෤′ and 𝑛෤ᇱ = 𝑑′ ∘ 𝑛෤  can be defined. For 𝑛෤ = 𝑑 ∘ 𝑛෤′, d is an identity 
morphism, since 𝑑 ∘ 𝑛෤ᇱ ∘ 𝑞෤ = 𝑛෤′ ∘ 𝑞෤; and for 𝑛෤ᇱ = 𝑑′ ∘ 𝑛෤, d' is an identity morphism, since 𝑑ᇱ ∘ 𝑛෤ ∘ 𝑞෤ =

𝑛෤ ∘ 𝑞෤. 

Therefore, 𝑛෤ is unique, and 𝐺෨′ together with morphism 𝑞෤ is a coequalizer of 𝑓ሚ and 𝑔෤. 
 

A pushout in DGrphT can be formed on the basis of a coproduct and a coequalizer. 

Proposition 3: DGrphT has pushouts.  

Proof: it supposes that 𝑓ሚ: 𝐴ሚ → 𝐵෨  and 𝑔෤: 𝐴ሚ → 𝐶ሚ  are two morphisms in DGrphT, where 𝐴ሚ, 𝐵෨, 𝐶ሚ ∈

𝑂𝑏(𝑫𝑮𝒓𝒑𝒉𝑻). Let 𝐷෩ ≔ 𝐵෨⨆𝐶ሚ be a coproduct of 𝐵෨  and 𝐶ሚ, and the inclusion morphisms are 𝜄ଵ̃: 𝐵෨ → 𝐷෩ 
and 𝜄ଶ̃: 𝐶ሚ → 𝐷෩. 

The pushout of 𝑓ሚ and 𝑔෤ can be formed by using the coequalizer of 𝜄ଵ̃ ∘ 𝑓ሚ and 𝜄ଶ̃ ∘ 𝑔෤. Let 𝐸෨  together 
with morphism 𝑒̃: 𝐷෩ → 𝐸෨  be the coequalizer of 𝜄ଵ̃ ∘ 𝑓ሚ and 𝜄ଶ̃ ∘ 𝑔෤, the pushout of 𝑓ሚ and 𝑔෤ consists of (1) 
the object 𝐸෨ , (2) morphism 𝑒̃ ∘ 𝜄ଵ̃: 𝐵෨ → 𝐸෨  and 𝑒̃ ∘ 𝜄ଶ̃: 𝐶ሚ → 𝐸෨ .  

 

Above propositions show that pushouts exist in DGrphT, so the SPO graph transformation can be 
applied on typed digraphs.  

3.2 The program structure tree 

A program structure tree (PST) is a hierarchical representation of a program structure, and it is created 
on the basis of single entry single exit (SESE) regions of a control flow graph [18]. In a PST, nodes are 
SESE regions, and directed edges represent the nesting relationships of SESE regions. 

A SESE region is defined on the concepts of dominate and post-dominate of edges in a control flow 
graph. An edge x dominates y means that if V is the target vertex of the edge y, every path from entry 
vertex to V includes x; similarly, an edge y post-dominates edge x means that if W is the source vertex 
of the edge x, very path from W to the exit vertex includes y.  
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Definition 6 (SESE region) [18]: a single entry single exit (SESE) region in a control flow graph is 
an ordered edge pair (a, b) of distinct control flow edges a and b where 

(1) a dominates b; 

(2) b post-dominates a; 

(3) every cycle containing a also contains b and vice versa. 
 

A SESE region (x, y) is canonical means that y dominates z for any SESE region (x, z) and x post-
dominates w for any SESE region (w, y) [18]. Two canonical regions are either nested or disjoint [18]. 
Moreover, A vertex v is contained within a SESE region (a, b) if v dominates b and post-dominates a. 

4     Process partitioning 

A technique of process partitioning is introduced in this section. The idea has the following steps: (1) 
modelling a process by using a typed digraph; (2) constructing a process structure graph for the process 
model; (3) grouping nodes in the process structure graph; (4) partitioning the process according to the 
node groups in the process structure graph.  

