
FlakyLoc: Flakiness Localization for
Reliable Test Suites in Web Applications

Jesús Morán1,∗, Cristian Augusto1, Antonia Bertolino2,
Claudio De La Riva1 and Javier Tuya1

1Computer Science Department, University of Oviedo, Gijón, Spain
2ISTI-CNR, Consiglio Nazionale delle Ricerche, Pisa, Italy
E-mail: moranjesus@uniovi.es; augustocristian@uniovi.es;
antonia.bertolino@isti.cnr.it; claudio@uniovi.es; tuya@uniovi.es
∗Corresponding Author

Received 19 December 2019; Accepted 14 April 2020;
Publication 03 June 2020

Abstract

Web application testing is a great challenge due to the management of com-
plex asynchronous communications, the concurrency between the clients-
servers, and the heterogeneity of resources employed. It is difficult to ensure
that a test case is re-running in the same conditions because it can be executed
in undesirable ways according to several environmental factors that are not
easy to fine-grain control such as network bottlenecks, memory issues or
screen resolution. These environmental factors can cause flakiness, which
occurs when the same test case sometimes obtains one test outcome and
other times another outcome in the same application due to the execution
of environmental factors. The tester usually stops relying on flaky test cases
because their outcome varies during the re-executions. To fix and reduce the
flakiness it is very important to locate and understand which environmental
factors cause the flakiness. This paper is focused on the localization of the
root cause of flakiness in web applications based on the characterization of
the different environmental factors that are not controlled during testing. The
root cause of flakiness is located by means of spectrum-based localization
techniques that analyse the test execution under different combinations of

Journal of Web Engineering, Vol. 19_2, 267–296.
doi: 10.13052/jwe1540-9589.1927
© 2020 River Publishers



268 J. Morán et al.

the environmental factors that can trigger the flakiness. This technique is
evaluated with an educational web platform called FullTeaching. As a result,
our technique was able to locate automatically the root cause of flakiness and
provide enough information to both understand it and fix it.

Keywords: Software testing and debugging, spectrum-based localization,
web applications, test flakiness.

1 Introduction

Software testing and debugging play an important role in the evaluation
of software quality, but they pose several challenges [1]. The design and
execution of the test cases of web applications are complex due to the
distributed interoperations between heterogeneous clients and servers. These
test cases can be executed each time in different ways according to varying
environmental factors like the underlying network bandwidth, the memory
or the timeouts in web server responses. The non-deterministic execution
can introduce flakiness in the test cases of web applications. A test case is
considered flaky when the same test case run on the same system-under-
test obtains different outcomes due to the environmental factors [2]. Testers
cannot rely on the outcome of flaky test cases.

Avoiding flakiness is difficult because it does not always depend on the
application, but on the behavior of these environments. The developer designs
the test cases in one environment, but they can be executed in another. Even if
the test cases are executed in the same environment they are prone to flakiness
because the environment is not usually predictable or coarse-grained control-
lable. It is common that developers design the test cases to be executed several
times to avoid non-predicted environmental issues. However, according to
a recent study, developers face flakiness frequently and they usually stop
relying on potentially flaky tests [3]. Despite the fact that debugging these
tests is considered time-consuming, the majority of developers consider that
finding the root cause of flakiness is relevant in order to fix it, but it is also a
very difficult challenge [3].

In this paper, we introduce a technique to locate the root cause of flakiness
in test cases for web applications. This technique is based on a characteriza-
tion of the environmental factors that are not controlled during testing and
can cause flakiness. Based on this characterization, a test case is executed
several times under different environmental factors to obtain insights about
flakiness. These executions are analysed with a spectrum-based localization



FlakyLoc: Flakiness Localization for Reliable Test Suites 269

technique [4] considering that the factors that usually trigger the flakiness are
more prone to be the root cause of flakiness.

This article extends our earlier work [5], improving the technique pro-
posed and its evaluation, as well as expanding the survey of related work. The
localization technique is enhanced to analyze combinatorial test executions
with different ranking metrics like Ochiai and Tarantula. The evaluation of
the technique is also extended providing insights not only of the localization
but also about the fixing of flakiness in a real-world application. The related
work is extended introducing a thorough analysis of the state-of-the-art.

The contributions of this article thus include:

1. A technique called FlakyLoc to locate the root cause of flakiness in
web applications. This technique characterizes the test environment,
executes the test case in different ways based on combinatorial testing,
and analyzes the test execution using different ranking metrics.

2. The localization of the root cause of flakiness in a real-world web
application using the technique proposed.

3. The mitigation and fixing of the flakiness in a real-world web application
based on the information provided by the technique proposed.

The remainder of the paper is organized as follows. The testing of web
applications is introduced in Section 2. The related work on flaky tests is
discussed in Section 3. The technique FlakyLoc is introduced in Section 4
and a practical working example of this technique is described in Section 5.
Finally, conclusions and future work are set out in Section 6.

2 Flakiness in Testing Web Applications

The functionality of web applications is implemented with code executed
in a distributed architecture. The client-side code performs web requests
that are responded to by the server-side code. These interactions from the
client to the server are tested performing the user actions across the web
interface and checking if the server responds properly. There are several
frameworks to support testing in web applications, among others NDT [6, 7].
The WebDrivers allow the automatization of the test cases controlling the user
actions in a browser. Different tools exist to support the automatic execution
of test cases for web applications, such as Selenium [8].

These tools provide several WebDrivers that support the execution of the
test in different browsers. However, there are other environmental factors that
can affect the execution of the test cases. For example, suppose a simple test



270 J. Morán et al.

case that pushes a button and waits 2 seconds to check if the server response
is correct. The execution of the previous test case can be affected by several
environmental factors such as the screen resolution, memory or network.
These factors can cause flakiness in the test case, so that sometimes it passes
and other times fails, as in the following examples. The test case passes when
it is executed in large screen resolutions because it is able to find the button. In
contrast, the test case can fail when it is executed in small screen resolutions
because the button can be hidden automatically inside the response menu.
The test case can also fail if the button is not rendered due to lack of memory.
If the button is pushed correctly, the test case waits 2 seconds for the server
response, however, the test case can also fail if the server employs more time
due to network congestion. In the previous examples, the test case is flaky
because the tester cannot rely on its outcome as sometimes the test case fails,
and other times it passes.

The presence of a flaky test case is common [3], and some researchers
propose the aphorism ‘Assume Tests are Flaky’ (ATAF) [9]. In order to deal
with this flakiness, the testing tools usually provide different mechanisms
based on re-execution. JUnit has the @RepeatedTest(10) tag that executes the
test case 10 times to avoid “failures” due to the environmental factors of the
execution [10]. In a similar way, the Spring framework has the @Repeat(10)
tag [11]. For the case of progressive web applications, Android provides the
@FlakyTest(tolerance=10) tag [12]. Maven also supports the re-execution
of those test cases that fail using the Surefire plugin with the option -
Dsurefire.rerunFailingTestsCount=10 [13]. Based on the abovementioned,
Jenkins provides the Flaky Test Handler plugin [14].

