
The Importance of Testing in the Early
Stages of Smart Contract Development

Life Cycle

N. Sánchez-Gómez∗, L. Morales-Trujillo, J. J. Gutiérrez
and J. Torres-Valderrama

University of Seville, Escuela Técnica Superior de Ingeniería Informática. Web
Engineering and Early Testing (IWT2) Group. Avenida Reina Mercedes s/n. 41012
Sevilla, Spain
E-mail: nicolas.sanchez@iwt2.org; leticia.morales@iwt2.org; javierj@us.es;
jtorres@us.es
∗Corresponding Author

Received 20 December 2019; Accepted 14 April 2020;
Publication 03 June 2020

Abstract

The use of smart contract augurs a world without intermediaries because
the code and the agreements contained therein exist across a distributed,
decentralized blockchain network. In software engineering, this collaboration
is usually represented by using business process models and smart contracts
can be used to implement business collaborations in general and inter-
organizational business processes. The validation of this contract and the
assurance of its quality are critical for its right application. Early testing in
smart contract definition is the fact of this paper. The paper discusses the
possibility to use transformation protocols to obtain derived artefacts like
test case definitions and smart contract code scaffolds. Generation of derived
artefacts significantly reduces the number of defects before deploying the
smart contract code in the blockchain network. Transformations protocols are
created using model-based software development and modelling techniques.
This approach allows to simplify and improve the management and execution

Journal of Web Engineering, Vol. 19_2, 215–242.
doi: 10.13052/jwe1540-9589.1925
© 2020 River Publishers



216 N. Sánchez-Gómez et al.

of collaborative business processes. This would allow, in addition, the appli-
cation of systematic mechanisms to evaluate and validate the smart contract
and, particularly, the application of early testing techniques which would help
to reduce the number of defects and, ultimately, the cost of the final review.

Keywords: Blockchain, Smart contract, Model-based software develop-
ment, Early testing.

1 Introduction

Blockchain is a concept that was first used int the context of Bitcoin. Satoshi
Nakamoto [32] released the version 0.1 of bitcoin software on January 2009.
Currently, blockchain is being applied in a lot of different contexts using the
same operative.

Reviewing the rapid evolution and current state of the blockchain net-
works, this technology can reconfigure all aspects of today society. For
example, in the logistic industry and Supply Chain [27], blockchain appears
as a facilitator and enabler of operations, because it could easily be added
to other tools that seek to streamline and optimize the operations of tradi-
tional companies. This technology offers us a challenge to improve how we
used them and how we guarantee the right application of their principles.
Blockchains present some specific concepts and concrete architectures that
require special contributions, also in the context of software engineering.

One of the key factors of blockchain is smart contract [5]. A smart
contract is a digital intelligent virtual contract that defines the constraints,
preconditions and postcondition that a blockchain follows. It is a digital con-
tract that are executed by themselves, without intermediaries, but written as
a computer program instead of using a printed document with legal language
and it assures the blockchain user what this blockchain offers.

With this introduction, we can deduce that smart contracts are critical
elements in the context of blockchain. It is important to dedicate efforts and
resources to guarantee their quality and coherence. However, the definition
and mainly the validation of smart contract is still a fact to improve in the
context of software engineering.

Other important aspect to consider, in this context, is the Software Test-
ing. Testing has usually been a phase which is always performed at the end
once the coding phase is finished and before software is delivered to our
customer. But, in the Software Development Life Cycle (SDLC), software
testing should begin as soon as possible, because an early start of the testing
phase helps to reduce the number of defects [10].



The Importance of Testing in the Early Stages 217

From our point of view, one of the most successful implementations of
blockchain technology could combine the paradigm of model-based software
development and modelling techniques to simplify and improve the entire
business process, mainly the early testing. In fact, the combination of both
techniques has allowed to obtain successful results in different research areas
such as requirements engineering [15, 19], process management [20] or
identity reconciliation [13], among others.

Main contribution of this paper is a discussion about the advantages of
applying transformation protocols using model-based development to obtain
smart contract code from smart contract definition as a model. This allows
to apply systematic mechanisms to evaluate and validate the smart con-
tract, applying early testing techniques, before deploying the software in the
blockchain network. When any new defect is found in final stage of testing, it
may be necessary to update the design and analysis of the software. Thus, it
is important to perform testing in every phase because it gives us confidence
that software will run according to the expectation and will not fail once it
gets delivered to the client. Early testing will give enough time to recognize
absent and inadequate functional requirements.

The paper is organized as follows: the next section summarizes the
context (Section 2) where the concepts in which our approach is based are
presented. This continues with Section 3 where the hypothesis is raised as a
starting point. Then, in Section 4, we present the global approach to solve the
identified problem and an overview of our proposed design solution. Finally,
Section 5 describes some conclusions and future work.

2 Context

In this Section, different concepts and technologies that are considered in our
approach are presented. Firstly, blockchain technologies are presented and
the smart contract concept is analyses. The Section continues with a vision of
blockchain oracles and finalises with software engineering, software testing
and model-driven engineering principles presentation. As it is presented in
Section 3, these concepts and technologies are the base of our proposal.

2.1 Blockchain and smart contract

Nowadays, one of the main ICT trends is the so-called blockchain appli-
cation. Blockchain is a technology originally conceived to run the Bitcoin
cryptocurrency in a decentralized and secure way. This technology is one
form of Distributed Ledger Technology (DLT). A Distributed Ledger is a



218 N. Sánchez-Gómez et al.

database that is spread across several computing devices (nodes). Each node
replicates and stores an identical copy of the Ledger.

In blockchain technology, data is grouped and organized in blocks. These
blocks are transactions aggregation containers. Every block is identifiable
and linked to the previous block in the chain. These blocks are securely and
immutably linked using cryptographic techniques. The immutability of this
technology guarantees that a record in a ledger cannot be removed or altered.
When a transaction is committed there is no rolling back, even if it was a
mistake.

One of the basic concepts that rules the blockchain technology is the
concept of smart contracts [51]. Smart contracts represent the idea of defin-
ing constraints, preconditions and postconditions that a concrete block in a
blockchain must guarantee that it follows. It gives us new ways to formalize
the digital relationships which are much more functional than their paper-
based ancestors. In fact, a smart contract is a digital contract to define these
aspects. For instance, if a blockchain is the database, then the smart contracts
are the rules that govern a transaction. This is a user-defined program exe-
cuted on the blockchain network [35]. This is the program code that asks the
blockchain network to create, remove, modify, or return the state of an asset.

