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Abstract

Rice is the most important grain in Thailand for both consuming and export-
ing. One of the critical problems in rice cultivation is rice diseases, which
affects directly to the yield. Early disease recognition is handled by a human,
which is difficult to achieve high accuracy and the performance depends on
the farmer’s experience. To overcome this problem, we did three folds of
contributions. First, an infield rice diseases image dataset, named K5RD, was
created. Second, a number of additional techniques to enhance the classi-
fication scores including data augmentations and learning rate adjustment
strategies were carefully surveyed. Third, a set of selective deep learning
models including ResNets and DenseNets were applied to classify such rice
diseases. The experimental results reveal that the proposed framework can
achieve high performance, which its F1 score is higher than 98% on average,
and has the potential to be implemented as a practical system to provide to
Thai farmers in the future.
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1 Introduction

As a mainly economic grain of the country, rice is cultivated in all regions
of Thailand [1]. To achieve higher rice production, efficient disease control is
needed [2, 3]. Early recognition of the disease in the field is the essential step
in managing the detection and spread of rice diseases. However, recognizing
the rice disease is a difficult task and the identification accuracy depends on
the experience of plant pathologists or farmers.

In the past few decades, there are several studies that focused on recogniz-
ing cereal crop diseases, especially rice disease recognition, by using artificial
intelligence (AI) techniques such as machine learning and deep learning with
image data [4–8]. A study in [4] reveals that using deep neural networks
(DNNs) on grain crop disease recognition problem becomes a research
trend because of their impressive performance. Consequently, many studies
focused on discovering or creating an appropriate DNN model to recognize
rice diseases. Liang et al. [9] applied a convolutional neural network (CNN) to
classify rice blast disease. Their experimental results showed that CNN can
extract the features and classify the blast disease better than the traditional
methods, e.g., local binary patterns histograms (LBPH) with support vector
machine (SVM). Singh et al. [10] used genetic algorithm (GA) to segment the
disease area and use the co-occurrence methodology to extract the features in
the problem of leaf disease detection. Shrivastava et al. [11] used a transfer
learning of CNN to extract the features and then used SVM to classify the
four classes of rice images including three kinds of rice diseases and a healthy
class.

Using rice images to infield classify rice diseases is challenged due to
the performance of the recognition system depends not only on selecting the
proper AI model, which matches the stated problem, but also the quantity and
quality of the used data to train such a model. However, currently available
infield rice disease datasets are usually small and do not contain enough
images of different plant stages. Besides, rice is a kind of grass species,
which its image contains a lot of details inside, and the difference between the
foreground and the background is slight. Therefore, theoretically, recognizing
rice disease images cannot achieve a good result by using a general deep
learning model such as a convolutional neural network (CNN), which is
proper to recognize an object that has distinct detail from the background.
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In this study, we propose a practical framework to recognize five diseases
of rice, which are devastating in many regions of Thailand. The contributions
of this work can be divided into three folds as follows.

(1) A practically infield rice disease image dataset, named K5RD, was
created. This dataset is designed for the single-label multi-class classi-
fication and covers five rice diseases that are the most frequently found
in all regions of Thailand, which are blast, bacterial blight, brown spot,
narrow brown spot, and bacterial leaf streak.

(2) A set of additional techniques to boost the classification performance
including image augmentations and learning rate adjustment strategy
were applied.

(3) Two kinds of shortcut connection networks including residual neu-
ral networks (ResNets) and densely connected convolutional neural
networks (DenseNets) were adopted to classify such rice diseases.

The rest of the paper is organized as follows: Section 2 presents the
related deep learning works. Then, the proposed framework is introduced
in Section 3. After that, the experimental results are presented in Section 4.
Finally, Section 5 exhibits our conclusion.

2 Related Works

The related works of this research have two folds: rice disease recognition
and shortcut connection networks. The former is the previous studies of rice
disease recognition. The latter is the special type of deep neural networks,
which is our assumption that they can be the proper classifier for this problem.

