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Abstract

The functions, capabilities, and effects produced by the application services
of cyber physical systems (CPS) are usually consumed by users performing
their daily activities in a variety of environmental conditions. Thus, it is
critical to ensure that those systems neither interfere with human activities
nor harm the users involved. In this paper, we propose a framework for testing
and verifying the safety and reliability of CPS services from the perspectives
of CPS environments and users. The framework provides an environment-
aware testing method by which the efficiency of testing CPS services can
be improved by prioritizing CPS environments and by applying machine-
learning techniques. The framework also includes a metric by which we can
automate the test of the most effective services that deliver effects from phys-
ical devices to users. Additionally, the framework provides a computational
model that assesses mental workloads to test whether a CPS service can
cause cognitive depletion or contention problems for users. We conducted
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a series of experiments to show the effectiveness of the proposed approaches
for ensuring the safety and reliability of CPS application services during the
development and operation phases.

Keywords: Service-oriented systems, Cyber-physical systems, Environment-
aware testing, Service effects, Human cognitive resources.

1 Introduction

In recent years, the world wide web has evolved into a platform where various
types of cyber and physical computing resources can be linked and utilized to
provide user-centric services to help accomplish their goals. A cyber-physical
system (CPS) is a system that connects and coordinates computational and
physical resources to produce useful functionalities[23]. Various types of
CPSs such as smart homes, autonomous vehicles, and smart factories are
already have been assimilated into our daily lives. Essentially, the functional-
ities and actuations produced by a CPS application are physically employed
by users during their daily activities. Therefore, such CPS applications must
be safe and reliable so that they neither interfere nor harm humans.

Traditional software-testing techniques evaluate software by verifying
source code using a set of test cases, which usually comprise inputs affecting
the functional behavior of software and expected outputs. However, unlike
traditional software, CPS applications may produce physical effects and
actuation as outputs that can affect and can be affected by the status and
conditions of users and surrounding environments. Therefore, to ensure the
safety and reliability of a CPS application, new means of software testing
are required that consider the contexts of users and the conditions of the
environments.

Figure 1 shows an example CPS application that may result in severe
accidents due to various environmental conditions. This application runs on

Figure 1 Various Environmental Conditions for Auto-driving CPS Application.
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an autonomous vehicle and provides CPS services such as autopilot and col-
lision avoidance. Under normal road conditions (Figure 1(a)), the vehicle can
make a turn successfully on a curved road by reducing its speed. However,
in wet conditions (Figure 1(b)), the vehicle may fail to slow down enough
and cause an accident if the application behaves the same as at the normal
conditions. Furthermore, in a rush-hour (Figure 1(c)) or other exceptional
circumstances such as animal crossings (Figure 1(d)), the collision avoidance
service may not work properly.

In this work, as an extension to our previous work in [14], we propose
a human-centric and environment-aware testing framework that tests safety
and reliability of CPS applications according to the contexts of their users
and environments that closely interact with the application. Our framework
is built upon a service-oriented software architecture that we defined in
a previous work [15], which allows developers to build CPS applications
by defining and composing services as building blocks. We also consider
DevOps practices [13] used to define testing processes and verification
standards.

The main contribution of this work is the proposition of a framework
for testing and verifying the safety and reliability of CPS services from
the perspectives of CPS environments and users. The framework provides
an environment-aware testing method by which the efficiency of testing
CPS services can be improved by prioritizing CPS environments and by
applying machine-learning techniques. The framework also includes a metric
and an algorithm by which we can automate the test and selection of the
most effective services that deliver effects from physical devices to users.
Additionally, the framework provides a computational model that assesses
mental workloads to test whether a CPS service can cause cognitive depletion
or contention problems for users. We conducted a series of experiments to
show the effectiveness of the proposed approaches for ensuring the safety and
reliability of CPS application services during the development and operation
phases.