Figure 1 shows a self-explanatory illustration of the use of smart con-
tracts:

Therefore, using blockchain technology, untrusted parties can establish
trust in the truthful execution of the code. Smart contracts can be used to
implement business collaborations in general and inter-organizational busi-
ness processes in particular. The potential of blockchain-based distributed
ledgers, to enable collaboration in open environments, has been successfully

Figure 1 How a smart contract works?



The Importance of Testing in the Early Stages 219

tested in diverse fields [49]. Several blockchains are currently adopted in
various domains to facilitate the operation of new business processes [33, 44].

Smart contracts for Ethereum are typically written using the Solidity
language.1 Solidity is an object-oriented language, and the contracts are
defined in it like classes. They have a data structure, public and private
functions, and can be inherited from other programs. They also have specific
concepts such as events and modifiers.

The main use of smart contracts is tokenization. The process of issuing
ownership rights to real-world assets or utilities in the form of a token. One
of the main reasons for the growth of tokenization is that it does not require
off-chain data. All token information is already known and stored in the
blockchain.

In contrast, smart contracts for industries or public sector need external
off-chain data such as IoT data, Citizenship data, and events data to trigger
execution. This trigger data is not stored on the same blockchain as the smart
contract, because it is simply neither realistic to do so.

2.2 Blockchain oracle

Since a smart contract often needs access to information from the outside
world, which is relevant to the contractual agreement, so-called oracles were
created. These oracles are services that send and verify real-world occur-
rences and submit this information to smart contracts, triggering changes of
state in the blockchain.

Therefore, an oracle is a blockchain middleware that creates a secure
connection between smart contracts and various off-chain resources that they
need to function. It acts as the middle layer between a blockchain and an
API (application programming interface) that translates information for the
blockchain to read.

In order to illustrate this idea, Figure 2 shows an API server composed
of different REST API (the most-used web service technology) such as SMS
(Short Message Service) API, GPS (Global Positioning System) API, etc.

This is the workflow of the ideal oracle, that is, the smart contract sends
the request to the Oracle contract, and obtains the external data through the
API interface, more specifically, the external data is given to the Oracle in the
chain, and then Oracle gives the data to the smart contract.

1Currently, smart contracts can be programmed in others numerous languages, such as
JavaScript, Go, Python, C #, Ruby, PHP, .and so on.



220 N. Sánchez-Gómez et al.

Figure 2 Blockchain with API server.

There are three oracle models: (a) oracles coded from scratch by and for
a particular entity, (b) centralized oracles, or (c) decentralized oracles. The
first of these options (Figure 2) is used to code an oracle from scratch for each
use case. This method could lead to potential vulnerabilities and inefficiencies
if it is not rigorously tested.

In a centralized oracle service, a third-party private company fetches and
feeds data into the smart contract. But, when a centralized infrastructure is
used for oracles, smart contracts lose their key features of being determin-
istic, reliable in their end-to-end execution and tamper-proof. On the other
hand, a decentralized oracle network acts as both an oracle and a flexible
framework for matching smart contract developers with secure and reliable
oracle solutions.

Thus, oracle can be considered as a bridge between physical or real-life
occurrences and blockchain based smart contract that retrieves, verifies, and
passes the information to smart contracts for execution. It is important to
note that smart contract must be invoked, which means that one must spend
network resources for calling data from the outside world.

2.3 Software testing and early testing

Software testing is an essential part of Software Development Life Cycle
(SDLC) [55] and without proper testing, the software should not be released.
Specifically, the Software Testing Life Cycle (STLC) is a subset of the SDLC.



The Importance of Testing in the Early Stages 221

Traditionally, software testing has been a phase that always occurs at the
end once coding phase is finished and before software is released. But in
the SDLC, software testing should begin as soon as possible. This helps to
capture and eliminate defects in the early stages of SDLC. An early start of
test helps to reduce the number of defects and the cost of refactoring or the
cost of future maintenance activities.

This is clearly evidenced in the principles of software testing [24]. “Prin-
ciple 3: Early testing: To find defects early, testing activities shall be started
as early as possible in the software or system development life cycle and shall
be focused on defined objectives. If the testing team is involved right from the
beginning of the requirement gathering and analysis phase they have better
understanding and insight into the product and moreover the cost of quality
will be much less if the defects are found as early as possible rather than later
in the development life cycle”.

Figure 3 shows an example of the Delayed Issue Effect (relating to the
relative cost of fixing requirements issues at different phases of a project).
In the Figure, it is clear that the impact of detecting a fail or inconsistence
at the beginning (requirements phase) is quite reduced in comparation with
detecting them in the last phases of the life cycle.

According to this chart, the cost to fix an error depends directly on which
phase of the SDLC has been detected. Any error that is found may cause a
domino effect [38]. An error that has not been found on time may require
100 times more efforts on its fixing after it gets to the stage of software

Figure 3 A widely recreated chart of the Delayed Issue Effect [4].



222 N. Sánchez-Gómez et al.

deployment. In this context, the requirements for the final software product
are critical [38].

Maximum defects occur at the requirement phase, as noted in the
“Inspecting Requirements” [50]: “Industry data suggests that approximately
50 percent of the product defects are originated in the requirements elicita-
tion. Perhaps 80 percent of the rework effort on a development project can be
traced to requirements defects”.

The book “Software Testing Techniques” [2] contains the most complete
catalogue of testing techniques. Beizer stated that “the act of designing tests
is one of the most effective bug preventers known,” which extended the
definition of testing to error prevention as well as error detection activities.

2.4 Model-based software development

Since a few years ago, modelling tools have helped to document the
functionality of business processes and, through model transformations, to
partially automate the generation of software source code. Unified Modelling
Languages (UML) and other modelling standards are used for this purpose.

Models are typically easier to understand than software source code [18].
Therefore, their use allows improving development productivity and quality.
It is easier to check the correctness of a model. In addition, modelling tools
can ensure that the deployed code has not been modified after its generation
from the model [30].

Compared to traditional software development (Figure 4), where the
phases are clearly separated, model-based software development shows that
the specification, design, and implementation phases have grown together
much more strongly [9].