4.1 Process modelling 

A basic process model contains activities and dependences. The activities are functions and the 
dependencies are execution-order constraints between activities. Dependences in a process model can 
be classified as control dependences or data dependences. In a graph-based process model, activities are 
represented as vertices, and dependences are represented as directed edges. For complex control 
structures, gateways are controllers of diverging or converging control dependences. There are four kinds 
of gateways: fork, split, join and merge. A fork gateway has one incoming edge, and it can enable two 
or more outgoing edges; the gateway has to ensure that all outgoing edges are enabled concurrently. A 
split gateway has one incoming edge, and it can enable one edge from multiple alternative outgoing 
edges; the gateway has to ensure that only one outgoing edge can be enabled. A join gateway has two or 
more parallel incoming edges, and it can enable one outgoing edge; the gateway has to ensure that the 
outgoing edge can be enabled only after all incoming edges have been enabled. A merge gateway has 
two or more incoming edges, and it can enable one outgoing edge; the gateway has to ensure that the 
outgoing edge can be enabled after one of incoming edges has been enabled. 

Definition 7 (process model): a process model 𝑃෨ is a typed digraph, i.e. 𝑃෨: = (𝑃𝐺, 𝑇, 𝜏), where 

(1) 𝑃𝐺 = (𝑉, 𝐸, 𝑠𝑟𝑐, 𝑡𝑔𝑡) is the underlying directed graph of 𝑃෨; for PG, V is the set of vertices; E is 
the set of edges; 𝑠𝑟𝑐: 𝐸 → 𝑉 is the source function, and 𝑡𝑔𝑡: 𝐸 → 𝑉 is the target function.  

An element of V is one of the following kinds: activity, entry, exit, fork, join, split, and merge. An 
activity is a vertex with exactly one incoming edge and exactly one outgoing edge. An entry vertex has 
exactly one outgoing edge and no incoming edges. On the contrary, if a vertex has exactly one incoming 
edge and no outgoing edges, then the vertex is an exit. Gateway fork or split is a vertex with exactly one 
incoming edge and more than one outgoing edges. Gateway join or merge is a vertex with more than one 
incoming edges and exactly one outgoing edge. 
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(2) 𝑇 = (𝑇௏ , 𝑇ா)  is the type set for PG; for T, 𝑇௏ ≔ {"𝑓𝑖𝑥𝑒𝑑", "𝑝𝑜𝑟𝑡𝑎𝑏𝑙𝑒"}  is the type set for 
vertices, and 𝑇ா ≔ {"𝑐𝑜𝑛𝑡𝑟𝑜𝑙", "𝑑𝑎𝑡𝑎"} is the type set for edges. 

(3) 𝜏 = (𝜏௏ , 𝜏ா) is the typing function with  𝜏௏: 𝑉 → 𝑇௏  and 𝜏ா: 𝐸 → 𝑇ா. 

Besides these, a process model should have only one entry and one exit. 
 

 

Figure 3 A process model 

In Definition 7, a fixed vertex in a process means that the vertex can interact with outer environment; 
and a portable vertex means that it is an internal operation. Figure 3 shows a process model. The model 
has fixed vertices {𝐹0, 𝐹1, … , 𝐹4}  and portable vertices {𝐸𝑛𝑡𝑟𝑦, 𝐸𝑥𝑖𝑡, 𝑃0, … , 𝑃6} . Among these 
vertices, P0 is a split; P1, P2 are forks; P4, P5 are two merges, and P6 is a join. The solid arrows in the 
model are control dependences, and dashed arrows are data dependences. The structure of the model is 
unstructured according to the propositions in [12, 13], but it can be executed normally. 

According to the work of [18], canonical SESE regions can be generated on Figure 3. Figure 4 (a) 
displays SESE regions of the process model in Figure 3. Since SESE regions are defined on the control 
dependences, data dependences in Figure 3 have been hidden in Figure 4 (a). All generated SESE regions 
can be represented as a PST, and the PST of Figure 4 (a) is summarized in Figure 4 (b). 