2.1 Rice Disease Recognition

As we mentioned in the previous section, there are a lot of studies focused
on recognizing rice diseases by using AI technique in the past decade. These
studies can be divided into three categories in term of AI algorithms: (1)
none deep neural network (2) deep neural networks and (3) a mix of both.
In the first category, SVM plays an important role as a default classifier for
this problem. SVM is originally designed for binary classification. It can
be applied to multiclass problem by using one-versus-one or one-versus-all
strategy. SVM cannot classify well when at least two classes are overlapping.
In rice disease recognition, there are a lot of classes that intersect with each
other, e.g., brown spot and narrow brown spot. As a result, its classification
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performance is limited. Yao et al. [7] extracted features from shape, color, and
texture of rice images. Then, the features were classified by SVM. Shrivastava
et al. [12] also used color feature extracted from various color space models.
The features then were classified by a set of traditional classifiers in machine
learning such as SVM, k-nearest neighbors (KNN), decision tree, etc.

Deep neural network is originally designed for multiclass classification
problem by creating the network architecture according to the problem.
Unlike SVM and other machine learning classifiers, DNN itself can do both
feature extraction and classification. The feature extracted by DNN, called
feature map, is achieved from the output of CNN layers inside the network
architecture. Therefore, we can feed rice images directly to the DNN model.
In the second category, there are two sub-groups depended on preprocessing
techniques. The studies in the first sub-group use DNN with slightly prepro-
cessing to make the recognition system less complex and less computation
cost. Moreover, there are some rice diseases that affect the whole plant, e.g.,
stem rot. Therefore, segmentation strategy cannot carry out in this case. Liang
et al. [9] proposed the method of using CNN to recognize rice blast disease
as binary classification problem. They compared their method with the SVM
classifier using various types of features, which are local binary pattern
histogram (LBPH), Haar wavelet transform (Haar-WT), and CNN feature
map. The second sub-group is using DNN with image segmentation. The idea
of this strategy is that segmentation of the disease area of a rice image can
reduce the background noise. Thereby, the recognition performance should be
higher. Phadikar et al. [5] segmented the images in the area of rice blast using
a zooming algorithm. Then the segmented images were performed binary
classification by a neural network. Kiratiratanapruk et al. [13] used a set of
pre-trained CNN models including faster R-CNN, RetinaNet, YOLOv3, and
mask R-CNN to detect the infield rice diseases. In this work, they started by
segmenting the disease area. Then, the marked area was fed into the CNN
models to identify rice diseases.

In the last category, Jiang et al. [8] performed CNN as feature extractor.
The feature map was classified by SVM with radial basis kernel function
(RBF). Moreover, they explored three types of image color space models,
which are RGB (red, green, blue), HSI (hue, saturation, intensity), and YCbCr
(luma signal, blue and red difference of chroma components). Their experi-
mental results show that using R, B, I, and Cr channels to extract features
can achieve higher mean accuracy than the rest channels. Xiao et al. [14]
also used color features from HIS and YCbCr color space model along
with morphological features and texture features. These complicated features
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were analysed the correlation by regression analysis and were reduced the
dimensionality by principal component analysis (PCA). After that, the final
features were classified by backpropagation DNN.

2.2 Shortcut Connection Networks

As we mentioned above, technically, the challenge of the rice disease clas-
sification problem is that the general CNN model cannot achieve good
performance according to the very high detail of the images. Therefore, we
surveyed deeper networks and scoped down to find out suitable architectures.
Recently, shortcut connection networks [15] are becoming more popular and
used widely in many research areas. This kind of network has more discrimi-
native power than the traditional convolutional neural networks because they
can go deeper with more hidden layers. Generally, the effect when we add
more hidden layers into the deep neural network is the gradient vanishing
problem, which makes the adjusted weight in the deeper layers closed to
zero. This phenomenon decreases the classification performance since the
very-close-to-zero weight makes the network cannot extract the feature well.
However, the strategy of the shortcut connection network is making a by-pass
weight between each block of their architecture. Thereby, the model can be
deeper without gradient vanishing.