The previous tools re-execute the flaky test case several times in order
to check if the test case passes in at least one execution. However, the tester
cannot rely on the test case as it is still flaky, and its execution is not easy
to reproduce. In order to both avoid and fix the flakiness, the developers
consider it very important to identify the root cause of flakiness [3]. In this
paper, we introduce FlakyLoc to locate the root cause of flakiness in web
applications.

3 Related Work

This section discusses different works that are related to FlakyLoc classified
in the subsections below. Subsection 3.1 is focused on the studies that classify
different kinds of flakiness instead of debugging the flakiness. The studies



FlakyLoc: Flakiness Localization for Reliable Test Suites 271

on detecting the different kinds of flakiness are detailed in Subsection 3.2.
The techniques to locate the root cause of this flakiness are described in
Subsection 3.3. Finally, Subsection 3.4 introduces the studies on fixing the
flakiness. The following subsections discuss the related work and both their
similarities and differences with the FlakyLoc technique.

3.1 Classification of flakiness

The root causes of faults have been widely studied and several authors
propose different taxonomies to classify them [15, 16]. Although flakiness
in software testing is not a new problem [17], its interest has increased
in the recent years. The first classification of flakiness analyzed 51 open
source projects [2], classifying the flakiness into 11 different categories: asyn-
chronous waits, concurrency, test order dependency, resource leak, network,
time, IO, randomness, floating-point operations, unordered collections and
others. Most flakiness is caused by asynchronous waits [2], as for example
when the Selenium WebDriver sends an asynchronous web request and
does not wait enough time for the server response. Thorve et al. [18], after
analyzing 29 Android Applications, extend the classification of flakiness with
the following three categories: Dependency, Program Logic, and UI. All of
these kinds of flakiness can happen also in web applications, especially the
Dependency and UI. Dependency flakiness is caused by the use of specific
hardware, devices or third party libraries. UI flakiness is caused by the
misunderstanding of the rendering process and user interface. Eck et al. [3]
also extend the flakiness classification with the following four new categories
after analyzing the Bugzilla reports: Restrictive Range, Test Case Timeout,
Platform Dependency, and Test Suite Timeout. These kinds of flakiness can
also happen in web applications, especially Test Case Timeout and Platform
Dependency. The Test Case Timeout flakiness is caused when the test case
does not finish in the correct time and it is killed. Platform Dependency
flakiness is caused when the test case passes in one platform, but it fails in
another, such as for example those test cases that pass in one version of the
browser, yet fail in another.

The previous studies are focused on classifying the kinds of flakiness
instead of debugging them. In FlakyLoc, we propose to debug the flaky test
cases with the aim of locating the root cause of flakiness of these kinds of
flakiness. Based on these studies of this subsection, we characterize a series of
environmental factors that are prone to trigger flakiness in web applications.



272 J. Morán et al.

3.2 Detection of a flaky test

The interest in the literature about test flakiness begins with the so-called
“false alarm” tests. The false alarm tests are those that indicate failure but
there is no fault in the code. Several works have addressed the detection
of these false alarm tests. Herzing and Nagappan [19] aimed to detect them
using association rules that classify the test case in real faults or false alarms
based on a series of test execution parameters. This work has been put into
production in the Microsoft continuous integration system, achieving savings
of 1.7 hours per day in development velocity [19].

Jiang et al. [20] also classify the test cases at Huawei proposing to analyze
the tests logs with an NLP technique that classifies the cause of flakiness
between product code, configuration error, test script defect, among others.

Flaky test cases and false alarm tests are sometimes referred to inter-
changeably in the literature. Several authors argue that flaky tests are preva-
lent in practice [21]. The common way to detect whether a test case is flaky
is to re-execute it several times until different outcomes are detected when
the test case is executed under similar conditions. However, some researchers
propose different approaches. Palomba and Zaidman [22] studied the rela-
tionship between flakiness and code smells, concluding that the flakiness of
54% of flaky test cases can be attributed to code smells. Muslu et al. [23]
proposed isolating the execution of each test case to detect problems related to
dependencies. Bell et al. [24] proposed detecting the flakiness when the same
test case in two executions covers the same code of the system-under-test but
in one execution passes and in the other execution fails.

The technique proposed in our paper, FlakyLoc, is not focused on the
detection of flaky test cases, but on the localization of the root cause of
flakiness once the flakiness is detected. Notwithstanding, FlakyLoc executes
the test case in different environmental characteristics to analyze the pattern
of characteristics in which the flakiness is detected.

3.3 Localization of the root cause of flakiness

Lam et al. [25] propose to classify the category of flakiness by analyzing the
logs after several test executions and locating the suspicious lines of code
that trigger flakiness. The previous technique and our paper are orthogonal
because both techniques aim to improve the understanding of the flakiness
but provide complementary insights about the root cause of flakiness. Some
authors [26] have also proposed to detect Order and Non-Order dependent
flakiness with a tool called iDFlakies. These tools aim to change the execution



FlakyLoc: Flakiness Localization for Reliable Test Suites 273

order of the test suite in order to discover underlying dependencies between
the test cases. The technique proposed in our paper is not only focused
on the flakiness caused by order dependencies but also on localizing more
types of root causes of flakiness such as those presented in the previous
sections.

Our technique, FlakyLoc, instead of providing the category of flakiness,
the line of code or the order that triggers the flakiness, provides the suspicious
environmental factors that cause the flakiness. These environmental factors
are obtained by FlakyLoc based on both the characterization and analysis of
several executions through a spectrum-based localization and combinatorial
testing.

3.4 Fixing the flakiness

Several authors have proposed to fix or decrease the undesirable effects of
the test flakiness in the test suites. Some approaches [27][28] isolate the
flaky test cases into a quarantine subset that is executed after the whole
test suite execution to provide extra insights without stopping the continuous
production cycle. Lam et al. also shed light on how these test cases interact
with each other and provide the correct way to fix the flakiness [29]. In
his PhD dissertation, Gao [30] proposes a test flakiness filter that reaches
a tradeoff between the minimization of the flakiness effects and real failure
detection.

The technique proposed in or our paper, FlakyLoc, does not fix flaki-
ness. However, FlakyLoc is aimed to help the developer understand the root
cause of flakiness, giving statistical insights that can also provide valuable
information to fix or decrease the flakiness.

4 FlakyLoc: Localization of the Root Cause of Flakiness

In this section, we describe the FlakyLoc technique to locate the root cause
of flakiness in the flaky test of web applications. A flaky test is a test case
that sometimes passes and other times fails depending on a combination
of different environmental factors that are not controlled and therefore can
introduce non-determinism in the test, such as for example the screen size,
the version of the browser, or the network traffic. We refer to each one of
the environmental characteristics that can alter the test execution as “factor”,
and we refer to one of the possible combinations of the previous factors as a
“configuration”.