 

Figure 4 SESE regions and the PST of the process model in Figure 3 

Definition 8 (process structure graph): for a process model, a process structure graph (PSG) is a 
PST [18] based typed digraph. Besides the PST, a PSG has the following constitutions: 

(1) all vertices in a SESE region; this means that a vertex in a PSG is a SESE region, or it is a vertex 
in the process model; 

(2) all data dependences, and incoming, outgoing control flow edges of gateways in the process 
model. 
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Formally, a PSG 𝑆ሚ is a typed digraph, i.e. 𝑆ሚ ∶= (𝑆, 𝑇ௌ, 𝜏ௌ), where: 

(i) 𝑆 = (𝑉ௌ, 𝐸ௌ, 𝑠𝑟𝑐ௌ , 𝑡𝑔𝑡ௌ) is the underlying digraph of 𝑆ሚ; the vertices of S are SESE regions and 
some of vertices of a process model; the directed edges of S are branches of the PST, data dependences 
and some of control dependences in the process model; function 𝑠𝑟𝑐ௌ: 𝐸ௌ → 𝑉ௌ and 𝑡𝑔𝑡ௌ: 𝐸ௌ → 𝑉ௌ are 
the source and target functions; 

(ii) 𝑇ௌ = (𝑇௏
ௌ, 𝑇ா

ௌ) is the type set for S; for Ts, 𝑇௏
ௌ is the type set for vertices, and 𝑇ா

ௌ is the type set 
for directed edges; the sets are defined as follows: 

𝑇௏
ௌ ≔ {"𝑓𝑖𝑥𝑒𝑑", "𝑝𝑜𝑟𝑡𝑎𝑏𝑙𝑒", "𝑢𝑛𝑡𝑦𝑝𝑒𝑑"} 
𝑇ா

ௌ ≔ {"𝑐𝑜𝑛𝑡𝑟𝑜𝑙", "𝑑𝑎𝑡𝑎", "𝑏𝑟𝑎𝑛𝑐ℎ"} 

(iii) 𝜏ௌ ≔ (𝜏௏
ௌ, 𝜏ா

ௌ) is the typing function with 𝜏௏
ௌ: 𝑉ௌ → 𝑇௏

ௌ and 𝜏ா
ௌ: 𝐸ௌ → 𝑇ா

ௌ. 
 

A PSG records the control dependences whose target vertices or source vertices are gateways in a 
process model. But for those control dependences whose target and source vertices are not gateways, 
they will be omitted in a PSG. According to Definition 8, a PSG can be generated easily on the basis of 
a PST. Figure 5 demonstrates a PSG example. In the Figure, a SESE region is represented as a solid box, 
and a process element is represented as a dashed box. Branches of the PST in Figure 5 are represented 
as solid arrows; data dependences are represented as dashed arrows; and control dependences are dotted 
arrows. 

 

Figure 5 A PSG of the process model in Figure 3 

In a PSG, if a directed edge is a PST branch, then its type is “branch”; if an edge is dependence in 
the process model, then the type can be “data” (dependence) or “control” (dependence). For an initiated 
PSG, if a PST vertex has multiple children nodes, the vertex is typed as “untyped”. Except for “untyped”, 
the type (“fixed” or “portable”) of a vertex is inherited from the type of the vertex in the process model. 
In Figure 5, root and 0 are untyped vertices; F0, F1, …, F4 are fixed vertices; and P0, P1, …, P6 are 
portable vertices. 
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4.2 An algorithm for grouping nodes in a PSG 

Vertices in a PSG can be reorganized by grouping portable vertices and a fixed vertex together. 
Following the discussion in Section 3.1, the SPO graph transformation can be applied in the work of 
grouping. Figure 6 lists 9 transformation rules for grouping vertices in a PSG. As shown in the figure, 
the left side and the right side of a rule are restricted in cells with dashed lines. A branch in a rule is 
represented as a solid arrow. Data dependence in a rule is represented as a dashed arrow, and control 
dependence is represented as dotted arrow. The type of a vertex is marked with label “:”. A fixed vertex 
in a rule has a type label “:f”; a portable vertex has a type label “:p”; and the label “:u” in a rule means 
that the corresponding vertex is an untyped vertex. 