According to Seebache [41], model-based software development con-
tributes to describe and understand a system in various ways:

• Since a model builds upon a well-defined notation and typology, the
relationships between the distinct elements as well as their descriptions
contribute to a general understanding of the system, while also helping
to develop solutions such as smart contracts.

• An architectural framework may be used to combine and transform
different models and descriptive layers to facilitate the construction of
global system.

• Based on a set of formalized meta-models, which in turn can be inte-
grated and transformed into models with a higher degree of information,
automation can be applied, and a smart contract code generated.



The Importance of Testing in the Early Stages 223

Other authors argue that the major advantages of a model-based design
approach are [36]:

• The requirements are an integral part of the model and other parts of the
model can be traced back to requirement.

• Models can be used to represent the desired behaviour of a system under
test, or to represent testing strategies and a test environment.

• Automated system validation and verification reduce errors in the life
cycle. Then automating the generation of quality code and automating
testing ensures that the system implementation is correct and reliable.

Model-based testing is an application of model-based design for design-
ing and optionally also executing artefacts to perform software testing or
system testing. In other words, model-based testing is a technique where
the runtime behaviour of an implementation under test is checked against
predictions made by a formal specification, or model [37].

Therefore, in the context of blockchain-oriented applications, model-
based software development is important for the following reasons [30]:

• Model-based tools can implement best practices and generate well-
tested code, thereby reducing the occurrence of vulnerable code.

• Models can avoid lock-in to specific blockchain technology since they
can be platform-agnostic, and model-based (model-based tools can be
applied at multiple blockchain platforms).

Figure 4 Traditional vs model-based software development [9].



224 N. Sánchez-Gómez et al.

• As discussed above, it is easier to check the correctness of a model
and model-based tools can ensure that the deployed code has not been
changed after its generation from the model.

3 Hypothesis

Blockchain is an immutable, transparent, and secure technology [45] for
recording the state and ownership of an asset. This asset can be something
tangible and diverse as IoT (internet of Things) devices, a piece of art, and so
on. Even, it could be something intangible, for example intellectual property.

Nowadays, the blockchain smart contracts platforms2 allow anyone to
build and execute smart contract code directly, without following good prac-
tices of software engineering without going through evaluation and validation
processes. This means software developers may run smart contracts with bugs
and serious security vulnerabilities.3

That said, and given the immutability of blockchain technology, it is
essential that, before deploying a smart contract code or an external API
in a business network, this software goes through evaluation and validation
processes. Because a defect of smart contract or external API could cause a
non-repairable effect in blockchain network.

In order to achieve this objective, it is necessary that use case dia-
gram, activity diagram for use case,4 test case diagram, etc. are an integral
part of model and to provide a precise architecture blueprint, organized by
views/viewpoints, that are meaningful to all systems stakeholders.

Given smart contracts have some specific characteristics, it would be
necessary to introduce some new concepts in these diagrams, to better model
and specify these smart contracts. These concepts can be introduced simply as
UML stereotypes, which are tags that can be used in UML diagrams wherever
needed. In some cases, it would be enough to introduce a specific notation
such as the transfer of crypto coins in sequence or the activity diagram [31].

2Platforms as Ethereum (https://neo.org/), NEM (https://nem.io/), or NEO (https://neo.or
g/).

3To understand the severity of the problem, can see this list of known bugs and vulnera-
bilities from https://consensys.net (Ethereum smart contract Best Practices). In this regards,
a handful of companies, for example https://solidified.io/, reviewing the code and providing
feedback on its quality and security.

4Use case diagrams are used to represent an overview of the functional requirements while
activity diagrams provide a more detailed view.

https://neo.org/
https://nem.io/
https://neo.org/
https://neo.org/
https://solidified.io/


The Importance of Testing in the Early Stages 225

The Software Development Life Cycle (SDLC) is a framework that
defines the tasks to be performed at each step of the software development
process. Therefore, the life cycle of smart contract development must also
clearly define the methodology for writing and improving the quality of this
software and the overall development process [47], streamlining the process
of writing use cases, activity diagrams and automatic code generation, as well
as the process of software testing in general and early testing in particular. It
is crucial to start the software testing activity before starting the coding phase,
it must be from the requirements and then refine the software testing in the
analysis and design phases.

In this context, this hypothesis is raised: the development of model-
based smart contract (and model-based APIs) could improve the functional
verification and validation of the code by applying testing techniques from
the early stages of the SDLC, which is known as early testing.

It should not be forgotten that functional and non-functional tests are
required to validate and correct the behaviour of the smart contract before it is
released into the blockchain network. In functional testing, all business rules,
or requirements, previously collected, should be verified in various cases
including valid / invalid arguments, boundary values, and argument com-
binations. But it is not possible to test blockchain successfully / efficiently
without functional test automation. Due to the combinatorial explosion of
many inputs and environmental factors in the test case preconditions, man-
ually testing a contract is not only hard, but also inefficient. Given the
features supported by blockchain networks, the focus should always be on
the functionality, security, and performance of the blockchain network and
smart contracts, although this paper focuses only on functionality.

4 Approach to Model-based Smart Contract
Development and Testing

As mentioned above, model-based software development helps to describe
and understand a system in detail. As shown in Figure 5, model-based
software development can be applied to both on system modelling and test
modelling (the products to be obtained are represented by grey boxes and the
white boxes are the actions to be carried out to achieve this).

The detail shown in Figure 5 is discussed below.
Business rules or functional requirements, typically, are represented in a

tabular format, which can facilitate the tracking of requirements throughout



226 N. Sánchez-Gómez et al.

Figure 5 Model-based engineering.

the system’s life cycle. It is important to know what happens when related
requirements change or are dropped, which improves traceability.

The user case is a mean of capturing the requirements of systems, i.e.,
what systems are supposed to do [34]. The use cases focus on the docu-
mentation of the system’s interaction with external actors (users of external
systems). On the one hand, use case can be defined using text blocks or
graphics artefacts. Text templates have been a classic tool for defining use
case for many years. Several authors, such as Achour [1] or Cockburn [8]
have proposed templates and text patterns for defining use case as text. On
the other hand, UML is the standard for defining use case using graphics
artefacts.