274 J. Morán et al.

Figure 1 Technique to locate the flakiness.

Figure 2 Model of the configurations with several characteristics.

The proposed technique, FlakyLoc, is summarized in Figure 1. This
technique locates the root cause of flakiness based on the characterization
of the different environmental factors that are not controlled in the flaky tests
(Characterization). FlakyLoc executes the flaky test case in different configu-
rations selected with a combinatorial approach (Execution). The root cause of
the flakiness is then automatically located by a spectrum-based localization
technique that analyses which factors are shared by those executions that
trigger the “failure” (Analysis). In the remainder of this section, we detail
the main processes proposed: characterization of the factors that can cause
flakiness, execution of the test in different combinations of configurations,
and analysis of the root cause of flakiness.

4.1 Characterization

We characterize the configuration that triggers the flakiness according to
the potential environmental factors that can cause the flakiness. A catalog
of these environmental factors can be collected from the state-of-the-art
studies about the classification of flakiness and considering the specific-
domain of the application (Subsection 3.1). For example, in web applications,
a configuration can be characterized according to the following factors (also
depicted in Figure 2):

• Memory can cause issues in the WebDrivers, especially when several
sessions and browsers are not properly closed and they consume the
same memory.



FlakyLoc: Flakiness Localization for Reliable Test Suites 275

• The network is one of the main causes of flakiness [2] that can produce
delays and race conditions in the asynchronous web requests.

• CPU can increase or decrease the computation and the concurrency,
which is one of the main issues of flakiness [2].

• Browsers and different versions of these browsers can alter the execution
of the test cases, causing flakiness for different reasons such as rendering
the objects in a different way.

• Screen resolution can modify the test execution, especially for those
interactive applications as it can hide/expose relevant web elements
during testing.

• The operating system can also produce flakiness, especially when the
application uses a workspace or other environmental variables.

Each one of these factors takes one discrete value from those depicted
in Figure 2. The configurations are modelled according to the factors and
the values that these factors take. Thus, each configuration is composed of
several factor-value pairs. For example, a configuration can be composed
by 400KB/s as network bandwidth (Network bandwidth – 400KB/s pair),
1 core CPU (CPU – 1 core pair), Chrome v75 (Browser – Chrome v75 pair),
SVGA screen resolution (Screen resolution – SVGA pair), and Windows 10
(Operating system. – Windows 10 pair).

4.2 Execution

The same test case can be executed in different ways according to the
combination of the previous characterization, some of which cause flakiness
while others hide flakiness. FlakyLoc proposes to execute the same flaky
test case under different representative configurations using a combinatorial
approach [31, 32]. Testing all combinations of the environmental factors
may be inefficient because the number of configurations grows exponentially
according to the number of factors-values. All combinations of the environ-
mental factors represented in Figure 2 require to execute the test case in at
least 64 configurations.

However, combinatorial approaches such as t-wise (also known as t-
way) can be used to obtain a representative subset of combinations. T-wise
proposes to test only all combinations of each t environmental factors [33].
Based on this approach, 1-Wise (also known as each use) [34] proposes that
all values of each environmental factor appear in at least one configuration,
whereas 2-Wise (also known as pairwise) proposes that the combination of all
values per pair of environmental factors appears in at least one configuration.



276 J. Morán et al.

Figure 3 2-Wise configurations of network, CPU, browser, Screen resolution and S.O.
factors.

The 2-Wise approach is almost as effective as all combinations in software
testing [35], but employs much fewer resources in terms of time and cost
[36]. Therefore, the FlakyLoc proposes to execute the test case in 2-Wise
combinations of the environmental factors. For the environmental factors
represented in Figure 2, FlakyLoc proposes to execute the test case in the
configurations represented in Figure 3. These 9 configurations cover 2-Wise
because all combinations of each pair of environmental factors (Network,
CPU, Browser, Screen resolution and Operating system) are executed in at
least one configuration.

In the example of Figure 3, the executions of the test case in the 9
configurations with 2-Wise combinatorial approach provides insights into
the root cause of flakiness, especially those factors that usually trigger the
flakiness. The test case executed in Configurations 2, 6, 7 and 9 succeeds, but
on the other hand, the same test case executed in Configurations 1, 3, 4 and 5
triggers a “failure” because the test case cannot perform the user interactions
due to the lack of the web elements required.

The environmental factors of Configurations 1, 3, 4 and 5 cause flakiness
whereas the factors of Configurations 2, 6, 7 and 9 hide the flakiness. Some
configurations trigger the “failure” with 400KB/s (Configuration 1, 3, 4 and
5), they do not provide enough insights into the root cause of flakiness
because other configurations with 400KB/s mask the flakiness (Configuration
9). The same happens with the remainder environmental factors because
the test executions trigger the flakiness in a non-deterministic way without



FlakyLoc: Flakiness Localization for Reliable Test Suites 277

an apparent clear pattern. However, the test executions provide evidence
about the most suspicious environmental factor that causes the flakiness. This
evidence is analysed systematically with the following approach based on the
fault localization techniques and statistical rankings of suspiciousness.

4.3 Analysis

We analyse several executions with a ranking metric to obtain a prioritized list
of the suspicious factors that cause flakiness. Whereas the ranking metrics in
fault localization analyse the lines of code that cause the fault [37, 38], in
FlakyLoc the ranking metrics analyse the factors that cause flakiness.

The ranking metrics analyse the similarity between the values of the
factors executed and the configurations that fail/hide the flakiness. The envi-
ronmental factors that are executed in the configurations that trigger the
flakiness are more suspicious than those executed in the configurations that do
not trigger the flakiness. In contrast, the environmental factors not executed
in the configurations that trigger the flakiness are less suspicious than those
not executed in the configurations that do not trigger the flakiness. There
are different ways to obtain the suspiciousness based on the above, and the
ranking metrics use different weights to obtain the suspiciousness per each
environmental factor based on the following:

• NCF is the number of configurations that execute the environmental
factor and trigger the flakiness.

• NCS is the number of configurations that execute the environmental
factor but do not trigger the flakiness.

• NF is the number of configurations that trigger the flakiness.
• NS is the number of configurations that do not trigger the flakiness.

FlackyLoc uses the Ochiai [39] and Tarantula [40] ranking metrics that
calculate the suspiciousness per each environmental factor in the following
way:

• Ochiai: NCF√
NF ·(NCF+NCS)

• Tarantula:
NCF
NF

NCF
NF

+
NCS
NS

In the example of Figure 3, the 9 configurations are analyzed with the
Ochiai and Tarantula ranking metrics (Table 1). Both ranking metrics obtain
automatically that the most suspicious root cause of flakiness is 400KB/s of
network bandwidth.