 

Figure 6 Transformation rules for a PSG 

Some vertices in the rules of Figure 6 have label “:*”. The label means that the type can be “fixed” 
or “portable”. A concrete type that the label “:*” stands for can’t be changed from the left side to the 
right side of the rule in a transformation. Vertices without labels in Rule 1 and Rule 2 are arbitrary 
vertices. These vertices and their types also can’t be changed when the rule is being applied. 

Considering that the homomorphism is a structure-preserved morphism, in Figure 6, the right sides 
of rules can have more elements except for Rule 9. Take the Rule 3 as an example. A fully detailed form 
of it is shown in Figure 7. Compared to the Rule 3 in Figure 6, the right side of Rule 3 in Figure 7 has a 
directed edge. However, the edge can be hidden safely, and it will not be used in the future working 
steps. Therefore, the rules in Figure 6 have already hidden the unnecessary edges. 

 

Figure 7 Fully detailed form of Rule 3 in Figure 6 
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For a SESE region (a, b), if the target node of a is a fork gateway, the region (a, b) is called as “fork-
region” in this paper; and if the target node of a is not a fork gateway, the region (a, b) is called as “non-
fork-region”. According to the rules in Figure 6, an algorithm of grouping nodes can be designed as 
follows. 

Algorithm 1 (the node grouping algorithm for a PSG): 

Input: a process structure graph 

Output: a typed digraph 

The procedure: 

(1) denote value 0 as the depth of node root; 

(2) get the depth value N of the PST of the input PSG; 

(3) set an indicator cur by using value N-1; 

(4) for any node v with depth cur, all children nodes of v are merged by applying the following rules 
sequentially (each rule can be applied repeatedly until the rule is unable to be applied, and the merged 
nodes have to be recorded whenever a rule is applied): (i) Rule 1; (ii) Rule 2; (iii) Rule 4; (iv) Rule 5; 
(v) Rule 6. 

 (5) if cur > 0, then none-fork-regions with depth cur are merged into nodes with depth cur-1 by 
applying Rule 3; after applying Rule 3, all children nodes of a none-fork-region should be recorded as 
children nodes of the generated node; 

(6) cur = cur-1; 

(7) if cur > -1, the procedure goes to step (4); otherwise, the procedure goes to next step; 

(8) cur = N-1; 

(9) if cur > 0, then fork-regions with depth cur are merged into nodes with depth cur-1 by applying 
Rule 3; after applying Rule 3, all children nodes of a fork-regions should be recorded as children nodes 
of the generated node; 

(10) for any node w with depth cur-1, all children nodes of w are merged by applying the following 
rules sequentially (each rule can be applied repeatedly until the rule is unable to be applied, and the 
merged nodes have to be recorded whenever a rule is applied): (i) Rule 1; (ii) Rule 2; (iii) Rule 4; (iv) 
Rule 5; (v) Rule 6. 

(11) cur = cur-1; 

(12) if cur > 0, the procedure goes to step (9); otherwise, the procedure goes to next step; 

(13) all portable children nodes of root are merged by applying the following rules sequentially 
(each rule can be applied repeatedly until the rule is unable to be applied, and the merged nodes have to 
be recorded whenever a rule is applied): (i) Rule 7; (ii) Rule 8; (iii) Rule 9. 

 (14) output the result. 
 
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Figure 8 Node groups of the PSG in Figure 5  

By applying Algorithm 1, the PSG in Figure 5 are reorganized in the following order: (1) N = 2; (2) 
cur = 1; (3) node P4 and F4 are merged as node “P4, F4” (according to Rule 1); (4) node P5 and F2 are 
merged as node “P5, F2” (according to Rule 1); (5) node P0 and P2 are merged as node “P0, P2” 
(according to Rule 2); (6) node “P0, P2” and P1 are merged as node “P0, P2, P1” (according to Rule 2); 
(7) node P3 and “P5, F2” are merged as node “P3, P5, F2” (according to Rule 6); (8) node 0 and root 
are merged as node root (according to Rule 3); (9) cur = 0; (10) node P6 and F3 are merged as node “P6, 
F3” (according to Rule 1); (11) node F0 and “P0, P2, P1” are merged as node “F0, P0, P2, P1” (according 
to Rule 2); (12) cur = -1; (13) the result is generated, and the program exits. 