In the category of shortcut connection networks, there are two outstanding
models, which are ResNet and DenseNet. The difference between them is
their by-pass connection approach. (a) no-shortcut network (in this paper, we
pick the model VGG16 as an example of a general CNN), (b) ResNets, and
(c) DenseNets. In Subsections 2.1 and 2.2, those shortcut connection DNN
models are briefly demonstrated.

2.2.1 Residual neural networks
ResNet [16] is one of the most popular DNN models nowadays and its
architecture is based on CNN network. This network was used in various
problems of image processing including image recognition [17–19]. Gener-
ally, for CNN architecture, the strategy to improve the performance is to go
deeper by increasing the hidden layers. However, as previously mentioned,
this approach leads to the vanishing exploding gradients problem. ResNet can
solve such a problem by the use of shortcut connection as its residual blocks,
which are identity mapping added the output from the previous layer (see
Figure 1(b)). Because this architecture can use the advantage of going deeper
without the disadvantage of the aforementioned vanishing gradient, there are
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         (a)                                              (b)                                             (c) 
Figure 1 Comparison of the Architectures between a General Convolutional Neural Net-
work and Shortcut Connection Networks: (a) No-shortcut Connection Network, (b) ResNet,
and (c) DenseNet.
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many developed models of ResNet and used in diverse kinds of problems.
In this paper, we use ResNet50 and ResNet101 to evaluate the 5-disease rice
dataset.

2.2.2 Densely connected convolutional neural networks
Huang et al. [20] proposed a DNN architecture named DenseNet, which
also uses the benefit of the shortcut connection to overcome the problem of
vanishing gradient. Same as ResNet, this network was employed in diverse
image recognition problems [21–23]. In this model, the input of each layer
is a collection of feature maps of all previous layers. On the other hand, the
output is sent to each subsequent layer (see Figure 1(c)). DenseNet has a
dense block group of layers connected to all their previous layers. Each dense
block has fully connected to other blocks and updates feature maps to reduce
its convolutional parameters. Consequently, it can promote the network to be
high parameter efficient. In the proposed framework of this study, we carried
out two models of DenseNet including DenseNet161 and DenseNet169.

3 The Proposed Framework

This section illustrates the framework of this study. As shown in Figure 2,
the system overview consists of two parts, which are the training module
and the test module. In the training module, input rice images from K5RD
dataset are fed into the system. Then, they are resized to 224 × 224 pixels.
After that, the resized images are augmented and fed to the training models.
In the test module, a test rice disease image is fed into the trained modelled
to get the predicted result. The following sub-sections are described more
details. The information on the data acquisition step is presented first. Then,
the techniques of image augmentations used in the framework are described.
After that, two kinds of learning rate adjustment strategies are reviewed.
Finally, the practical DNN models that are selected to evaluate the dataset
are following presented.

3.1 The K5RD Rice Disease Dataset

The first contribution of this study is the dataset of rice disease images named
the K5RD dataset. This dataset is designed for the single-label multi-class
classification. Since the long-term goal of this research is to create the rice
disease recognition system in an easy-to-use platform, e.g., mobile app or
line bot. The disease classes of the dataset should cover all of the important
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Figure 2 System overview of the proposed rice disease recognition system.

Figure 3 Examples of K5RD rice diseases dataset.

rice diseases in Thailand, which have 18 crucial disease classes and total 23
disease classes [24]. However, for the first phase, we start with the five rice
diseases that are the most frequently found in all regions of Thailand. These
rice diseases include blast, bacterial blight, brown spot, narrow brown spot,
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Table 1 Number of samples per each class in K5RD rice diseases dataset

Disease Number of Samples

Blast 3040

Bacterial blight 3396

Brown spot 1735

Narrow brown spot 2114

Bacterial leaf streak 1938

Total 12223

and bacterial leaf streak. To create the five-class image dataset of those rice
diseases, images of infected leaves of each disease classes were taken from
the rice fields in six provinces from two regions of Thailand, which are the
northern region, i.e., Chiang Rai, Nan, and Phayao, and the central region,
i.e., Pathum Thani, Nakhon Pathom, and Ayutthaya.