In Section 2, we describe the service-oriented CPS framework. We
explain the core elements of the environment-aware and human-centric
CPS software testing framework, and required activities of developing CPS
applications during DevOps phases. In Section 3, we explain the core test-
ing techniques of our framework. The experiment results derived from the
approaches developed for the testing framework are shown and discussed in
Section 4. We explain related works in Section 5, and we conclude the paper
in Section 6.
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2 Service-oriented CPS Application Framework

CPS is a system of systems associated with diverse cyber and physical
subsystems. Extant software engineering efforts related to CPS have been
focused mostly on developing platforms or domain-specific applications.
However, such platforms or domain-specific applications are lack of testing
safety and reliability of CPS services in various real-world environments and
users. In this work, we develop a service-oriented framework for development
and operation of CPS applications, by taking advantages of service-oriented
computing to solve the problems of improving safety and reliability of
CPS services. Specifically, our framework consists of an architecture and a
development process that are developed based on a common CPS architecture
called the 5C architecture and the DevOps practices.

2.1 CPS Framework Architecture

The left side of Figure 2 shows the 5C architecture used to design CPS sys-
tems, providing connection, conversion, cyber, cognition, and configuration
layers [17]. The connection layer includes various types of physical things
(e.g., sensors and actuators) that are connected to network devices. At the
conversion layer, the data obtained from the physical things are aggregated
and converted into useful information that can be used to mine valuable

Figure 2 Service-oriented CPS application architecture.
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patterns and predict future trends and potential problems. This is done
by maintaining and analyzing virtual representations (i.e., digital twins) of
physical things at the cyber layer. The crucial patterns, trends, and problems
can be visualized for human consumption at the cognition layer, and the
system can be reconfigured to improve its capabilities and solve problems
based on human decisions at the configuration layer. The CPS elements in
the 5C architecture are usually heterogeneous in terms of their interfaces and
functional/data semantics, and their availability and functional/data quality
can change dynamically over time. To address these problems effectively, we
developed a service-oriented CPS application framework based on the 5C
CPS architecture.

In this framework, all physical and computational elements of the 5C
architecture are servicized to make them accessible through standard service
interfaces. Figure 2 shows the servicization process for the CPS elements.
This enables the heterogeneous CPS elements to inter-operate effectively
for an application. Usually, a service is modeled and defined from the user
perspective in terms of achieving a task goal. In other words, the capabilities
of CPS services are represented using common semantics that are closely
related to user activities for achieving a task goal in a specific application
domain. Each service provides its service capabilities by utilizing one or more
physical devices. This helps application developers effectively choose and
integrate relevant CPS services for a user task while overcoming the seman-
tic heterogeneity of service functions and data. In addition, the framework
provides the basis for ensuring the reliability and safety of CPS applications.

As shown in the right side of Figure 2, a CPS environment comprises
various devices scattered across a physical space. Understanding and pre-
dicting the characteristics of physical environments and users is essential
for generating and delivering high-quality service effects. In particular, the
context or perception of a user in a CPS environment as well as the status or
QoS of physical devices are critical to enabling the user to consume service
effects from a physical environment.

2.2 DevOps Cycle of CPS Applications

Figure 3 shows the activities of composing, testing, monitoring, and recon-
figuring CPS applications using our framework, which should be performed
for each phase of DevOps. The left side of the Figure 3 shows the activities
of development phases, and the right side of the Figure 3 shows the activities
of the operation phases.
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Figure 3 DevOps cycle for developing reliable and safe CPS applications.

2.2.1 Activities of Development Phases
First, at the planning phase of the development of a CPS application, architec-
ture based on micro-services should be designed. Micro-service architecture
is a concept of dividing a software into a set of small sized services, so enables
efficient reuse and effective team-based development.

Second, at the coding phase, context-aware CPS applications can be
composed from the micro-services, a CPS application may be considered as
a composition of micro-services. In here, context-awareness is necessary for
CPS applications because they can be highly affected by physical contexts
of surrounding environments. Furthermore, the safety of the CPS applica-
tions should be evaluated not to harm any humans, especially for the CPS
applications that frequently interact with the environments and human users.

Third, at the building phase, the CPS environment should be emulated
for the quality assurance of the CPS applications. Evaluating the quality
of CPS applications under various environmental conditions is highly cost-
expensive, so emulation of CPS environments should be done to evaluate the
CPS applications efficiently before real-world evaluation.