 

Figure 9 Two process examples and their node groups 
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Figure 8 shows the result after applying the Algorithm 1 on the PSG in Figure 5. The result contains 
six nodes: “root”, “F0, P0, P2, P1”, “F1”, “P4, F4”, “P3, P5, F2” and “P6, F3”. 

Besides the example above, Algorithm 1 can be applied on other processes. Figure 9 demonstrates 
two more samples. Figure 9 (a) shows a process with a control loop, and the output of the algorithm is 
demonstrated in Figure 9 (c). Algorithm 1 can also handle well-structured process models. Figure 9 (b) 
shows a process example which is designed and demonstrated in paper [9]. The structure of the example 
is well-structured according to the propositions in [12, 13]. Figure 9 (d) displays the result of Algorithm 
1, and the result is same as one of the results in discussion of paper [9]. 

4.3 Partitions of process 

Following Definition 8, a process structure graph can be generated for a process model. After applying 
Algorithm 1, the PSG is reorganized. The reorganized PSG includes nodes and dependences. Each non-
root node in the reorganized PSG can sketch out a partition in the original process model, and the 
dependences in the reorganized PSG are dependences between partitions. Therefore, a result of 
Algorithm 1 can provide a solution for partitioning a process. Take the process model in Figure 3 as an 
example. The process can be divided into five different parts, since there are five non-root nodes in 
Figure 8. For the node “F0, P0, P2, P1” in Figure 8, the corresponding part in the process has four 
components: F0, P0, P2 and P1; for the node “F1”, the corresponding part in the process has one 
component: F1; and components in other parts can be summarized by observing “P4, F4”, “P3, P5, F2” 
and “P6, F3”. According to Figure 8, the partitioned process is shown in Figure 10. 

 

Figure 10 Partitions of the process model in Figure 3 

5     Configurations and performance evaluation of partitioned processes 

In a centralized service composition, a process is implemented as or executed in a central controller 
component. After partitioning, the central controller can be simplified, and the composition should be 
reorganized in runtime environment. This section discusses configuration, implementation, deployment 
and performance issues about decentralized service compositions. 

5.1 Partition configurations 

Web services are basic components of service compositions. A centralized service composition contains 
working services and controller. The controller composes working services according to a process. After 
partitioning the process, the role of controller is replaced by a collection of partitions. The partitions 
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could be implemented as services, and this forces the whole composition to be reorganized. A service 
composition is shown in Figure 11 (a) for the process model in Figure 3. The composition has four 
components. The component “P” is a controller who can cooperate with other services. The component 
“S1”, “S2” and “S4” are working services, and they work with “P” through activity “F1”, “F2” and “F4” 
of the process respectively. The dashed lines in Figure 11 are message links between components. In 
Figure 11 (b), the component “P” is replaced by a collection of partitions (the partitions are shown in the 
Figure 10, and the name of each partition is generated by concatenating the names of participating 
components), and the composition becomes a decentralized composition. 

 

Figure 11 Service compositions for the example 

When deploying a service composition, it may have different configurations for different runtime 
environments. Figure 12 (a), (b) and (c) show examples that the service composition (which is 
demonstrated in Figure 11 (a)) is deployed on two, three and four servers respectively. A decentralized 
service composition can have more configurations. Figure 12 (d), (e) and (f) demonstrate three different 
configurations for deploying the decentralized composition in different environments. 

 

Figure 12 Component configurations of service compositions 
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As shown in Figure 12 (f), services in a decentralized composition can be deployed on totally 
different servers. But this configuration may raise some problems, e.g. additional network load, more 
testing and maintenance works, and others. Therefore, a process partition could be deployed in the same 
environment of the cooperating service. Take the Figure 11 (b) as an example. “F1” can be deployed in 
the working environment of “S1”; “P4F4” can be deployed on the server who contains “S4”; and 
similarly, the “P3P5F2” can be arranged to the server of “S2”. 

Process model has data and control dependences. All dependences should be tracked in a 
decentralized service composition. Considering that services are driven by messages, dependences 
among services are implemented as message links. 