278 J. Morán et al.

T
ab

le
1

L
oc

al
iz

at
io

n
of

th
e

ro
ot

ca
us

e
of

fla
ki

ne
ss

w
ith

O
ch

ia
ia

nd
Ta

ra
nt

ul
a

ra
nk

in
g

m
et

ri
cs

E
nv

ir
on

m
en

ta
lf

ac
to

rs
C

on
fig

ur
at

io
ns

O
ch

ia
i

Ta
ra

nt
ul

a

1
2

3
4

5
6

7
8

9
Su

sp
ic

io
us

ne
ss

R
an

ki
ng

Su
sp

ic
io

us
ne

ss
R

an
ki

ng
N

et
w

or
k

ba
nd

w
id

th
5

M
B

/s
X

X
X

X
0

11
0

11
40

0
K
B
/s

X
X

X
X

X
0.
89

4
1

0.
83
3

1
C

PU
1

co
re

X
X

X
X

0.
25

9
0.

29
4

9
4

co
re

s
X

X
X

X
X

0.
67

1
2

0.
65

2
3

B
ro

w
se

r
Fi

re
fo

x
v6

7
X

X
0

11
0

11
Fi

re
fo

x
v6

8
X

X
0.

35
4

7
0.

55
6

5
C

hr
om

e
v7

4
X

X
0.

35
4

7
0.

55
6

5
C

hr
om

e
v7

5
X

X
X

0.
57

7
4

0.
71

4
2

Sc
re

en
re

so
lu

tio
n

SV
G

A
X

X
X

X
0.

5
5

0.
55

6
5

X
G

A
X

X
X

X
X

0.
44

7
6

0.
45

5
8

O
pe

ra
tin

g
sy

te
m

W
in

do
w

s
10

X
X

X
X

X
0.

67
1

2
0.

65
2

3
U

bu
nt

u
18

.0
4

X
X

X
X

0.
25

9
0.

29
4

9
Fa

ilu
re

s
X

X
X

X



FlakyLoc: Flakiness Localization for Reliable Test Suites 279

Despite the fact that the failure is triggered with the Windows 10 operat-
ing system in Configurations 1, 4 and 5, apparently this is not the root cause
of flakiness because Windows 10 also hides the flakiness in Configurations
7 and 8. The same happens with the remainder of the environmental factors.
The Firefox v67 browser is not the root cause of flakiness because it never
triggers the flakiness. In contrast, 400KB/s of network bandwidth triggers
the flakiness most of the times. After analyzing automatically all factors
through the localization technique, both Ochiai and Tarantula determine
statistically that the most suspicious root cause of flakiness is 400KB/s of
network bandwidth. According to Ochiai ranking metric, the top of the rank
of suspiciousness is 400KB/s (0.894 out of 1 of suspiciousness), followed
by both 4 cores and Windows 10 (0.714 out of 1 of suspiciousness). The
Tarantula ranking metric also determines 400Kb/s of bandwidth network as
the most suspicious (0.833 of 1 of suspiciousness), followed by the Chrome
v75 browser with 0.714 of suspiciousness.

The localization of the root cause of flakiness can improve the under-
standing of the flaky test in order to avoid it or fix it. The previous test case
succeeds with 5Mb/s of network bandwidth because the web requests are
responded to quickly just before the user interaction takes place. However,
with less network bandwidth (400 KB/s), the web requests are responded to
slowly, causing that the test case fails because it tries to execute the user
interactions before the responses. This flakiness can be avoided in different
ways, for example increasing the time of sleep or wait for to wait for the web
responses.

5 Evaluation

In this section, we evaluate how FlakyLoc is able to locate the root cause
of flakiness in a case study about an educational web platform called Full-
Teaching [41]. This platform allows teachers and students to perform the
lessons and share their teaching materials, such as calendars, dashboards
or forums. The Fullteaching project has several test cases including End-to-
End tests that execute the whole system (web application, streaming server,
and database). Several of these End-to-End tests are flaky because the same
test case sometimes passes and others fail in a non-deterministic way. In the
remainder of this section, we evaluate if FlakyLoc is able to both locate the
root cause of flakiness and provide valuable information to fix a flaky test
case. The evaluation considers the first environmental factors provided by the
Ochiai and Tarantula ranking metrics.



280 J. Morán et al.

We consider a test case that checks if the user is able to log into the
application, get into the settings menu and logout. Although the test cases
are executed in an isolated environment through a containerized instance, the
test case sometimes crashes due to the configuration in which the test case
is executed. This test case was correctly executed in the tester’s computer,
but the same test case failed in the Continuous Integration server. In both
environments, the test case was executed isolated inside a container with the
same resources. We have checked that the system-under-test and the test case
were properly deployed in the Continuous Integration server, but the flakiness
remains.

In order to locate the root cause of flakiness, the technique proposed in
Section 4, FlakyLoc, is applied to the previous flaky test.

5.1 Characterization

We characterize those factors that can trigger the failure. This example is
illustrated with the following factors-values pairs:

1. Memory: the test execution is modelled with 90MB and 240MB to
increase or decrease the WebDriver resources.

2. CPU: the execution is modelled with 1 and 4 cores to increase or
decrease the concurrency between the threads executed by the test case.

3. Browser: the execution is modelled with Mozilla Firefox and Google
Chrome that can render the web elements in different ways.

4. Screen resolution: the execution is modelled with SVGA (800×600),
XGA (1024×768), and WFHD (2560×1024) resolutions. These resolu-
tions can increase or decrease the web elements that are rendered in the
navigator window.

5.2 Execution

A combination of the previous factor-values characterizes the execution of
the test case. We execute the test case with the 6 configurations of Figure 4
obtained by the 2-wise combination of the aforementioned environmental
factors. These 6 configurations guarantee that all combinations of each pair
of environmental factors are executed at least once.

After the execution of the test case in the previous 6 configurations, the
test case fails 50% of times (Configurations 1, 2 and 4) and masks the “fail-
ure” in another 50% of times (Configurations 3, 5 and 6) without an apparent
clear pattern. The test case executed with 90MB of memory sometimes fails



FlakyLoc: Flakiness Localization for Reliable Test Suites 281

Figure 4 Configurations executed in FullTeaching application.

(Configurations 1 and 4) whereas other times it succeeds (Configuration 5).
Increasing the memory to 240MB still makes the test case sometimes fail
(Configuration 2) and other times succeed (Configurations 3 and 6). The
test case fails more times with 90MB than with 240MB. However, there is
no clear evidence that memory size causes flakiness, and the same happens
with the remaining environmental factors. The test case fails with 1 core
sometimes (Configuration 1), but the test executions that increase the CPU to
4 cores still fail sometimes (Configurations 2 and 4). The same happens with
the browser, the test case fails sometimes with Firefox (Configuration 2), but
apparently, the browser is not the root cause of flakiness because the test case
also fails with Chrome browser (Configurations 1 and 4). The same happens
with the screen resolution because the test case sometimes fails in 800x600
(Configurations 1 and 2) and other times fails in 1024x768 (Configuration 4).
Apparently, the screen resolution is not the root cause of flakiness because
the test case executed with the same screen resolution sometimes fails and
other times succeeds: the test case fails with 1024x768 in Configuration 4
and succeeds in Configuration 3. Therefore, it is difficult to obtain strong
clues about the root cause of flakiness analyzing the test executions by hand.