Fourth, at the testing phase, the CPS applications and their internal micro-
services should be tested in an environmental-aware manner, under continu-
ous integration practice. Since continuous integration has been adopted as
a common development principle in modern software developments, CPS
software should be also continuously integrated and be tested. However,
testing and assuring quality of CPS applications frequently is cost-expensive
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because there are usually too many environmental conditions to test the CPS
applications.

2.2.2 Activities of Operation Phases
At the beginning of the operation phases, a developed CPS application is
released and deployed. Because there are too many uncertainties that the CPS
application may face over various environments, the CPS application should
be monitored in an on-the-fly manner to collect unexpected failures and report
those to the developers.

Second, for a reported failure of the CPS application, fault localization
should be done to pinpoint the location of fault of the CPS applications. In
detail, faults may be embedded not only in software but also in interaction
design, such as human cognition for human-computer interactions and failure
of service-service interactions.

Finally, a CPS application should be monitored continuously and being
reconfigured when some components of the CPS application becomes
unavailable according to fluctuating context of CPS environments. Such
reconfiguration becomes more critical for CPS applications, because of
highly dynamic nature of physical spaces.

2.2.3 Current Research Focuses
In this DevOps process, we initially focus on the efficient testing, dynamic
reconfiguration of services, and predicting cognitive bugs.

First, we perform environment-aware regression testing for CPS applica-
tions, extending traditional regression testing techniques to the CPS domain.
A CPS environment comprises many types of physical resources, such as
IoT sensors and actuators from which service capabilities can be produced.
Thus, a CPS application might need to interact with a different set of
physical resources based on the location of the user and/or the availability
of their quality-of-service. It is time-consuming to test CPS applications
while considering the many combinations of physical resources available.
Environment-aware CPS application testing is one major component of our
framework. We aim to improve the efficiency of testing CPS applications by
prioritizing their use cases while applying machine-learning techniques [16].

Second, we design an evaluation metric for quality of physical effects
that CPS services generate. During operation phase, physical environments
can affect the delivery of service effects produced from CPS resources. By
using the metric we designed, quality of CPS services can be tested and the
most effective CPS services may be selected by the user.
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Third, the framework provides a computational model for assessing the
types and numbers of cognitive user interferences based on a set of services
from a CPS application applied to daily human activities. We define a
cognitive bug as an issue of high-intensity cognitive interference that causes
the interruption of the ongoing work or drastically decreased performance.
Theoretically, our model is based on the multiple resources model [27] and
human-processing system economy [21] from the cognitive psychology field.
Using the models, we can test whether a CPS application might cause a
cognitive bug, which could lead to an unstable or dangerous situation. In
particular, we present the results of a theoretical cognitive model application
using the ACT-R cognitive architecture: a framework built on cognitive
psychology theories to simulate human behavior. Additionally, we apply
threaded cognition theory [24] to explicitly model multitasking behaviors in
the architecture. Furthermore, using this model, we estimate cognitive load
and the amount of expected interference as a proxy for the estimation of
cognitive bugs.

3 Human-centric and Environment-aware CPS Software
Testing

The runtime environments of a CPS application can vary depending on the
combinations of available elements in cyber and physical spaces. In addition,
because the cognitive abilities of CPS users are diverse, leveraging their
cognitive characteristics to select and integrate CPS services for user tasks
is necessary. Thus, to ensure the safety and reliability of a CPS application,
validating its functionalities and identifying runtime defects is necessary.

Figure 4 shows the overall process of providing CPS services to a user.
First, the user sends a request to a CPS service that can provide a necessary
content to the user. Second, the CPS service sends the content to a physical
device, which is a medium for delivering the content to the user. Third, the
device generates physical effects such as lights and/or sounds that correspond
to the requested content. Fourth, the physical effects from the device are
delivered to the user through the space. Fifth, the user perceives the physical
effects and recognizes the delivered contents.