5.2 Runtime performance 

A decentralized service composition does not dependent on a central controller, and this may simplify 
interactions among the services. Therefore, a decentralized composition is possible to improve runtime 
performance when compared with a centralized service composition. In order to show the real situation, 
this section sets up an experiment for evaluating performance of the process models in Figure 3 and 
Figure 10. 

The centralized composition adopts the structure in Figure 11 (a), and all components are 
implemented as follows: 

 Service “S1” collects data and returns a list of numbers. 
 Service “S4” can sort numbers in a list and then selects three data from the list as outputs (for a 

list with length n, the selection is based on the following indices of the list: n-n/2, n/2, n+n/2). 
If the input does not contain data, the service uses a string constant as output. 

 Service “S2” can sort numbers in a list and then selects the minimal, the maximal, and the 
middle numbers of the list as outputs. If the input does not contain data, the service uses a string 
constant as output. 

 Controller “P” is an implementation of process model in Figure 3. Activities in the process is 
designed as follows: “F0” is used to receive requests from clients; “F1”, “F2” and “F4” are used 
to invoke service “S1”, “S2” and “S4” respectively; “F3” is used to send responses to clients; 
and “P3” is set as a data generator. 

The decentralized composition adopts the structure in Figure 11 (b). New components “F0P0P1P2”, 
“F1”, “P3P5F2”, “P4F4” and “P6F3” are implemented as services.  

The experiment uses three computers as servers and one computer as a client. Services are 
implemented as RESTful web services by using Flask-RESTful [19]. Flask-RESTful is an extension for 
Flask framework [20] that adds support for quickly building REST services. The client adopts Apache 
JMeter [21] as a load testing tool for analyzing and measuring the performance of services. The whole 
experimental environment is summarized in Table 1. 

Table 1 Experimental environment 

Participant Hardware condition Software platform Network 
Server1 Intel Core i7-7700 CPU, 16GB RAM Flask-RESTful v0.3.6 

Flask v0.12.2 
 (Runtime Environment: Python v2.7.13) 100Mb LAN 

Server2 Intel Core i5-2410M CPU, 4GB RAM 
Server3 Intel Core i5-3317U CPU, 4GB RAM 

Client Intel Celeron E3300 CPU, 2GB RAM 
JMeter v3.3 

(Runtime Environment: JDK v1.8.0) 
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In the centralized setup (which is following the configuration in Figure 12 (b)), service “P” is 
deployed on Server1; service “S2” is deployed on Server2; and service “S1”, “S4” are deployed on 
Server3. In the decentralized setup (which is following the configuration in Figure 12 (e)), service 
“F0P0P1P2”, “P6F3” are deployed on Server1; service “P3P5F2”, “S2” are deployed on Server2; and 
service “F1, “P4F4”, “S1”, “S4” are deployed on Server3. Service “S1”, “S2” and “S4” are deployed 
only once in the whole experiment, and they are reused in the different compositions. In addition, all 
technical configurations or settings of runtime environments and software platforms are fixed in the 
whole experiment. 

For the testing, sorting functions in “S2” and “S4” are implemented by using sort() method of List 
structure in Python (language). Seven different data sets are selected for the tests, and the size of data 
sets varies from 30 to 60k bytes (30, 10k, 20k, 30k, 40k, 50k and 60k bytes). The client uses multiple 
threads to generate HTTP requests. Considering that gateway “P0” in service “P” or service “F0P0P1P2” 
can lead to different results, each thread in tests creates two requests for two branches of “P0” 
respectively. The number of client threads is fixed in each test, and the ramp-up period of each test is set 
as 60 seconds. The tests vary the number of threads from 120 to 420, i.e. the average request rates vary 
from 4 to 14 requests per second.  