All of the failures produce the following trace:
Expected condition failed: waiting for visibility
of element located by By.id: settings-button
(tried for 10 second(s) with 500 MILLISECONDS
interval)

This error trace can be caused by timeouts (“Test case timeouts” accord-
ing to the Eck et al. [3] classification) because of issues in the network
or processing, among others. However, this is misleading, and in fact the
root cause of flakiness is not related to timeouts as the following subsection
details.



282 J. Morán et al.

5.3 Analysis

We apply the FlakyLoc technique to locate automatically the root cause of the
flakiness analysing the test executions. FlakyLoc employs a ranking metric to
analyse the previous 6 test executions considering statistically those factors
both covered (marked with an “X” in Table 2) and non-covered when a test
case fails (marked with an “X” in the bottom row of Table 2), and also when
it succeeds. In this subsection, we analyse the test executions with FlakyLoc
using the Ochiai and Tarantula ranking metrics that are often used in the
localization of root causes.

Table 2 details the most suspicious environmental factors obtained by the
FlakyLoc technique. Regardless of the ranking metric used (Ochiai or Taran-
tula), the most suspicious environmental factor ranked in the first position is
the screen resolution of 800×600 (0.816 of suspiciousness in Ochiai and 1
in Tarantula), followed by the Chrome browser, 4 cores of CPU and 90MB
of memory that are ranked in the second position (0.667 of suspiciousness in
both Ochiai and Tarantula).

The localization of the root cause of flakiness (800x600 screen resolu-
tion) is valuable to understand the flakiness in order to avoid it or fix it.
In the FullTeaching application, the flaky failure was triggered sometimes
in the Continuous Integration server but masked in the tester computer.
Once the root cause of flakiness is located, we are able to understand that
the tester computer masked the flakiness because it has a widescreen res-
olution, whereas the Continuous Integration server sometimes triggers the
flaky failure because it isolates the test case in a container with low screen
resolutions.

The analysed test case aims to check the setting configuration of the
FullTeaching application. During the test execution, the Selenium WebDriver
pushes a “SETTING” button to enter the setting configuration and finally
checks that the settings are fine. Once the root cause of flakiness is located,
we can understand that in computers with wide resolutions like the tester
computer, the SETTING button is visible and the test case checks the set-
tings properly as in Figure 5 (2560x1080 screen resolution). However, we
can understand that in computers with low screen resolution as sometimes
happens in Continuous Integration deployment, the SETTING button is not
visible because it is hidden inside the response menu as in Figure 6 (800x600
screen resolution).

Once FlakyLoc determines automatically that the low screen resolution
causes the flakiness, we have enough clues to understand the flakiness.



FlakyLoc: Flakiness Localization for Reliable Test Suites 283

T
ab

le
2

L
oc

al
iz

at
io

n
of

th
e

ro
ot

ca
us

e
of

fla
ki

ne
ss

in
Fu

llT
ea

ch
in

g
ap

pl
ic

at
io

n
E

nv
ir

on
m

en
ta

lf
ac

to
rs

C
on

fig
ur

at
io

ns
O

ch
ia

i
Ta

ra
nt

ul
a

1
2

3
4

5
6

Su
sp

ic
io

us
ne

ss
R

an
ki

ng
Su

sp
ic

io
us

ne
ss

R
an

ki
ng

M
em

or
y

90
M

B
X

X
X

0.
66

7
2

0.
66

7
2

24
0M

B
X

X
X

0.
33

3
6

0.
33

3
6

C
PU

1
co

re
X

X
X

0.
33

3
6

0.
33

3
6

4
co

re
s

X
X

X
0.

66
7

2
0.

66
7

2
B

ro
w

se
r

Fi
re

fo
x

X
X

X
0.

33
3

6
0.

33
3

6
C

hr
om

e
X

X
X

0.
66

7
2

0.
66

7
2

Sc
re
en

re
so
lu
ti
on

80
0x

60
0

X
X

0.
81

6
1

1
1

10
24

x7
68

X
X

0.
40

8
5

0.
5

5
25

60
x1

02
4

X
X

0
9

0
9

Fa
ilu

re
s

X
X

X



284 J. Morán et al.

Figure 5 Test case executed in 2560× 1080 screen resolution.

Figure 6 Test case executed in 800× 600 screen resolution.

However, the test case fails sometimes in 1024x768 screen resolution (Con-
figuration 4) and other times succeeds (Configuration 3) depending on the
browser. The test case succeeds in 1024x768 screen resolution with Fire-
fox browser because the SETTING button is visible (Figure 7), but fails
in Chrome browser because the web elements are rendered in a different
way and the button is again hidden inside the response menu (Figure 8).
Although the test case aims to be executed inside a container deployed
on Docker during Continuous Integration, the test case succeeds or fails
depending mainly on screen resolution and also on the browser. According
to the taxonomy of flakiness proposed by Eck et al. [3], this flaky test case
is considered ‘Platform Dependent’ on both browser and screen resolution.



FlakyLoc: Flakiness Localization for Reliable Test Suites 285

Figure 7 Test case executed in 1024× 768 screen resolution with Firefox browser

Figure 8 Test case executed in 1024× 768 screen resolution with Chrome browser.

We have analysed how the web elements are rendered in both the screen and
browser, observing that the browser window is not maximized. Therefore, the
test case does not take advantage of the whole screen to display the buttons
properly and sometimes places the buttons inside the response menu.

5.4 Fixing flakiness

In order to fix/decrease the flakiness, we modify the test case maximizing the
window of the browser programmatically to avoid the platform dependency.
After several executions with maximized windows, we observed that the
test case has reduced the flakiness, but it is still flaky. We re-execute the 6
configurations obtained with the 2-Wise combinatorial approach (Figure 9).



286 J. Morán et al.

Figure 9 Configurations executed in the FullTeaching application using a browser with a
maximized window.

The test case fails 33.33% of times (Configurations 1 and 2) and masks the
“failure” in the other 66.66% of times (Configurations 3, 4, 5 and 6). Note
that the programmatic maximization of the window decreases the flakiness
from 50% (3 failures out of 6 in Figure 9) to 33.33% (2 failures out of 6 in
Figure 9).

We can observe that the test case stops failing with 1024×768 screen res-
olution using the Chrome browser because the maximization of the browser
window provides more space to place the web elements. However, the test
case is still flaky because it fails in 800×600 screen resolution regardless
of the browser or other environmental factors. We use again the FlakyLoc
technique as Table 3 details. As we expected, FlakyLoc still pinpoints auto-
matically that the root cause of flakiness is the 800×600 screen resolution.
The test case fails in 800×600 screen resolution because the SETTING
button is hidden inside the response menu and the test case does not find it.