In the physical effect generation phase, various environmental conditions
such as the types and characteristics of the service medium and other devices
that may interfere with the medium can affect the quality of generating the
physical effects. Therefore, prioritization of the test environments need to
be done for efficient testing of CPS services with considering numerous
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Figure 4 Process of CPS service provisions.

environmental configurations. Furthermore, in the physical effect delivery
phase, the quality of delivering the service effects to the user needs to
be evaluated to ensure the successful delivery of the service contents. In
the recognition phase, the cognitive load of the user must be assessed and
considered to avoid potential cognitive failures. We describe these testing
techniques in detail in the following sub-sections.

3.1 Environment-aware Regression Testing for CPS
Applications

Although testing a CPS application in a variety of environments is critical, a
CPS application requires more testing effort than does traditional software.
This is because CPS software interacts with physical devices, which can
lead to abnormal operations, causing not only monetary losses but also user
inconvenience and personal injury. Moreover, because a CPS application is
operated via combination of multiple services, failure can occur because
of service and application malfunction. In various CPS environments, CPS
services can behave differently than indicated by specified requirements,
which can lead to even more defects. In a DevOps environment where tests
are frequently performed, the longer the testing duration, the longer the time
required for information delivery to the developer. This results in delays
fixing defects and in the release of new versions.

One manner with which to deal with the aforementioned problems is
to perform regular regression tests. These tests should be cost-effective in
a DevOps environment. Existing cost-effective regression testing techniques
may not be appropriate for a DevOps environment, because the time between
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Table 1 Technique and code
Technique Code

No ordering B1
Random ordering B2

Exact match-based P1
Similar match-based P2

Technique Code
Failure frequency-based P3
Machine learning-based P4

P1 and P3 H1
P1 and P4 H2

regression tests is shorter. Furthermore, existing techniques require code anal-
ysis for each case, including code instrumentation and code coverage, which
can consume considerable time. Thus, the preparation time for applying
existing techniques may be longer than when conducting regression tests in a
DevOps environment.

For cost-effective regression testing for CPS applications, test prioriti-
zation techniques are often used. These techniques involve prioritizing test
cases, test suites, and test environments. In a DevOps environment, where
regular integration practices are employed, prioritizing test cases and suites is
not always cost-effective. Therefore, we adopt test-environment prioritization
techniques [16]. These techniques utilize test-history data. In a prior study, we
suggested the following five prioritization techniques: exact matching-based,
similarity matching-based, failure-frequency-based, machine-learning-based,
and hybrid. Table 1 lists the name of each technique and its code.

3.2 Effect-driven and Dynamic Quality-evaluation of CPS
Services

As shown in Figure 4, a service can produce physical effects such as lights
and sounds, in a CPS environment. When evaluating the quality of such a
CPS service, the quality of the perceived effects from the users’ perspective
becomes more important. To address this issue, we suggested a new class of
metric, named service effectiveness, which measures the quality of physical
effects generated by physical devices in the user’s perspective, such that the
physical effects can be delivered to a user through a physical space and
perceived appropriately by the user [3].

In our previous work, we proposed a computational model of visual
service effectiveness that could measure how visual contents generated by
rectangular display devices could be perceived by a user, especially in case
of textual contents [3]. As shown in Figure 4, the visual CPS services that
we consider in this work are the CPS services that utilize display devices to
generate visual effects and deliver textual contents to users. We designed the
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visual service effectiveness model based on the domain knowledge of human
vision systems, such as Snellen [26] and Bailey-Lovie charts [4], which are
the most popular tests applied to human visual acuity. Our visual service
effectiveness model was defined as a rule-based model as follows:

e =


0 distance(user, device) ≥ distancemax(device)

0 device /∈ FoV (user)

0 angle(user, device) < 90◦

1 otherwise

, (1)

where distance(user, device) is the physical distance between the user and
the display device, FoV (user) is the field-of-view area of the user according
to the orientation of the user’s eyes, and angle(user, device) is the angle
between two orientation vectors of the user and the display device [3]. The
intent of the first rule is to ensure that the distance between a user and a
device should be close enough to read textual contents, and the threshold
of the distance can be estimated based on the domain knowledge of human
visual acuity measurement. The intent of the second rule is to ensure that
the device should be located in the user’s field of view, so that the user can
perceive the light effect generated by the device. The field-of-view area can
be estimated from the orientation of the user’s eyes and their location. The
intent of the third rule is to ensure that the device faces the user, such that the
light generated by the device can be delivered to the user. When those three
rules are met, the effectiveness is 1. An effectiveness of 0 indicates that one
of the rules has been violated.