Since we also planned to extend the dataset to cover more kinds of dis-
eases in the future by the cooperation of rice farmers and plant pathologists,
the created recognition framework should be compatible with any size, any
setting, and a wide range of environmental conditions such as illumination
and brightness. Therefore, a number of digital and mobile phone cameras
with various settings, e.g., resolution, photo mode, ISO, aperture, were used
to capture disease symptoms for each disease. Finally, all of the images were
checked and confirmed correctness by the plant pathologists. As shown in
Figure 3, the images from each class in the K5RD dataset cover a huge
variance of practical in-field photoshoot condition, i.e., vertical leaf/leaves
with blurred background, vertical leaves with rice-ear background, vertical
leaves with rice-clump background, vertical leaf with skyward background,
horizontal leaves, diagonal leaf, horizontal leaf/leaves with rice-leaf back-
ground, and horizontal leaf with hand background. Hence, the K5RD dataset
is proper to be assessed in a practicable rice disease recognition system.
Concludingly, the names and number of samples of each rice disease class
are presented in Table 1.

3.2 Learning Adjustment Strategy

To tune the deep learning model in the training step, learning rate is an impor-
tant hyperparameter that lets the optimizer controls the step size of weight
adjustment to minimize the loss function in each iteration of training process
[25]. The improper value of learning rate leads to decrease the performance
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score or take longer training time. On one hand, too-small learning rate makes
the training more reliable but the optimizer will take a lot of time to converge
the learning process. On the other hand, too-large learning rate makes the
optimizer cannot reach the minimum loss and then fail to converge.

In this study, we compared two strategies of learning rate adjustments
including static learning rate and discriminative fine-tuning. Static learn-
ing rate [26] is a simple method, in which the model is learned by using
the selected value of learning rate for the whole training process without
changing. While discriminative fine-tuning strategy [27] is more complex
processing. This tuning allows the network to learn each layer with different
learning rates. Practically, this method can be carried out by dividing the
network to layer groups. Then, each group is assigned a different learning
rate descending from an input (largest value) to an output layer (smallest
value), for example, three layer groups with learning rates as 0.001, 0.0001,
0.00001, respectively.

3.3 Image Augmentation

Augmentation is one of preprocessing strategies to enhance the learning effi-
ciency of the deep learning models [28] because this approach produces more
information to the original data. Consequently, this additional data increase
the possibility of the learning model to extract more information in its feature
map. In image-oriented deep learning tasks, there are two folds of data
augmentation: basic image manipulations and deep learning approaches [29].
The first fold bases on basic computational functions, which compose of
kernel filters, color space transformations, random erasing, mixing images,
and geometric transformation; the second fold bases on the deep learning
methodologies, which consist of adversarial training, neural style transfer,
and generative adversarial network (GAN) data augmentation.

In this study, we focus on geometric transformations, which belongs to the
basic image manipulations since they consume slightly computation, which
is good for the practical recognition system. Therefore, we reviewed methods
of this fold including rotation and flip.

3.4 Selected Deep Learning Models

As aforementioned, the DNN architecture that can solve the image recogni-
tion problem composed of high detail images is the model with a package of
convolutional layers with the shortcut connections. In this category, there are
two proper models, i.e., ResNet and DenseNet, which are proved to solve this
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Table 2 ResNet50 and ResNet101 architectures
Stage Layer Filter Size ResNet 50 ResNet 101 No. of Filter Output Size

Input 224× 224× 3

Stage 1 7× 7 Conv. stride 2 64 112× 112× 64

Stage 2

3× 3 Max pooling stride 2

56× 56× 256
1× 1 64

Conv. 3× 3 ×3 ×3 64
1× 1 256

Stage 3 Conv.
1× 1 128

28× 28× 5123× 3 ×4 ×4 128
1× 1 512

Stage 4 Conv.
1× 1 256

14× 14× 10243× 3 ×6 ×23 256
1× 1 1024

Stage 5 Conv.
1× 1 512

7× 7× 20483× 3 ×3 ×3 512
1× 1 2048

Average pool, 1000-d FC, Softmax 1× 1

challenge of recognition problem with high performance compared to general
CNN models.