The programmatic maximization of the browser windows removes the
browser dependency (platform dependency [3]) of the test case because the
test case stops failing in Chrome and succeeds in Firefox for 1024x768.
However, the test case is still platform dependent on the screen resolution
because the FlakyLoc indicates that the test case is just a little flaky and the
root cause of flakiness is the 800x600 screen resolution.

In order to avoid the flakiness, we again modify the test case to force
it programmatically to be deployed in a container with 2560x1080 screen
resolution modifying the capabilities of the Docker deployment during Con-
tinuous Integration. We execute the test case several times and the flakiness
disappears because the test case stops failing due to the browser or screen
resolution issues. The test case is executed every time as Figure 10 depicts



FlakyLoc: Flakiness Localization for Reliable Test Suites 287

T
ab

le
3

L
oc

al
iz

at
io

n
of

th
e

ro
ot

ca
us

e
of

fla
ki

ne
ss

in
Fu

llT
ea

ch
in

g
ap

pl
ic

at
io

n
E

nv
ir

on
m

en
ta

lf
ac

to
rs

C
on

fig
ur

at
io

ns
O

ch
ia

i
Ta

ra
nt

ul
a

1
2

3
4

5
6

Su
sp

ic
io

us
ne

ss
R

an
ki

ng
Su

sp
ic

io
us

ne
ss

R
an

ki
ng

M
em

or
y

90
M

B
X

X
X

0.
40

8
2

0.
5

2
24

0M
B

X
X

X
0.

40
8

2
0.

5
2

C
PU

1
co

re
X

X
X

0.
40

8
2

0.
5

2
4

co
re

s
X

X
X

0.
40

8
2

0.
5

2
B

ro
w

se
r

Fi
re

fo
x

X
X

X
0.

40
8

2
0.

5
2

C
hr

om
e

X
X

X
0.

40
8

2
0.

5
2

Sc
re
en

re
so
lu
ti
on

80
0x

60
0

X
X

1
1

1
1

10
24

x7
68

X
X

0
8

0
8

25
60

x1
02

4
X

X
0

8
0

8
Fa

ilu
re

s
X

X



288 J. Morán et al.

Figure 10 Test case executed using a Docker instance with a fixed 2560Œ1024 screen
resolution.

with the SETTING button always visible. Therefore, the test case is able to
push the SETTING button and finally it checks that the settings are fine.

6 Discussion and Threats to Validity

Before we used the FlakyLoc technique, we thought that flakiness was caused
by timeouts (Test case timeouts [3]). After using FlakyLoc, we located the
root cause of flakiness and understood that the flakiness is triggered due to a
dependency on both browser and screen resolution (Platform dependency [3])
because sometimes a button is rendered in the main windows and other times
inside the response menu. We fixed the platform dependency of the browser
through the programmatic maximization of the browser window aimed to
provide enough space to the browser to place the web elements. Once the
platform dependency of the browser was fixed, the test case decreased the
flakiness, but it was still failing in some screen resolutions (platform depen-
dency of screen resolution). According to Figure 11 both the browser and the
screen resolution are suspicious before maximizing the browser window, but
after fixing the browser dependency only the screen resolution is suspicious.
Finally, the platform dependency of the screen resolution is avoided modify-
ing the test case to force its execution inside a Docker container with a fixed
resolution. The FlakyLoc technique locates the root cause of flakiness of the
test case, and it provides valuable information to fix/decrease the flakiness.
However, fixing flakiness automatically is challenging because it depends on
the environment executed.

There are several threats to validity. Firstly, regarding the internal threats
to validity, the technique could yield different results because the execution



FlakyLoc: Flakiness Localization for Reliable Test Suites 289

Figure 11 Suspiciouness of flakiness before fixing the test case.

of the same configuration could sometimes trigger flakiness and other times
it could remain hidden due to non-determinism. To mitigate this problem, the
technique guarantees that each characteristic is executed several times due to
a combinatorial approach.

Secondly, regarding the external threats to validity, the first threat is
that the technique was evaluated with only one case study. However, this
case study is a real-world web application and in future work we plan to
evaluate the technique with more kinds of flakiness. The second external
threat is related to the generation of configurations because the technique
could yield different outputs depending on the configurations executed. To
mitigate this problem, the technique uses a combinatorial approach to select
the configurations.

Finally, regarding the construct threats to validity, the technique can
obtain different results depending on the ranking metric used. To mitigate this
problem, the tehcnique obtains the results with two ranking metrics: Ochiai
and Tarantula.

7 Conclusions and Future Work

The test cases of web applications can be executed differently depending
on the environmental factors i.e. network bandwidth, memory or screen
resolution. If the test case sometimes obtains one outcome and other times
obtains another different outcome due to the environmental factors executed,
then this test case is considered flaky. Flaky test cases reduce the reliability
of the test suite because the tester stops relying on test outcomes. In spite
of the fact that developers face frequently flaky test cases, it is difficult to
both locate the root cause of flakiness and fix them. In this paper, we propose
a technique called FlakyLoc to locate automatically the root cause of flaki-
ness in web applications based on the characterization of the environmental



290 J. Morán et al.

factors that make the test case more prone to be flaky. FlakyLoc executes
the test case in different environmental factors through combinatorial testing
and analyzes statistically each environmental factor with a spectrum-based
approach obtaining a ranking of the suspicious root cause of flakiness.

We performed an evaluation of FlakyLoc in a web platform with a real
flaky test case. FlakyLoc allowed the automatic detection of the root cause
of flakiness and provided the appropriate insights to fix the flakiness. In con-
clusion, the characterization of the environmental factors together with the
spectrum-based analysis of several test executions can locate automatically
the root cause of flakiness of web applications and could provide valuable
information to fix the flakiness.

In future work, we plan to evaluate FlakyLoc empirically in several web
applications that have test suites with flaky test cases. We need to evaluate
more extensively its effectiveness, properly identifying the cause of flakiness,
but also to quantify the involved costs: in fact detecting flakiness is known
as a very costly activity, and also locating the causes requires resources to
re-execute the test cases under several configurations. The spectrum-based
analysis is done automatically, but the execution of the configurations is
controlled manually. In future work, we plan to also automate the execu-
tions, integrating the technique in the web methodologies with Model-Driven
Engineering.

Acknowledgements

This work was supported in part by the Spanish Ministry of Economy and
Competitiveness under project TestEAMoS (TIN2016-76956-C3-1-R) and
project POLOLAS (TIN2016-76956-C3-2-R), ERDF funds, and by the Euro-
pean Project ElasTest in the Horizon 2020 research and innovation program
(GA No. 731535).

References

[1] A. Bertolino, “Software Testing Research: Achievements, Challenges,
Dreams,” in 2007 Future of Soft. Eng., 2007, pp. 85–103.