Therefore, UML defines a use case model to represent use cases and their
relationships among actors and other use cases (see Figure 5). UML also
introduces activity diagrams to define the specific behaviour of a use case.
Several authors such as Escalona [14], or García-García [21] have proposed



The Importance of Testing in the Early Stages 227

extensions to include in the models the same information than templates, so
both artefacts can be used indistinctly.

Another popular artefact for requirements definition is based on user
stories. A user story is a short text with a couple of sentences in the business
language of the end-user of a software system. This story captures the essence
of part of the work a user does or needs to do with the system. User
stories do not define all the information for building the system. Instead,
they are just a reminder of a future conversation with a product owner, or
a user/customer [11].

User stories work mainly in agile processes because Agile Requirements
Engineering practices [52] are focused on continuous interaction with cus-
tomers in order to assure the evolution of requirements over time, and to
enable requirements prioritization so that the most valuable functionalities
are delivered first [42]. The main difference between user stories and the
user case is that when a development team uses user stories, they obtain the
information from users interactively during the development of the project.
But, when a development team uses use case, they obtain the information in
one step, storing that information in a text template or in a diagram [43].

Really, there is a good coverage of key functional requirements related to
management of user stories, a taxonomy of user stories (like epics and spikes,
which are two specific types of user stories with specific goals), release
planning and sprint-by-sprint iteration planning [11].

Requirements have a common set of information regardless of the used
technique: text templates, graphic diagrams, or user stories. All techniques
share common objectives and can manage the same information. Choosing
one or the other depends on the characteristics of the project or equipment
and does not affect the quality of the generated software.

A basic example of UML use case diagrams is shown in Figure 6, which
describes the relationships between use case and actors (and the relationship
with blockchain network).

On the other hand, an illustrative example of a UML activity diagram is
shown in Figure 7, which would describe the activities of one of the above
use cases.

The use of UML is suggested because it is a visual language that supports
the design and development of complex systems and, above all, because the
most recent version 2.5.1 provides the means to describe a test model [1, 3].
Specifically, the Object Modelling Group (UML is supported by OMG) has
defined a profile that is particularly suitable for testing. This profile, called
UML Testing Profile, is a UML Profile dedicated to model-based testing. Its



228 N. Sánchez-Gómez et al.

main goals are to design, visualize, specify, analyse, construct, and document
the commonly used artefacts required for various testing approaches. UML
Testing Profile 2.1 has improved the possibilities of various models related
to test architecture [40]. This profile closes the gap between designers and
testers, providing a means to use UML for both system modelling and test
specification. With this profile, developers can reuse UML design documents
for testing and allow the development of tests at an early stage of system
development.

The UML testing profile fits perfectly into a model-based test environ-
ment. Therefore, any technique for generating test cases from a use case
may be combined with UML Testing Profile, deriving test cases directly from
UML-Activity diagrams.

In addition, UML is the most used software architecture specification
language. According to Uzun et al. [46], 15 out of 31 software architects
prefer UML. Second approach is 3 from 31 only. However, UML Testing
Profile is only used in 5 out of 31 approaches. Despite this value, UML
Testing Profile is the most used technique to represent test models in the 31
analysed approaches. This indicates that there is an interest in using UML in
the testing process.

Therefore, model-based design can apply best practices and generate test
cases from the early stages of the software development life cycle, thus
reducing the number of coding errors. That is, the test scenarios are derived
from the UML-Use case and the test cases are derived from the UML-Activity
diagrams. This approach can also be used to check the consistency between
the system execution traces and the behaviour of UML-Activity diagrams.

It is important to emphasize that the test cases are obtained through
transformations, implementing all the transitions and all the criteria of the
UML-Activity diagram of smart contract. They select the paths that go across
a higher number of actions until all the actions of the activity diagrams have

Figure 6 Example of a use case diagram for Blockchains context.



The Importance of Testing in the Early Stages 229

Figure 7 UML-Activity Diagram example of a use case [12].

been traversed at least once. For the all-transitions criteria, they select the
path that traverse a higher number of object-flow edges until all of them have
been crossed at least once.

An example of this process is described by Marchesi et al. [54]. They
make a detailed proposal of the software development life cycle and its
subsequent deployment in the blockchain network. The process uses formal
notations, such as UML diagrams, which describe the system design, with
additions to the specific representation concepts found in the development of
blockchain.

Code generation is another important point to consider if model-based
software development is applied. Smart contract code [16] and API code
could be automatically generated, e.g., following the REST principles [17]



230 N. Sánchez-Gómez et al.

Figure 8 Source code generation.

with different roles in blockchain as connectivity module, as security module,
and so on [39].

As proposed in Figure 8, source code acquisition must be based on two
fundamental elements: smart contract templates and the code generator from
UML diagrams (the products to be obtained are represented by grey boxes
and the white boxes are the actions to be carried out to achieve this).

The detail shown in Figure 8 is discussed below.
In Figure 8, one of the main elements they propose to use are smart

contract templates.5 These templates [7] can support legally enforceable

5The smart contract templates are based on the framework of Grigg’s Ricardian Contract
triple of “prose, parameters and code” [25, 26]. The main advantage of a Ricardian Contract
is that if there is a dispute among parties involved, the case can be decided in court. This is
not possible with smart contracts, which are only the instructions in which they are based on
what is defined in an agreement. If something goes wrong, proving fraud or a scam in court is



The Importance of Testing in the Early Stages 231

smart contracts, using operational parameters to connect legal agreements to
standardised code. The standardised code (the “smart contract code”) would
be derived from legal documentation (the “smart legal contract”) that should
make many or all the provisions of that contract.

An important issue is how to know if the smart contract code will
correctly perform the provisions of the smart legal contract. Therefore, during
development of smart contract code it is important to perform two steps: (i)
Test the smart contract code to ensure that it is error-free, and (ii) Validate the
behaviour of the smart contract code to ensure that it is faithful to the meaning
of the contract. These smart contract templates have already demonstrated6 a
way to link standardised agreements to standardised code and so, in the near
term, it may be possible to use with existing infrastructure [7].

Another element to highlight is the code generator. Some authors, such as
Choudhury [6], supply a framework for the self-generation of smart contracts.
This framework uses ontologies and semantic rules to encode domain-speci?c
knowledge and then leverages the structure of abstract syntax trees to incor-
porate the required constraints. There are other initiatives, such as Lorikeet
tool [48], in which the developed tool can automatically create smart contract
code from specifications that are encoded in the business process and data
registry models based on the transformations of the implemented models.