By using the visual service effectiveness model, we can evaluate the
quality of visual CPS application during the operate and monitor phases of the
DevOps cycle (Figure 3) to detect the problems that users might experience
while interacting with CPS applications via service effects. When detecting a
problem of delivering physical effects to the user, the CPS application can be
reconfigured to use an alternative display device in the operation time.

3.3 Finding Cognitive Bugs in CPS Applications

In CPS environments, the manner in which the functionalities and effects
produced by a CPS application affect user task accomplishment is relevant.
We assume that, in these environments, users perform multiple tasks at the
same time (i.e., multitasking). In particular, we can deepen the concept of
user performance by studying the human cognitive demands required during
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human computer interaction (HCI). Although it seems that people use appli-
cations effortlessly while performing other activities during their daily lives,
the cognitive demands required in CPS environments can hinder their correct
use because of the limited human cognitive capacity [25]. Cognitive inter-
ference arises because the user must divide his/her attention and distribute
cognitive resources to each task [24]. Eventually, high-intensity interferences
lead to task errors. Otherwise, they render it necessary to stop ongoing tasks.
This is a cognitive bug problem.

We developed an approach for analyzing the combination and/or
sequence of application features that can minimize the number of cognitive
bugs during runtime and development time. Thus, we turned theories from
cognitive psychology into a computational model. In particular, we focused
on the study of cognitive demands with respect to app usage and performing
physical activities, including walking and conversing. For this type of testing,
applying standard software testing techniques is not possible. Instead, models
must be developed that emulate application usage during the early stages of
the software process. The use of cognitive resources must be assessed, and
defining guidelines to improve the safety of the application design must be
produced. In addition, using this computational model, we can create tools
to help developers design apps considering combinations of use cases and
physical activities that can be produced in a real-life scenario. Then, by
understanding cognitive demands we can raise new software requirements.

In our previous research [18], we developed an experimental design in
which users performed six mobile application tasks on a smartphone using
Gmail and Tripadvisor applications. Users were simultaneously required to
interact with their environments by performing physical activities, such as
walking and talking. This experimental design was based on the multiple
resources model (MRM) of C. Wickens [27], which established the mecha-
nisms of cognition for employing cognitive resources in different scenarios
(i.e., during multitasking). Using the MRM model enables us to theoretically
determine the numbers and intensity of cognitive interference and to establish
different levels of mental demand.

Towards the development of a model of cognitive bug prediction, we
simulate the execution of app tasks and physical activities. Cognitive archi-
tectures are used to simulate human behavior during different types of tasks
[2]. In particular, the ACT-R architecture has proven effective at estimating
cognitive loads during the early stages of system design [2]. For this study, we
adopted a fusion of the approach proposed by Salvucci et al. [24] (i.e., ACT-R
in multitasking) and that of Park et al. [22] (i.e., estimation of cognitive load).
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The simulation is performed using the same tasks described in the pre-
vious section. The simulation proceeded as follows. First, we decomposed
the tasks into several task units with the aim of increasingly modeling the
specific goals of each task. Each task unit was then decomposed into a num-
ber of functional-level goals comprising a number of keystroke-level goals,
including the sequence of attention shifts across a screen, the encoding of the
information on the screen, movement of the finger to the desired location,
and pressing the screen with the finger. For instance, if we want to model a
reading activity, such as reading an e-mail, we need to express it in terms of
functional-level goals in which the minimal chunk was reading a single word.
Then, it was necessary to iterate the reading of the next word, modeled for
the rest of the tasks with variations in the types of the ACT-R architecture
modules involved. In addition, we simulated arithmetic tasks following the
model proposed by [22]. To simulate the experiment scenario, we simplified
the complete flow of tasks, assuming that all participants performed the same
actions in the same order.