Therefore, the deep learning models used in this study include ResNet50,
ResNet101, DenseNet161, and DenseNet169. Those ResNets and DenseNets
are briefly presented in Tables 2 and 3, respectively.

– ResNet50 and ResNet101: As shown in Table 2, each of ResNets has
five stages, which each stage has different filter sizes, number of filters,
and repetitions. The difference between ResNet50 and ResNet101 is
that the number of convolution layers in stage 4, which are 6 and 23
layers, respectively. To balance between the recognition performance
and computation time, the size of input images was resized to 224×224
pixels.

– DenseNet161 and DenseNet169: As presented in Table 3, DenseNet
architecture composes of the convolution layer and follows by the
iteration of dense blocks and transitions. The only difference between
DenseNet161 and DenseNet169 is in the last dense block, in which the
repetition of the two convolution layers with filter sizes of 1 × 1 and
3× 3 are 24 and 36, respectively (See Table 3). Similar to ResNets, the
size of input images was resized to 224× 224 pixels.
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Table 3 DenseNet161 and DenseNet169 Architectures
Stage Layer Filter Size DenseNet 161 DenseNet 169 Output Size

Input 224× 224× 3

Convolution 7× 7 Conv. stride 2 112× 112

Pooling 3× 3 Max pooling stride 2

56× 56Dense Block Conv.
1× 1 ×6 ×6
3× 3

Transition
1× 1 Conv.

2× 2 Avg. pooling, stride 2 28× 28

Dense Block Conv.
1× 1 ×12 ×12

28× 283× 3

Transition
1× 1 Conv.

2× 2 Avg. pooling, stride 2 14× 14

Dense Block
Conv. 1× 1 ×36 ×32 14× 14

3× 3

Transition
1× 1 Conv.

2× 2 Avg. pooling, stride 2 7× 7

Dense Block
Conv. 1× 1 ×24 ×32 7× 7

3× 3

7× 7 Average pool, 1000-d FC, Softmax 1× 1

4 Experimental Results

To reveal the performance of the proposed rice disease recognition framework
by the selective models of deep neural networks, a set of experiments and
their results are exhibited in this section. In our experiments, the compared
models can be categorized into two groups: (1) the shortcut connection
networks, which are our assumption that should achieve higher performance
than the baselines (2) the state-of-the-art models in both none deep learn-
ing (SVM) and deep learning algorithm (VGG, the high-performance CNN
network).

Each experiment focuses on significant factors that can improve system
performance as follows. Firstly, two strategies of learning rate adjustment
were evaluated. Then, two kinds of augmentations were applied to the dataset
to find out which one is the most proper augmentation for this problem in
term of boosting classification performance. Finally, a set of selected models
packed with the learning rate setting and the suitable augmentation from the
results of the two aforementioned experiments were accurately evaluated.

Because the problem of rice disease recognition is multiclass classifica-
tion and some classes are overlapping, in the experiments of this study, we
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utilized confusion matrix, precision, recall (or sensitivity), and F1-score to
assess the compared models.

Confusion matrix is a table used to describe the performance of a classi-
fication model on a set of test samples, in which the true values are known.
Each row of the matrix represents the counted samples (or percentage) of
a predicted class while each column represents the counted samples (or
percentage) of an actual class (or vice versa). Confusion matrix can illustrate
the classification detail better than mean accuracy because it shows not only
the true prediction but also the fault prediction of each class. Thereby, we can
look at the detail of the prediction such as the ratio of fault positive and fault
negative of any two compared classes. The performance in term of accuracy
can be defined as follows.