[2] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov, “An empirical analysis of
flaky tests,” in Proceedings of the ACM SIGSOFT Symposium on the
Foundations of Soft. Eng., 2014, vol. 16-21-Nove, pp. 643–653.



FlakyLoc: Flakiness Localization for Reliable Test Suites 291

[3] M. Eck, F. Palomba, M. Castelluccio, and A. Bacchelli, “Understanding
flaky tests: the developer’s perspective,” in to appear FSE19/ESEC,
2019, pp. 830–840.

[4] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A survey on
software fault localization,” IEEE Transactions on Soft. Eng., vol. 42,
no. 8. pp. 707–740, 2016.

[5] J. Morán, C. Augusto, A. Bertolino, C. de la Riva, and J. Tuya, “Debug-
ging Flaky Tests on Web Applications,” in Proceedings of the 15th
Int. Conf. on Web Information Systems and Technologies, 2019, pp.
454–461.

[6] M. J. Escalona and G. Aragón, “NDT. A model-driven approach for web
requirements,” IEEE Trans. Softw. Eng., vol. 34, no. 3, pp. 377–394,
May 2008.

[7] J. A. García-García, M. J. Escalona, F. J. Domínguez-Mayo, and A.
Salido, “NDT-Suite: A Methodological Tool Solution in the Model-
Driven Engineering Paradigm,” J. Softw. Eng. Appl., vol. 07, no. 04,
pp. 206–217, 2014.

[8] Selenium HQ, “Selenium – Web Browser Automation,” 2019. [Online].
Available: https://www.seleniumhq.org/. [Accessed: 29-Jun-2019].

[9] M. Harman and P. O’Hearn, “From start-ups to scale-ups: Opportunities
and open problems for static and dynamic program analysis,” in Pro-
ceedings – 18th IEEE Int. Working Conf. on Source Code Analysis and
Manipulation, 2018, pp. 1–23.

[10] S. Bechtold, S. Brannen, J. Link, M. Merdes, M. Philipp, and C. Stein,
“RepeatedTest (JUnit 5.2.0 API),” 2019. [Online]. Available: https://ju
nit.org/junit5/docs/5.2.0/api/org/junit/jupiter/api/RepeatedTest.html.
[Accessed: 29-Jun-2019].

[11] Pivotal Software, “Repeat (Spring Framework 5.1.8.RELEASE API),”
2014. [Online]. Available: https://docs.spring.io/spring/docs/current/jav
adoc-api/org/springframework/test/annotation/Repeat.html. [Accessed:
28-Jun-2019].

[12] Google, “FlakyTest |Android Developers,” 2019. [Online]. Available: ht
tps://developer.android.com/reference/android/support/test/filters/Flaky
Test.html. [Accessed: 28-Jun-2019].

[13] F. Apache Software, “Maven Surefire Plugin – Rerun failing tests,”
2018. [Online]. Available: https://maven.apache.org/surefire/mave
n-surefire-plugin/examples/rerun- failing- tests.html. [Accessed:
29-Jun-2019].

https://www.seleniumhq.org/
https://junit.org/junit5/docs/5.2.0/api/org/junit/jupiter/api/RepeatedTest.html
https://junit.org/junit5/docs/5.2.0/api/org/junit/jupiter/api/RepeatedTest.html
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/test/annotation/Repeat.html
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/test/annotation/Repeat.html
https://developer.android.com/reference/android/support/test/filters/FlakyTest.html
https://developer.android.com/reference/android/support/test/filters/FlakyTest.html
https://developer.android.com/reference/android/support/test/filters/FlakyTest.html
https://maven.apache.org/surefire/maven-surefire-plugin/examples/rerun-failing-tests.html
https://maven.apache.org/surefire/maven-surefire-plugin/examples/rerun-failing-tests.html


292 J. Morán et al.

[14] Q. Luo and J. Micco, “Flaky Test Handler v1.04,” 2015. [Online].
Available: https://plugins.jenkins.io/flaky-test-handler. [Accessed:
29-Jun-2019].

[15] G. Catolino, F. Palomba, A. Zaidman, and F. Ferrucci, “Not all bugs are
the same: Understanding, characterizing, and classifying bug types,” J.
Syst. Softw., vol. 152, pp. 165–181, Jul. 2019.

[16] R. Chillarege, I. S. Bhandari, J. K. Chaar, M. J. Halliday, B. K. Ray, and
D. S. Moebus, “Orthogonal Defect Classification—A Concept for In-
Process Measurements,” IEEE Trans. Softw. Eng., vol. 18, no. 11, pp.
943–956, 1992.

[17] Google, “Google Testing Blog: TotT: Avoiding Flakey Tests,” 2008.
[Online]. Available: https://testing.googleblog.com/2008/04/tott-av
oiding-flakey-tests.html. [Accessed: 02-Nov-2019].

[18] S. Thorve, C. Sreshtha, and N. Meng, “An empirical study of flaky
tests in android apps,” in Proceedings – 2018 IEEE Int.Conf.on Soft.
Maintenance and Evolution, 2018, pp. 534–538.

[19] K. Herzig and N. Nagappan, “Empirically Detecting False Test Alarms
Using Association Rules,” in Proc. – Int. Conf. on Soft. Eng., 2015, vol.
2, pp. 39–48.

[20] H. Jiang, X. Li, Z. Yang, and J. Xuan, “What Causes My Test Alarm?
Automatic Cause Analysis for Test Alarms in System and Integration
Testing,” in Proceedings – 2017 IEEE/ACM 39th Int. Conf. on Soft.
Eng., 2017, pp. 712–723.

[21] A. Vahabzadeh, A. M. Fard, and A. Mesbah, “An empirical study of
bugs in test code,” in Proceeding – 2015 IEEE 31st International Conf.
on Soft. Maintenance and Evolution, 2015, pp. 101–110.

[22] F. Palomba and A. Zaidman, “Does refactoring of test smells induce
fixing flaky tests?,” in Proceedings – 2017 IEEE Int. Conf. on Soft.
Maintenance and Evolution, ICSME 2017, 2017, pp. 1–12.

[23] K. Mužlu, B. Soran, and J. Wuttke, “Finding bugs by isolating unit
tests,” in SIGSOFT/FSE 2011 – Proceedings of the 19th ACM SIGSOFT
Symposium on Foundations of Soft. Eng., 2011, pp. 496–499.

[24] J. Bell, O. Legunsen, M. Hilton, L. Eloussi, T. Yung, and D. Marinov,
“DeFlaker: Automatically detecting flaky tests,” in Proceedings of the
40th Int. Conf. on Soft. Eng.- ICSE ’18, 2018, pp. 433–444.