The assumptions of the simulation are as follow: cognitive load is defined
as the ratio of the required resources to the available resources; each module
of ACT-R causes a different amount of cognitive load, because it represents a
different cognitive process; and errors in each module cause a higher cogni-
tive load [22]. We modeled multitasking while aggregating both simultaneous
tasks using the threaded cognition approach, in which a task must wait for a
specific cognitive resource before its execution if the same cognitive resource
is currently being utilized [24]. In case the task waits for time t > threshold,
a cognitive interference is produced. This cognitive bug prediction method
can be used during the code, build and test phases of the DevOps cycle
(Figure 3) to predict and prevent the cognitive conflict and depletion problems
that users may face with when they receive CPS application services while
performing activities in physical environments.

4 Evaluation

4.1 Testing Environment Prioritization

To evaluate the proposed environment-aware testing techniques, we con-
ducted an experiment using an application called JQuery, which is a widely
used JavaScript library, while it can be installed on CPS devices that support
JavaScript engines. We chose JQuery because many of the Web applications
that use JQuery are deployed and run on various environments that can be
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characterized by the types and versions of Web browsers, operating systems,
and underlying physical devices. There is usually a large number of combina-
tions of these environmental elements, and as we discussed earlier, it is crucial
to test these applications in a cost-effective manner. In addition, JQuery can
be installed directly on various CPS devices that support JavaScript engines.

We collected the build history of JQuery from JQuery’s TestSwarm1. 45
builds that included the dates of the build history (ranging from 2017/12/13
to 2018/09/07) were contained in the history data. For each build history,
regression tests were performed for an average of 16 environments. Each
test environment consisted of a web browser and an operating system, both
based on name and version. 42 builds included at least one failed test envi-
ronment and at least one passed test environment, meaning that at least one
environment-specific failure in a build was possible. We used these 42 builds
in the experiment.

We measured the cost effectiveness of each test-environment prioriti-
zation technique by using APFDC , which is a widely used measure in
test-case prioritization studies [6]. We regarded a test environment as a test
case when a test-environment prioritization technique was evaluated. The
APFDC equation is as follows:

APFDC =

∑m
i=1(fi × (

∑n
j=Ci

tj − 1
2 tCi))∑n

i=1 ti ×
∑m

i=1 fi
, (2)

where n is the number of test environments, m is the number of failed test
environments in a build, fi is the severity of a failed test environment, ti is the
runtime when performing a test for an environment, and Ci is the position at
which failure i is detected in several test environments. APFDC values range
from 0 to 100, where a higher APFDC means improved cost effectiveness.
We assigned the same value (e.g., 1) to the severity, because we did not have
information about it.

Figure 5 shows an experimental result. The X axis refers to the codes
of the techniques, described in Table 1. The Y axis refers to APFDC . Our
techniques outperformed the baseline techniques with no ordering or random
ordering. The APFDC of our test-environment techniques ranged from
85.05% to 91.70%, whereas the APFDC of the baseline techniques ranged
from 47.18% to 49.76%. Compared to no ordering and random ordering,
improvement rates ranged from 37.87% to 44.52% and from 35.29% to
41.94%, respectively.

1http://swarm.jquery.org/
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Figure 5 Cost-effectiveness of the environment-aware testing techniques.

Table 2 Parameters of visual service effectiveness model
Parameter Value
Resolution of Display Device 1080p (1920 x 1080)
Size of Display Device 1 m
Minimum Size of Text 12 pixel
Field of View 105◦

Orientation Threshold 60◦

Visual Acuity of User 6/6 (standard)

4.2 Visual Service Effectiveness Metric

We defined the visual service effectiveness model to evaluate how well the
physical effect that is generated by a visual CPS service via a rectangular
display device can be delivered to a user. Figure 6 shows the plots of service
effectiveness of a user in front of a display device, calculated by using our
visual service effectiveness model. A display device is located at the center
(i.e., (0, 0, 1) coordinate) and virtual users at positions in a range from (−10,
−10, 1.7) to (10, 10, 1.7). We set the z-axis coordinate of users as the common
height of human. Table 2 shows the values we used for parameters of the
calculation of visual service effectiveness.