Accuracy =
Ncorrect

Ntotal
(1)

where Ncorrect represents the number of correctly classified samples, N is
the number of total test samples.

Precision is the ratio of the number of correctly predicted positive (true
positive) to the number of all predicted positive (true positive + fault positive.
While sensitivity is the ratio of the number of correctly predicted positive
(true positive) to the number of all samples that should predict as positive
(true positive + fault negative). We presented both of them as well as F1
score, which is the combination of both precision and sensitivity. Precision,
recall, and F1 score can be calculated as follows.

Precision =
NTP

NTP +NFP
(2)

Recall =
NTP

NTP +NFN
(3)

and

F1 score = 2
Precision ·Recall

Precision+Recall
(4)

where NTP , NFP , and NFN represent the number of true positive, false
positive, and false negative, respectively.

The experimental setting used to do such experiments is fixed as follows.
To make the reliability of the following results, 5-fold cross validation was
carried out to evaluate the proposed dataset. According to the network struc-
ture, all images were resized to 224×224 pixels for feeding to the input layer.
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Table 4 Classification accuracy of different learning rate adjustment strategies on the K5RD
Dataset (full size)

Method

Disease Discriminative Static

Blast 0.9803 0.9585

Bacterial blight 0.9838 0.9897

Brown spot 0.9280 0.8098

Narrow brown spot 0.9882 0.9787

Bacterial leaf streak 0.9897 0.9922

Mean accuracy 0.9740 0.9518

The batch size was set to 16, with the epoch equals to 15. The experiments
were run on a desktop computer with the GPU: GeForce RTX 2060 SUPER,
compute 1.7, having 2176 CUDA cores, 8GB GDDR6 VRAM, CPU: core
I3-9100F 3.6 GHz (4 cores, 4 threads), RAM: 8 GB available, and Disk: SSD
SATA3 240 GB.

4.1 Comparison of Different Learning Rate Adjustment
Strategies

To investigate the suitable setting of the learning rate for subsequently com-
pared models, two adjustment strategies including discriminative fine-tuning
and static learning rates are carried out and measure the performance on
the full K5RD dataset by using Dense161 model. In this experiment, the
discriminative learning rate was set to 0.01, 0.001, and 0.0001. The static
learning rate was set to 0.0001. The experimental results are illustrated in
Table 4.

The experimental results in Table 4 show that the strategy of discrimina-
tive fine-tuning can improve the training performance and reaches recognition
rate of 0.9740, which is higher than static learning rate 2.22%.

4.2 Comparison of Different Augmentation Strategies

As we mentioned in Subsection 3.3, a number of augmentations are consid-
ered to integrate with the proposed framework. This experiment compares the
classification performance of six data augmentation approaches including no-
augmentation, rotation 90, 180, 270 degrees, flip vertical, and flip horizontal.
At first, to survey for the proper approach, only 500 samples per class of
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the K5RD dataset were randomly selected and used for no-augmentation
approach. Then, each augmentation generates additional 500 samples per
class, with total of 1,000 samples per class. The model used to evaluate
this comparison is DenseNet161. The results in term of mean classification
accuracy are illustrated in Table 5.

The results in Table 5 shows that vertical flip augmentation has the highest
accuracy with 0.9680, which proves that this augmentation can enhance
the classification performance of the framework. The 180-degree rotation
also performs well (the second-highest approach) with 0.9624 accuracy. To
explore more precisely in every single class, confusion matrices of each
strategy were conducted and presented in Tables 6–11 as follows.

The experimental results in Tables 6–11 show that the most difficult class
is brown spot (BSP), which is frequently identified as narrow brown spot
(NBS). However, three strategies including 180-degree rotation and both flip
augmentations can handle this problem better than other strategies. As a
result, they achieve better results and the vertical flip augmentation achieves
the best results as shown in Tables 5, 8, 10, and 11.