[25] W. Lam, P. Godefroid, S. Nath, A. Santhiar, and S. Thummalapenta,
“Root causing flaky tests in a large-scale industrial setting,” in Proceed-
ings of the 28th ACM SIGSOFT Int. Symposium on Soft. Testing and
Analysis, 2019, pp. 101–111.

https://plugins.jenkins.io/flaky-test-handler
https://testing.googleblog.com/2008/04/tott-avoiding-flakey-tests.html
https://testing.googleblog.com/2008/04/tott-avoiding-flakey-tests.html


FlakyLoc: Flakiness Localization for Reliable Test Suites 293

[26] W. Lam, R. Oei, A. Shi, D. Marinov, and T. Xie, “IDFlakies: A frame-
work for detecting and partially classifying flaky tests,” in Proceedings –
2019 IEEE 12th Int. Conf. on Soft. Testing, Verification and Validation,
2019, pp. 312–322.

[27] M. Fowler, “Eradicating Non-Determinism in Tests,” Martin Fowler
Personal Blog, 2011. [Online]. Available: https://martinfowler.com/a
rticles/nonDeterminism.html. [Accessed: 11-Nov-2019].

[28] J. Micco, “Flaky Tests at Google and How We Mitigate Them,” Google
Testing Blog. p. 4, 2016.

[29] A. Shi, W. Lam, R. Oei, T. Xie, and D. Marinov, “iFixFlakies: a
framework for automatically fixing order-dependent flaky tests,” in Pro-
ceedings of the 2019 27th ACM Joint Meeting on Eur. Soft. Eng. Conf.
and Symposium on the Foundations of Soft. Eng., 2019, pp. 545–555.

[30] Z. Gao, “Quantifying Flakiness and Minimizing Its Effects on Software
Testing,” University of Maryland, 2017.

[31] M. Grindal, J. Offutt, and S. F. Andler, “Combination testing strategies:
A survey,” Softw. Test. Verif. Reliab., vol. 15, no. 3, pp. 167–199, Sep.
2005.

[32] C. Nie and H. Leung, “A survey of combinatorial testing,” ACM
Comput. Surv., vol. 43, no. 2, pp. 1–29, Jan. 2011.

[33] ISO/IEC/IEEE, “29119-4:2015 -ISO/IEC/IEEE International Standard
for Software and systems engineering —Software testing — TR-2017-
35316 Part 4: Test techniques.” pp. 1–150, 2015.

[34] P. Ammann and J. Offutt, “Using formal methods to derive test frames in
category-partition testing,” in COMPASS – Proceedings of the Annual
Conf, on Computer Assurance, 1994, pp. 69–79.

[35] D. R. Kuhn and M. J. Reilly, “An investigation of the applicability of
design of experiments to software testing,” in Proceedings – 27th Annual
NASA Goddard / IEEE Soft. Eng. Work., 2003, pp. 91–95.

[36] J. Huller, “Reducing Time to Market With Combinatorial Design
Method Testing,” Int. Council on Systems Eng. (INCOSE) Conf. 2000.

[37] M. J. Harrold, G. Rothermel, R. Wu, and L. Yi, “An Empirical Inves-
tigation of Program Spectra,” SIGPLAN Not. (ACM Spec. Interes. Gr.
Program. Lang., vol. 33, no. 7, pp. 83–90, 1998.

[38] M. J. Harrold, G. Rothermel, K. Sayre, R. Wu, and L. Yi, “Empirical
investigation of the relationship between spectra differences and regres-
sion faults,” Softw. Test. Verif. Reliab., vol. 10, no. 3, pp. 171–194, Sep.
2000.

https://martinfowler.com/articles/nonDeterminism.html
https://martinfowler.com/articles/nonDeterminism.html


294 J. Morán et al.

[39] R. Abreu, P. Zoeteweij, and A. J. C. Van Gemund, “On the accuracy of
spectrum-based fault localization,” in Proceedings – Testing: Academic
and Industrial Conf. Practice and Research Techniques, TAIC PART-
Mutation 2007, 2007, pp. 89–98.

[40] J. A. Jones and M. J. Harrold, “Empirical evaluation of the tarantula
automatic fault-localization technique,” in 20th IEEE/ACM Int. Conf.
on Automated Soft. Eng., 2005, pp. 273–282.

[41] P. F. Pérez, “Fullteaching: A web application to make teaching online
easy.” Universidad Rey Juan Carlos, 2017.

Biographies

Jesús Morán received the Ph.D. degree in computing from the University of
Oviedo, Spain, in 2019. He is a Lecturer of the Computer Science Department
with the University of Oviedo, Spain. He is a member of the Software
Engineering Research Group. His research interests include software testing,
Big Data technologies, and distributed programming.

Cristian Augusto received the degree in Computer Science in Information
Technology from the University of Oviedo, Gijon, Spain in 2018. He is
currently finishing his master’s degree in Computer Engineering into Oviedo



FlakyLoc: Flakiness Localization for Reliable Test Suites 295

University. His interest research areas in the field of Software Engineering
are Big Data, privacy-preserving techniques and Software Testing mainly
focused on the efficient use of resources in the test process. He has also been
part since 2018 of the Software Engineering Research Group (GIIS) at the
Oviedo University.

Antonia Bertolino received the M.S. degree in electronic engineering from
the University of Pisa, Pisa, Italy, in 1985. She is a Research Director with
the Italian National Research Council–Institute of Information Science and
Technologies (ISTI), Pisa, Italy. Her research focuses on software and service
testing. Ms. Bertolino is an Associate Editor for Transactions on Software
Engineering and Methodology, Empirical Software Engineering Journal, and
Journal of Software: Evolution and Process. She also serves as Senior Editor
for the Journal of Systems and Software. She has been the General Chair of
the 2015 International Conference on Software Engineering, Florence, Italy.

Claudio De La Riva received the Ph.D degree in computing from the
University of Oviedo, Spain, in 2004. He is an Associate Professor of the
Computer Science Department with the University of Oviedo, Spain. He is a
member of the Software Engineering Research Group. His research interests
include software verification and validation, software quality and software
testing, mainly focused on testing database applications and services.



296 J. Morán et al.

Javier Tuya received the Ph.D. degree in engineering from the University
of Oviedo, Oviedo, Spain, in 1995. He is a Professor with the University
of Oviedo, Oviedo, Spain, where he is the Research Leader of the Software
Engineering Research Group. He is the Director of the Indra-Uniovi Chair,
a member of the ISO/IEC JTC1/SC7/WG26 Working Group for the recent
ISO/IEC/IEEE 29119 Software Testing Standard, and a Convener of the
corresponding UNE National Body Working Group. His research interests in
software engineering include verification and validation, and software testing
for database applications and services.


	Introduction
	Flakiness in Testing Web Applications
	Related Work
	Classification of flakiness
	Detection of a flaky test
	Localization of the root cause of flakiness
	Fixing the flakiness

	FlakyLoc: Localization of the Root Cause of Flakiness
	Characterization
	Execution
	Analysis

	Evaluation
	Characterization
	Execution
	Analysis
	Fixing flakiness

	Discussion and Threats to Validity
	Conclusions and Future Work