Figure 6(a) shows the calculated values of visual service effectiveness
based on our model when we set the orientation of users randomly. The
red arrow shows the orientation of the display device, and the result shows
that the delivery of visual effects is likely to be effective in front of the
display device, matching our experiences. As Figure 6(a) shows, the value
of service effectiveness is almost one when we located virtual users within a
random orientation. Figure 6(b) shows the calculated values of visual service
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Figure 6 Calculated visual service effectiveness in various conditions.
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effectiveness when we set the orientation of each virtual user toward the
device, making visualization more successful to understand the behavior of
our visual service effectiveness model.

Compare to Figure 6(a), Figure 6(b) shows the effective area of the visual
service more clearly, assuming that the user pays attention to the display
device. Figure 6(b) indicates that a user at 5m away from the display device
can recognize the textual content. When the size of textual content reaches
half, the effective area of the visual service gets smaller, as shown in Figure
6(c). In contrast, when the visual acuity of a user was set higher, the effective
area of the visual service becomes larger as a user with a higher visual
acuity can recognize the letter at a farther distance, as shown in Figure 6(d).
Similarly, when the size of the display device was set larger, the effective area
of the visual service becomes larger as shown in Figure 6(e), which matches
our intuition from experiences. We also could adjust threshold values of each
rule in our visual service effectiveness model. For instance, when we enlarged
the threshold value of orientation (3rd) rule of the model, the effective area
of the visual service became wider, as shown in Figure 6(f). This enabled us
to adjust threshold values based on real-world data for future works. The
visualized results show that calculation of service effectiveness based on
our visual service effectiveness model generally matches our intuition from
experiences.

4.3 Cognitive Load Assessment

In human-centric CPS applications, accomplishing tasks is highly dependent
on user performance [8]. In our previous work [18], we addressed one of the
main causes of low user performance (i.e., multitasking). From cognitive psy-
chology, we know that during multitasking, a user’s cognitive resources (i.e.,
core assets used by cognition to perceive, think, remember, make decisions,
and respond to the environment [21]) are intensive, and this causes these
resources to interfere with each another. Several studies have shown that weak
cognitive interferences can degrade user performance by 30%, and strong
interferences can stop an ongoing task. To avoid this type of inconvenience,
in [18] we proposed a model to assess and classify mental workloads: explicit
mental efforts required to employ cognitive resources.

To collect data, we employed physiological sensors, surveys, and a video
recorded by each user. In our experiment, we asked total 50 participants
to perform five tasks that are about using a messaging app and a web
search engine: (1) read a simple e-mail that requests for simple mathematical
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Figure 7 Comparison of simulation results and NASA TLX responses.

calculations, (2) reply to the simple e-mail with the calculation results, (3)
read an information request e-mail and search the information, (4) memorize
the search result, and (5) reply to the request e-mail. For the first experiment,
we asked the participants to perform the tasks without doing anything else.
For the second experiment, we asked the participants to perform the same set
of tasks while answering some questions and listening to music.

In addition to data collection, we simulated the mental workload required
by each task using the cognitive framework ACT-R [2]. We validated that the
data simulated by ACT-R could be correlated with the real data collected by
the sensors. This represented a major result, because it showed that we could
test CPS application features in the early stages of the developmental process
when no prototype of the system existed.
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Table 3 Statistics of simulation results for each source of cognitive load
Sources R2 RMS p-value
Mental Demand (MD) 0.899 4.514 0.0335
Physical Demand (PD) 0.947 2.854 0.0364
Temporal Demand (TD) 0.908 4.905 0.0412
Performance(PE) 0.939 3.944 0.0223
Effort (EF) 0.951 2.986 0.0402
Frustration (FR) 0.943 3.261 0.0118

The results of the simulation are shown in Figure 7. First, we compared
ACT-R results with NASA TLX [10] experimental results following the
methodology proposed in [22]. NASA TLX is a widely used questionnaire
for mental workload estimation. As indicated in Table 3, Pearson correlation
analysis indicates that the simulation was highly correlated with the NASA
TLX dimensions. Additionally, we checked that the number of interferences
increased when the both tasks were modeled.