Table 5 Classification accuracies of different data augmentation strategies

Augmentation Mean Accuracy

No Augmentation 0.9200

Rotate 90 Degree 0.9584

Rotate 180 Degree 0.9624

Rotate 270 Degree 0.9570

Flip (Vertical) 0.9680

Flip (Horizontal) 0.9592

Table 6 Confusion matrix of no-augmentation approach

Tr
ue

 c
la

ss
 

Blast 0.9680 0.0080 0.0240 0.0000 0.0000 

Blight 0.0320 0.9680 0.0000 0.0000 0.0000 

BSP 0.0240 0.0080 0.8160 0.0800 0.0720 

NBS 0.0000 0.0000 0.0160 0.9840 0.0000 

Streak 0.0960 0.0000 0.0080 0.0320 0.8640 

  Blast Blight BSP NBS Streak 

  Predicted Class 

  Mean Accuracy = 0.9199 
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Table 7 Confusion matrix of 90-degree rotation approach
Tr

ue
 c

la
ss

 

Blast 0.9680 0.0120 0.0120 0.0040 0.0040 

Blight 0.0120 0.9840 0.0000 0.0000 0.0040 

BSP 0.0160 0.0040 0.8960 0.0640 0.0200 

NBS 0.0040 0.0120 0.0120 0.9720 0.0000 

Streak 0.0120 0.0080 0.0000 0.0080 0.9720 

  Blast Blight BSP NBS Streak 

  Predicted Class 

  Mean Accuracy = 0.9583 

Table 8 Confusion matrix of 180-degree rotation approach

Tr
ue

 c
la

ss
 

Blast 0.9720 0.0160 0.0080 0.0040 0.0000 

Blight 0.0120 0.9760 0.0000 0.0000 0.0120 

BSP 0.0160 0.0040 0.9040 0.0560 0.0200 

NBS 0.0000 0.0040 0.0080 0.9880 0.0000 

Streak 0.0120 0.0040 0.0000 0.0120 0.9720 

  Blast Blight BSP NBS Streak 

  Predicted Class 

  Mean Accuracy = 0.9623 

Table 9 Confusion matrix of 270-degree rotation approach

Tr
ue

 c
la

ss
 

Blast 0.9800 0.0040 0.0120 0.0080 0.0000 

Blight 0.0080 0.9800 0.0040 0.0000 0.0120 

BSP 0.0040 0.0040 0.9000 0.0800 0.0160 

NBS 0.0000 0.0080 0.0280 0.9600 0.0040 

Streak 0.0000 0.0160 0.0000 0.0040 0.9800 

  Blast Blight BSP NBS Streak 

  Predicted Class 

  Mean Accuracy = 0.9576 
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Table 10 Confusion matrix of vertical flip approach
Tr

ue
 c

la
ss

 

Blast 0.9920 0.0000 0.0040 0.0040 0.0000 

Blight 0.0120 0.9800 0.0000 0.0000 0.0080 

BSP 0.0080 0.0040 0.9000 0.0520 0.0360 

NBS 0.0000 0.0040 0.0040 0.9920 0.0000 

Streak 0.0040 0.0080 0.0040 0.0080 0.9760 

  Blast Blight BSP NBS Streak 

  Predicted class 

  Mean Accuracy = 0.9680 

Table 11 Confusion matrix of horizontal flip approach

Tr
ue

 c
la

ss
 

Blast 0.9840 0.0000 0.0120 0.0040 0.0000 

Blight 0.0160 0.9800 0.0000 0.0000 0.0040 

BSP 0.0040 0.0040 0.9080 0.0520 0.0320 

NBS 0.0040 0.0080 0.0280 0.9600 0.0000 

Streak 0.0160 0.0080 0.0040 0.0080 0.9640 

  Blast Blight BSP NBS Streak 

  Predicted Class 

  Mean Accuracy = 0.9591 

4.3 Comparison of Different Classification Models and the
Performance of the Proposed Framework

This experiment focuses on evaluating the performance of the com-
pared models including VGG16 [30], VGG19 [30], ResNet50 [16],
ResNet101 [16], DenseNet161 [20], and Dense169 [20]. Moreover, to con-
firm the propriety of classifier selection for this problem, we also compared
with a none deep learning model, which is support vector machine (SVM)
with bag of words feature representation [31]. The full size of the K5RD
dataset without augmentation and static learning rate was evaluated by using
these models. Table 12 presents the results in term of recognition rate as
follows.