With these pillars, smart contracts (and external APIs) can be designed
and tested using UML diagrams, and generate smart contract code from UML
diagrams. In addition, round-trip engineering [23] could help keep the source
code and smart contract design synchronized. Each time you generate code
or update UML model, changes will be merged.

Code generation is also an important line of research and it is important
to indicate that automatic code generation in a model-based development
process [53] is vital to the cost effectiveness of development. It eliminates

difficult since a smart contract is not a legally binding agreement. Ricardian contracts do have
a legal framework, and this adds clarity for all stakeholders. This means that, unlike smart
contracts, lawyers are required to create and deploy a Ricardian contract.

6OpenBazaar (https://openbazaar.org/) was the first application to implement the Ricardian
contracts. This open source software is a peer-to-peer e-commerce platform where you can
trade anything directly with each other. This open source project uses Ricardian contract to
check the legitimacy of an agreement between buyer and seller. Within the platform, they are
called Trade Receipts, and it adds added security that all parties do the right thing. In case
of fraud, there are legal records that can be used in court to settle the dispute. Apart from
OpenBazaar, also the EOS blockchain network (https://eos.io/) is using Ricardian contracts to
form an important part of any agreements made on the EOS blockchain. Ian Grigg is even a
partner at block.one and they have big plans for further incorporating Ricardian contracts.

https://openbazaar.org/
https://eos.io/


232 N. Sánchez-Gómez et al.

Figure 9 Potential evolution of important aspects of legally enforceable smart contracts [7].

the manual effort in coding from design, therefore, accelerating the process
while decreasing the chance of errors when compared to manual coding from
requirements or models. The generated code is designed according to the
same principles, the nomenclature rule matches, then the code will always
work as expected. The quality of the code is consistent. With manually written
code, however, different software developers may have different styles and
occasionally introduce errors in even the most repetitive code. Consequently,
automation will reduce the level of inherent complexity associated with smart
contracts and encourage their rapid adoption in different sectors such as
government, supply chain, entertainment, among others.

5 Conclusions And Future Work

This paper has presented a discussion about the technological constraints and
the current situation of the smart contract.

Testing of smart contracts can be achieved using model-based devel-
opment. However, some questions arise. On the one hand, we introduce
a preliminary view of an approach based on the use of models and the
necessity of having a framework for orchestrating the smart contract Devel-
opment Life Cycle. On the other hand, the benefits of early testing design
are highlighted, among them, the detection of a high percentage of defects
before coding/implementation begins, the verification of inconsistencies and



The Importance of Testing in the Early Stages 233

omissions in the test base by increasing the test quality. This would help
prevent defects from being introduced into the code. since the later in the life-
cycle defects are detected, the more expensive they are to fix (It is more cost
effective to find and repair defects from requirements stage). In model-based
smart contract design, software engineers use models to develop their designs
from the functional requirements or business rules. In addition, automatic
code generation from the detailed design models removes the chance of
introducing translation errors going from the design to the code.

A sound software engineering approach might greatly help in overcoming
many of the issues plaguing blockchain development, providing software
engineer with instruments similar to those typically used in traditional soft-
ware engineering to deal with architectural design, security issues, testing
planes and strategies to improve software quality and maintenance [31].

In the same way, model-based design enables the use of verification as a
parallel activity that occurs throughout the development process. Doing test
and verification along every step of the SDLC means finding errors at their
point of introduction.

Model-based testing allows evaluation and validation processes before
having the smart contract executable code. It can be ensured with a high
percentage that the code is consistent with their models by applying code
generation from these models. Developing tests in parallel of design and
development work allows early detection of potential problems, and it signif-
icantly reduces the cost and time required for fixing them. By thinking about
testing while you develop the model, you will design better for testability,
thus ensuring that the design is fully testable. Tests and requirements have
a synergistic relationship and early testing helps to find missing functional
requirements. Model-based testing facilitates traceability of what you did; it
is possible to show someone that you met his needs; and it is possible to
repeat your results.

In previous sections, we have exposed that there are tools that support
the generation of models and code for smart contracts. However, time and
training are needed to use these tools. In addition, although the tools are based
on widely recognized standards such as UML, it is not easy to change one
tool for another due to the details necessary to perform automatic generation.
Some details are the use of specific UML profiles or the use of extended
notation. In our experience, the use of model-based testing tools saves a lot
of repetitive and error-prone work - but they also limit the flexibility of the
work that can be done -, because you have to work within the limits of what
the tool can do.



234 N. Sánchez-Gómez et al.

Future work has been identified to extend smart contract test using model-
based testing. The first one is to study the current situation of source code
generator tools and early testing in blockchain network. To this end, a Sys-
tematic Literature Review (SLR) is being developed following the approach
of Kitchenhand [28]. We want to focus our work in the field of the Model-
Driven paradigm but obviously, it depends on our previous results. Another
important future work is trying to make a proposal based on the previous idea
(Figures 5 and 8) and test it in the industry. Currently, our research group
has numerous contacts with different companies that are already working on
this topic and we can propose and address projects that allow us to test and
validate our work.

Acknowledgements

First, we would like to thank all experts for their participation and sharing
their valuable knowledge. Moreover, we would like to thank all participants
in our pre-tests for their collaboration.

This paper is an extended version of article “Towards an approach for
applying early testing to smart contracts”, presented at the 19th International
Conference on Web Information Systems and Technologies – WEBIST 2019.

This research has also been supported by POLOLAS Project (TIN2016-
76956-C3-2-R) of the Spanish the Ministry of Economy and Competitiveness
and SocietySoft Project (AT17_5904_USE) of the Regional Ministry of
Economy, Knowledge, Research and University of the Andalusian Govern-
ment.

References

[1] Achour, C.B. (1998). Writing and Correcting Textual Smart Contract for
System Design. Natural Language and Information Systems Workshop.
Vienna, Austria.

[2] Beizer, B. (1990). Software Testing Techniques. Van Nostrand Reinhold
Company Limited.

[3] Binder, R. V. (2000). Testing Object-Oriented Systems. Addison-
Wesley. USA.

[4] Boehm B. (1981). Software Engineering Economics. Prentice Hall,
Englewood Cliffs, NJ.