Table 2 Experimental result 1 

Data size 
(bytes) 

Service 
composition 

 
Request rate (requests/minute) 

240 360 480 600 720 840 

40k 
Centralized 

Average response time (milliseconds) 69 69 70 70 70 73 
Throughput (requests/second) 4.0 6.0 8.0 10.0 12.0 14.0 

Decentralized 
Average response time (milliseconds) 41 41 41 41 37 36 

Throughput (requests/second) 4.0 6.0 8.0 10.0 12.0 14.0 

50k 
Centralized 

Average response time (milliseconds) 78 78 79 79 79 828 
Throughput (requests/second) 4.0 6.0 8.0 10.0 12.0 13.2 

Decentralized 
Average response time (milliseconds) 41 41 41 39 36 35 

Throughput (requests/second) 4.0 6.0 8.0 10.0 12.0 14.0 

60k 
Centralized 

Average response time (milliseconds) 74 71 88 87 146 2510 
Throughput (requests/second) 4.0 6.0 8.0 10.0 11.9 12.2 

Decentralized 
Average response time (milliseconds) 40 40 40 36 33 32 

Throughput (requests/second) 4.0 6.0 8.0 10.0 12.0 14.0 

 

Figure 13 Response time variations with different request rates 

Table 2 records results of the tests. The results show that, when handling 40k, 50k and 60k bytes 
data, the decentralized composition has lower average response time and higher throughput than the 

(a) Data size condition: 50k bytes (b) Data size condition: 60k bytes 
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centralized one for the different request rates. Specially, when the size of data set is greater than 50k, 
increasing request rate has a very different impact on compositions. In the case of centralized 
composition, increasing the request rate from 600 to 840 requests per minute causes the average response 
time to rise dramatically due to a decrease in processing capacity; along with the rising of the average 
response time, throughput of the composition degrades. But the impact of request rate is low for the 
decentralized composition. These conclusions are clearly shown in Table 2 and Figure 13. 

Under the conditions of request rates, the changes of average response time and throughput with 
different data sizes are listed in Table 3. The results show that, under the condition of a high request rate, 
the average response time of the centralized composition increases, and the throughput decreases when 
data size increases. But the decentralized composition has better performance when compared with the 
centralized composition.  

Table 3 Experimental result 2 

Request rate 
(requests/minute) 

Service 
composition 

 
Data size (bytes) 

30 10k 20k 30k 40k 50k 60k 

840 
Centralized 

Average response time (milliseconds) 32 41 50 62 73 828 2510 
Throughput (requests/second) 14.0 14.0 14.0 14.0 14.0 13.2 12.2 

Decentralized 
Average response time (milliseconds) 40 38 38 36 36 35 32 

Throughput (requests/second) 14.0 14.0 14.0 14.0 14.0 14.0 14.0 

720 
Centralized 

Average response time (milliseconds) 32 41 51 61 70 79 146 
Throughput (requests/second) 12.0 12.0 12.0 11.9 12.0 12.0 11.9 

Decentralized 
Average response time (milliseconds) 42 41 40 38 37 36 33 

Throughput (requests/second) 12.0 12.0 12.0 12.0 12.0 12.0 12.0 

600 
Centralized 

Average response time (milliseconds) 32 41 51 61 70 79 87 
Throughput (requests/second) 10.0 10.0 10.0 10.0 10.0 10.0 10.0 

Decentralized 
Average response time (milliseconds) 42 41 41 42 41 39 36 

Throughput (requests/second) 10.0 10.0 10.0 10.0 10.0 10.0 10.0 

Figure 14 shows a comparison of response times of compositions. When request rate is fixed at 600 
requests per minute, the average response time of the decentralized composition is higher than the 
average response time of the centralized composition for handling 30 bytes data. But the situation 
changes when the data size is increased. The average response time of the centralized composition rises 
with the increase of data size; however, the increase has a little impact on the average response time of 
the decentralized composition.  

 

Figure 14 Response time variations with different data sizes (request rate condition: 600 requests per minute) 
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Above results show that, if components are deployed properly, the decentralized service composition 
for the process model in Figure 3 has better performance than the centralized service composition of the 
process model. 

6     Conclusions 

For constructing decentralized service compositions, this paper proposes a graph based technique that is 
applicable to partitioning a process in a centralized service composition. The technique is developed on 
typed digraphs and graph transformation, and it contains tools and approaches for constructing process 
models, representing the structures of process models, and partitioning the processes. This paper also 
discusses issues about the decentralized service composition, and provides experimental results of the 
performance test of service compositions. The experimental results show that the decentralized service 
composition can have better performance than the centralized composition. 
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