Second, we utilized the data from physiological sensors and ACT-R to
create a machine-learning model (i.e., support vector machine) to classify lev-
els of mental workload. We placed special emphasis on the feature selection
process, when we developed an algorithm that used both the aforementioned
sources of data to improve the selection of features (CFS-SVM). The purpose
of this algorithm was to increase the chances of selecting features from signal
values that approximated simulation values. With this model, we were able to
classify two levels of mental workload having a 93.1% of accuracy on average
for all tasks tested. We compared this result with a standard classification
model that simply uses recursive feature elimination (RFE-SVM) to select
features. Figure 8 shows the results of both models against five different tasks.

Although results were good for this scenario, and by using this approach
we could solve our problem of simulating cognitive bugs during early stages
of design, in practice, ACT-R modeling is highly dependent on the task, in
which a manual configuration is needed for task representation and param-
eter fixation. Therefore, this approach is suitable for a customized type of
scenario.

5 Related Work

Various studies have focused on testing mobile applications [1, 12, 11].
Because mobile applications can be run on a variety of devices, device
prioritization techniques have been proposed. Additionally, “energy-bug”
detection, referring to code that abnormally consumes device battery power,
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Figure 8 Comparing Models for different tasks.

has been studied. Our study considers other environments, such as web
browsers, operating systems, and devices for testing CPS applications.
Service-related regression testing techniques have also been studied [28, 20].
They have proposed regression-test selections and test-case prioritization
techniques for unit services. Other studies have considered test-case priori-
tization for a combination of services (e.g., business processes). Our work
focuses on testing services or a composite thereof under various test environ-
ments. We use test-environment prioritization techniques instead of test-case
prioritization to identify environment-specific faults as early as possible.

Studies focusing on human cognition processes can be divided into empir-
ical estimation methods of mental workload, which collect data from several
types of sensors, and analytical estimation methods, which simulate mental
processes based on computational cognition frameworks. Concerning models
using physiological signals for mental workload estimation, Haapalainen
et al. [9] assessed tasks of visual perception and cognitive speed. Fritz et
al. [7] studied tasks performed by professional software developers using
an eye tracker, electrodermal activity sensor and an electroencephalogram
sensor. Regarding analytical models, Salvucci et al. [24] used the ACT-R
cognitive architecture [2] to model several tasks performed at the same time.
Park et al. [22] used this architecture to model human performance, obtaining
highly correlated values among the simulation and data collected using the
widespread NASA TLX [10].
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6 Conclusion

A CPS application helps users accomplish tasks successfully by providing a
set of necessary functionalities and/or by producing physical effects required
to assist user activities. The behaviors of such CPS applications are highly
affected by surrounding environments and users. Therefore, it is critical to
improve reliability and safety of CPS applications from development through
operation phases. In this study, we developed a software-testing framework
that ensures the reliability and safety of CPS applications that coordinate the
various cyber-physical elements interacting in the users’ environments and
activities.

Our contributions are summarized as follows. First, to the best of our
knowledge, this is the first study to propose a service-oriented CPS appli-
cation framework by which CPS resources in different layers of the 5C
architecture can be integrated while overcoming heterogeneity problems.
Second, to improve the efficiency of testing CPS applications, we applied
a regression testing technique that prioritizes various combinations of CPS
environments. Third, we investigated a means of evaluating and selecting
CPS services based on the effectiveness of delivering service effects to users
through physical spaces. Finally, we developed an approach for analyzing dif-
ferent types and amounts of cognitive resources required by CPS applications
and human activities, and we proposed a method of identifying cognitive bugs
that can cause cognitive interference and overload.

We are currently developing a service-oriented CPS application frame-
work that employs micro-service technologies and a set of tools that can
be used for the DevOps activities. Our environment-aware software testing
technique can be extended to practical CPS application domains and then
further evaluated. We have plans to perform evaluation by using simula-
tions in virtual reality, which can imitate real-world environments while
providing realistic experiences in terms of vision and audio [5, 19]. For
instance, the validity of our visual service effectiveness model can be evalu-
ated by simulating visual-service provision scenarios in virtual reality under
various environmental conditions. We could then compare the calculated
effectiveness via user feedback. Additionally, the models and algorithms for
human-centric CPS testing will be enhanced by identifying and incorporating
diverse situations and service effects that are directly and closely related to
CPS applications.
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