The Importance of Testing in the Early Stages 235

[5] Buterin, V. (2014). Ethereum: A next-generation Smart Contract and
decentralized application platform. https://github.com/ethereum/wi
ki/wiki/White-Pape.

[6] Choudhury, O. Rudolph, N., Sylla, I., Fairoza, N. (2018). Auto-
Generation of Smart Contracts from Domain-Specific Ontologies and
Semantic Rules. 10.1109/Cybermatics_2018.2018.00183.

[7] Clack, C.D., Bakshi, V.A., Braine, L. (2016). Smart Contract Templates:
essential requirements and design options. https://arxiv.org/pdf/1612.0
4496.pdf

[8] Cockburn, A. (2000). Writing Effective Use Cases. Addison-Wesley 1st
edition. USA.

[9] Conrad, M., Fey, I., Sadeghipour, S. (2005). Systematic Model-Based
Testing of Embedded Automotive Software. Electronic Notes in Theo-
retical Computer Smart Contract (Book).

[10] Cutilla, C. R., García-García, J. A., Gutiérrez, J. J., Domínguez-Mayo,
P., Cuaresma, M. J. E., Rodríguez-Catalán, L., & Mayo, F. J. D. (2012).
Model-driven Test Engineering. A Practical Analysis in the AQUA-WS
Project. In ICSOFT (pp. 111-119).

[11] Dimitrijević, S., Jovanovic, J., Devedžić, V. (2015). A comparative study
of software tools for user story management. Information and Software
Technology, 57 (1), 352–368. https://doi.org/10.1016/j.infsof.2014.05.012

[12] Liss, F. (2018). Blockchain and the EU ETS: An architecture and a
prototype of a decentralized emission trading system based on smart
contracts. https://doi.org/10.13140/RG.2.2.15751.65448

[13] Enríquez, J. G., Domínguez-Mayo, F. J., Escalona, M. J., García, J. A.,
Lee, V., & Goto, M. (2015). Entity Identity Reconciliation based Big
Data Federation-A MDE approach.

[14] Escalona, M.J., Gutiérrez J.J., Villadiego. D., León. A., Torres A.H.
(2006). Practical Experiences in Web Engineering. 15th International
Conference on Information Systems Development. Budapest (Hungary).

[15] Escalona, M. J., Urbieta, M., Rossi, G., Garcia-Garcia, J. A., & Luna,
E. R. (2013). Detecting Web requirements conflicts and inconsistencies
under a model-based perspective. Journal of Systems and Software,
86(12), 3024–3038.

[16] Fielding, R. T., Taylor R.N. (2000). Architectural styles and the design
of network-based software architectures. Doctoral Dissertation. Archi-
tectural styles and the design of network-based software architectures.
University of California, Irvine © 2000. ISBN:0-599-87118-0

https://github.com/ethereum/wiki/wiki/White-Pape
https://github.com/ethereum/wiki/wiki/White-Pape
https://arxiv.org/pdf/1612.04496.pdf
https://arxiv.org/pdf/1612.04496.pdf
https://doi.org/10.13140/RG.2.2.15751.65448


236 N. Sánchez-Gómez et al.

[17] Fielding, R. T., Taylor R.N. (2002). Principled Design of the Modern
Web Architecture. ACM Transactions on Internet Technology, Vol. 2,

[18] Forward, A., Lethbridge, T. (2008). Problems and opportunities for
model-centric versus code-centric software development: A survey of
software professionals. International Workshop on Models in Software
Engineering

[19] García-García, J. A., Escalona, M. J., Ravel, E., Rossi, G., & Urbieta,
M. (2012). NDT-merge: a future tool for conciliating software require-
ments in MDE environments. In Proceedings of the 14th International
Conference on Information Integration and Web-based Applications &
Services (pp. 177–186). ACM.

[20] García-García, J. A., Enríquez, J. G., García-Borgoñón, L., Arévalo, C.,
& Morillo, E. (2017). An MDE-based framework to improve the process
management: the EMPOWER project. In 2017 IEEE 15th International
Conference on Industrial Informatics (INDIN) (pp. 553–558). IEEE.

[21] García-García, J.A., Ortega, M.A., García-Borgoñón, L., Escalona, M.J.
(2012). NDT-Suite: a model-based suite for the application of NDT.
In International Conference on Web Engineering. Springer, Berlin,
Heidelberg.

[22] Chainlink (2019). Interoperability and Connectivity: Unlocking Smart
Contracts 3.0. https://blog.chain.link/interoperability-and-connectivity-
unlocking-smart-contracts-3-0-2

[23] Pham, V.C. (2018). Model-Based Software Engineering: Methodologies
for Model – Code Synchronization in Reactive System Development.
Embedded Systems. Université Paris – Saclay.

[24] Graham, D., Van Veenendaal, E., Evans, I., Black, R. (2015). Founda-
tions of Software Testing: ISTQB Certification Cengage Learning Emea;
Revised edition.

[25] Grigg, I. (2004). The Ricardian Contract. In Proceedings of the First
IEEE International Workshop on Electronic Contracting.http://iang.org
/papers/ricardian_contract.html.

[26] Grigg, I. (2015). The Sum of All Chains – Let’s Converge! Presentation
for Coinscrum and Proof of Work. http://financialcryptography.com/mt/
archives/001556.html.

[27] Hackius, N.; Petersen, M. (2017). Blockchain in Logistics and Supply
Chain: Trick or Treat? In Proceedings of the Hamburg International
Conference of Logistics (HICL), Hamburg, Germany.

https://blog.chain.link/interoperability-and-connectivity-unlocking-smart-contracts-3-0-2
https://blog.chain.link/interoperability-and-connectivity-unlocking-smart-contracts-3-0-2
Contracting.http://iang.org/papers/ricardian_contract.html
Contracting.http://iang.org/papers/ricardian_contract.html
http://financialcryptography.com/mt/archives/001556.html
http://financialcryptography.com/mt/archives/001556.html


The Importance of Testing in the Early Stages 237

[28] Kitchenham B., Brereton P. (2013). A systematic review of system-
atic review process research in software engineering. Information &
Software Technology.

[29] Kundu, D., Samanta, D., Mall, R. (2013). Automatic code generation
from unified modelling language sequence diagrams. Software, IET. 7.
12-28. 10.1049/iet-sen.2011.0080.

[30] Lu, Q, Weber, I, Staples, M. (2018). Why Model-Driven Engineer-
ing Fits the Needs for Blockchain Application Development. IEEE
Blockchain Technical Briefs, September 2018

[31] Marchesi, M., Marchesi, L., Tonelli, R. (2018). An Agile Software
Engineering Method to Design Blockchain Applications. Software
Engineering Conference Russia (SECR 2018). Moscow (Russia).

[32] Nakamoto, S. (2009). Bitcoin: A Peer-to-Peer Electronic Cash System.
[33] Nofer, M., Gomber, P., Hinz, O., Schiereck, D. (2017). Blockchain.

Business & Information Systems Engineering. June 2017, Volume 59,
Issue 3, pp. 183–187.

[34] OMG. (2017). An OMG rUnified Modeling Language rPublication
OMG rUnified Modeling Language r(OMG UML r) OMG Docu-
ment Number: Date. (December), 796. https://www.omg.org/spec/UML
/20161101/PrimitiveTypes.xmi

[35] Omohundro, S. (2014). Cryptocurrencies, Smart Contracts, and artificial
intelligence. Published in AI Matters.

[36] PivotPoint TechnologyTM. (2019). Digital Engineering Solutions? for
Wicked Problems (https://Pivotpt.com)

[37] Pretschner, A., Prenninger, W., Wagner, S., Kuhnel, C., Baumgartner,
M., Sostawa, B., Z ĺolch, R., Stauner, T. (2005). One evaluation of
model-based testing and its automation. ICSE’05.

[38] Rayskiy, A. (2017). Why Should Testing Start Early in Software Project
Development? https://xbsoftware.com/blog/why-should-testing-start-e
arly-software-project-development/

[39] Sandoval, K. (2018). The Role of APIs In Blockchain. https://nordicap
is.com/the-role-of-apis-in-Blockchain/. Bloc Nordic APIs.

[40] Satoh, A., Ban, S., Harayama, Y., Yamamoto, K. (2019). Designing
fulfilling test cases with test aspect model. Proceedings - 2019 IEEE
12th International Conference on Software Testing, Verification and
Validation Workshops, ICSTW2019, 153–158. https://doi.org/10.110
9/ICSTW.2019.00044

https://www.omg.org/spec/UML/20161101/PrimitiveTypes.xmi
https://www.omg.org/spec/UML/20161101/PrimitiveTypes.xmi
https://Pivotpt.com
https://xbsoftware.com/blog/why-should-testing-start-early-software-project-development/
https://xbsoftware.com/blog/why-should-testing-start-early-software-project-development/
https://nordicapis.com/the-role-of-apis-in-Blockchain/
https://nordicapis.com/the-role-of-apis-in-Blockchain/
https://doi.org/10.1109/ICSTW.2019.00044
https://doi.org/10.1109/ICSTW.2019.00044


238 N. Sánchez-Gómez et al.

[41] Seebacher, S., Maleshkova, M. (2018). Model-driven Approach for the
Description of Blockchain Business Networks. Proceedings of the 51st
Hawaii International Conference on System Smart Contract.

[42] Sillitti, A., Succi, G. (2005). Requirements Engineering for Agile Meth-
ods. In: Aurum A., Wohlin C. (eds) Engineering and Managing Software
Requirements. Springer, Berlin, Heidelberg. DOI: https://doi.org/10.1
007/3-540-28244-0_14

[43] Sillitti, A., Ceschi, M., Russo, B., Succi, G. (2005) Managing Uncer-
tainty in Requirements: A Survey in Documentation-driven and Agile
Companies, in: 11th IEEE International Software Metrics Symposium
(METRICS ’05). DOI: 10.1109/METRICS.2005.29

[44] Staples, M., Chen, S., Falamaki, S., Ponomarev, A., Rimba, P. Tran, A.
B., Weber, I. Xu, X., Zhu, L. (2017). Risks and opportunities for sys-
tems using Blockchain and Smart Contracts. Technical Report. Data61
(CSIRO), Sydney.

[45] Sultan, K., Ruhi, U., Lakhani, R. (2018). Conceptualizing Blockchains:
Characteristics & Applications. 11th IADIS International Conference
Information Systems.

[46] Uzun, B., Tekinerdogan, B. (2018). Model-driven architecture-based
testing: A systematic literature review. Information and Software Tech-
nology, 102 (May), 30–48. https://doi.org/10.1016/j.infsof.2018.05.0
04

[47] The Modex Team (2019). The life cycle of Smart Contract development
https://blog.modex.tech/the-life-cycle-of-smart-contract-development
-58b04f65de09

[48] Tran, A.B., Lu, Q., Weber, I. (2018). Lorikeet: A model-driven engi-
neering tool for Blockchain-based business process execution and asset
management. In: BPM Demos. CEUR-WS.

[49] Walport, M. (2016). Distributed Ledger Technology: Beyond Blockchain.
A report by the UK Government Chief Smart Scientific Adviser. https:
//www.gov.uk/government/uploads/system/uploads/attachment_data/fil
e/492972/gs-16-1-distributed-ledger-technology.pdf

[50] Wiegers, K. E. (2001). Inspecting Requirements. StickyMinds.com
Weekly Column.

[51] Szabo, N. (1997). Formalizing and Securing Relationships on Public
Networks. First Monday, 2, No. 9. http://firstmonday.org/ojs/index
.php/fm/article/view/548/469

https://doi.org/10.1007/3-540-28244-0_14
https://doi.org/10.1007/3-540-28244-0_14
10.1109/METRICS.2005.29
https://doi.org/10.1016/j.infsof.2018.05.004
https://doi.org/10.1016/j.infsof.2018.05.004
https://blog.modex.tech/the-life-cycle-of-smart-contract-development-58b04f65de09
https://blog.modex.tech/the-life-cycle-of-smart-contract-development-58b04f65de09
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/492972/gs-16-1-distributed-ledger-technology.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/492972/gs-16-1-distributed-ledger-technology.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/492972/gs-16-1-distributed-ledger-technology.pdf
http://firstmonday.org/ojs/index.php/fm/article/view/548/469
http://firstmonday.org/ojs/index.php/fm/article/view/548/469


The Importance of Testing in the Early Stages 239

[52] Schön E-M., Winter, D., Escalona, M.J., Thomaschewski, J. (2017).
Key Challenges in Agile Requirements Engineering. 18th International
Conference on Agile Software Development (XP2017), At Cologne.

[53] Bialy, M., Pantelic, V., Jaskolka, J., Schaap, A., Patcas, L., Lawford,
M. Wassyng, A. (2017). Software Engineering for Model-Based Devel-
opment by Domain Experts. Handbook of System Safety and Security.
https://doi.org/10.1016/B978-0-12-803773-7.00003-6

[54] Marchesi, M., Marchesi, L., Tonelli, R. (2018). An Agile Software
Engineering Method to Design Blockchain Applications. Software
Engineering Conference Russia (SECR 2018). Moscow, Russia.

[55] Uddin, A.; Anand, A. (2019). Importance of Software Testing in the
Process of Software Development. IJSRD – International Journal for
Scientific Research & Development. Vol. 6, Issue 12, 201.

Biographies

N. Sánchez-Gómez has developed a large part of its professional career
in the technology and process consultancy sector, both in the private and
public sectors. Throughout more than thirty years of professional experience,
he has gone from implementing ICT solutions to supervising work teams,
managing clients and leading ICT projects. He is currently a member of
the Web Engineering and Early Testing Research Group. In recent years, he
has been coordinating different projects of the research group, including the
Project Management Office of the Ministry of Culture (Andalusian Regional
Government).

He currently has a broad knowledge of the functions and processes that
make up the activity environment of the sectors in which he has participated
and has completed his studies in Computer Engineering, with the Degree
in Computer Engineering and the University Master in Engineering and
Software Technology, both at the University of Seville, with the knowl-
edge and skills of people management, ICT project management, customer

https://doi.org/10.1016/B978-0-12-803773-7.00003-6


240 N. Sánchez-Gómez et al.

management and practical application of computer engineering method-
ologies and techniques, in addition to obtaining the Prince2r Foundation
Certified, the ISTQBr Certified Tester, Foundation Level and the PMPr

Certified.
Previously, from 2001 to 2009, he developed his professional activity

as Manager of the company everis Spain, being responsible for different
accounts in both the public and private sectors. From 1990 to 2001, he
worked for the company Coritel (Accenture group), where he also carried
out management and project management activities. Further information
about her research activities and her list of publications can be found at
https://investigacion.us.es/sisius/sis_showpub.php?idpers=20733

L.Morales-Trujillo Graduated in Health Engineering since 2016 and Master
in Software Engineering and Technology since 2018; both by the University
of Seville (US).Since 2016 linked to the Web Engineering and Early Test-
ing (IWT2) research group, belonging to the department. Languages and
Computer Systems of the Higher Technical School of Computer Engineer-
ing of the US. Currently, enrolled in the doctorate program in Computer
Engineering at the US, with a line of research according to my academic
training: Ensuring the traceability of elements in a context of systems of
systems. In addition, linked to the US within the Recruitment Plan for
Young Research Personnel and R&D Support Technicians, Framework of
the National Youth Guarantee System of the 2014–2020 Youth Employment
Operational Program. Being part of a research group has allowed me to get to
know different R&D lines, attend conferences, participate in R&D contracts
in collaboration with companies, practice as a visiting professor, as well as
continue my academic studies.

The lines of research in which I have worked are: Optimized and Flexible
Management of Business Processes, Early Testing and Hybrid Simulation
Models in Software Production, Guided Solutions to Systematize Early
Quality Assurance of Software and Guided Mechanisms in Stages Early for

https://investigacion.us.es/sisius/sis_showpub.php?idpers=20733


The Importance of Testing in the Early Stages 241

Software Improvement. I have practiced (2019) as a guest professor in the
subject “Modeling and Analysis of Requirements in Information Systems” of
the Bachelor’s Degree in Computer Engineering in Computer Technologies,
teaching requirements validation activities in the context of developing an
information system to support the clinical services management. I have done
a 6-month pre-doctoral stay at the Universidad a Distancia de Madrid, in the
course 18/19. Further information about her research activities and her list of
publications can be found at https://www.investigacion.us.es/sisius/sis_sho
wpub.php?idpers=25277

J. J. Gutiérrez was awarded his PhD in Computer Science by the University
of Seville, Spain, in 2011. Since 2004 he has been a professor in the Depart-
ment of Computer Languages and Systems at the University of Seville and
since 2006 he has been a collaborating professor.

He is currently a member of the Web Engineering and Early Testing
Research Group. Among his most notable research results, it is worth men-
tioning his transfer to the business world. With the development of the
concept of early testing and its integration with the NDT methodology also
developed within the research group, he has managed to develop a set of
methodological solutions for the development and quality assurance that has
been widely used in the Andalusian and national business network or even
by international companies. This can be measured not only in the transfer
projects, but also in the number of publications with companies and in the
tools registered. Further information about her research activities and her list
of publications can be found at https://investigacion.us.es/sisius/sis_showp
ub.php?idpers=11730

https://www.investigacion.us.es/sisius/sis_showpub.php?idpers=25277
https://www.investigacion.us.es/sisius/sis_showpub.php?idpers=25277
https://investigacion.us.es/sisius/sis_showpub.php?idpers=11730
https://investigacion.us.es/sisius/sis_showpub.php?idpers=11730


242 N. Sánchez-Gómez et al.

J. Torres-Valderrama received his MSc and the Phd in Computer Systems
in 1997. He has been working in the Department of Computer Languages
and Systems at the Seville’s University since 1991, where he is currently
a senior lecturer. Her main research interests are related to requirements
engineering, web-based systems development, user interfaces, usability and
Early Software Testing. In these areas, she has directed several PhD theses
and published numerous papers in journals and congresses. He has managed
and participated in a high number of projects related to her areas of research.

He has been dean of School of Computer Engineering at Seville’s
University from 2006 to 2014 and he is currently manager of the Foundation
for Research and Development of Information Technology in Andalusia
since 2016. Further information about her research activities and her list of
publications can be found at https://investigacion.us.es/sisius/sis_showpub.p
hp?idpers=3278

https://investigacion.us.es/sisius/sis_showpub.php?idpers=3278
https://investigacion.us.es/sisius/sis_showpub.php?idpers=3278

	Introduction
	Context
	Blockchain and smart contract
	Blockchain oracle
	Software testing and early testing
	Model-based software development

	Hypothesis
	Approach to Model-based Smart ContractDevelopment and Testing
	Conclusions And Future Work