The experimental results in Table 12 show that DenseNet161 performs
best with 0.9740 of mean accuracy. Then, we experimented on the full size of
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Table 12 Classification accuracies on the K5RD dataset (full size) of different classification
models

Model Mean Accuracy

SVM 0.6462

VGG16 0.9077

VGG19 0.9167

ResNet50 0.9168

ResNet101 0.9250

DenseNet161 0.9740

DenseNet169 0.9498

Table 13 Classification accuracies on the K5RD dataset (full size) of all data augmentation
strategies

Augmentation Accuracy

No Augmentation 0.9740

Rotate 90 Degrees 0.9760

Rotate 180 Degrees 0.9862

Rotate 270 Degrees 0.9628

Flip (Vertical) 0.9737

Flip (Horizontal) 0.9812

the K5RD dataset to confirm the exploration from Subsections 4.1 and 4.2.
We integrated the discriminative fine-tuning with all augmentation strategies.
The experimental results are presented in Table 13.

In this time, when the data size is bigger, the 180-degree rotation has
the highest accuracy with 0.9862 while the horizontal flip got the second
place with 0.9812. Therefore, we created the proposed framework, which
is the DenseNet161 model with discriminative fine-tuning and 180-degree
rotation augmentation. The framework was assessed by confusion matrix and
F1 scores of each disease class as presented in Tables 14 and 15.

The experimental results from Table 14 present the classification accu-
racies of each class. The class that got the worst result is still the brown
spot disease. However, with additional augmentation and discriminative fine-
tuning, it achieves a better score than the previous experiments, which is
0.9481. The mean accuracy of the proposed framework is 0.9862. Table 15
presents the F1 scores of this framework, which confirm that the reliability
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Table 14 Confusion matrix of the proposed framework on K5RD dataset (full size)
Tr

ue
 c

la
ss

 

Blast 0.9951 0.0016 0.0016 0.0016 0.0000 

Blight 0.0029 0.9926 0.0000 0.0015 0.0029 

BSP 0.0144 0.0086 0.9481 0.0259 0.0029 

NBS 0.0000 0.0000 0.0024 0.9976 0.0000 

Streak 0.0026 0.0000 0.0000 0.0000 0.9974 

  Blast Blight BSP NBS Streak 

  Predicted class 

  Mean Accuracy = 0.9862 

Table 15 F1 scores of each disease class of the proposed framework

Disease Precision Recall F1-score

Blast 0.9869 0.9951 0.9910

Blight 0.9941 0.9926 0.9934

BPS 0.9940 0.9481 0.9705

NBS 0.9745 0.9976 0.9859

Streak 0.9923 0.9974 0.9948

Average 0.9884 0.9862 0.9871

of the proposed framework, which achieves precision, recall, and F1 score as
0.9884, 0.9862, and 0.9871, respectively.

5 Conclusion

This paper presents an image recognition framework on the five most fre-
quently found rice diseases in Thailand. The 5-class dataset of these rice
diseases, named K5RD, was collected from the real fields in six provinces
from the northern and the central regions of Thailand. Then, two kinds
of learning rate adjustment strategies, which are static learning rate and
discriminative fine-tuning, were surveyed. After that, a set of image augmen-
tations including rotations and flips were studied. Finally, a list of shortcut
connection DNN models including ResNet50, ResNet101, DenseNet161,
and DenseNet169 were evaluated and compared with the general CNN
models (VGG16 and VGG19). The proposed framework is composed of
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DenseNet161 model using discriminative fine-tuning and 180-degree aug-
mentation. The experiment results by using 5-fold cross validation reveal that
this framework achieves the best results with 0.9862.

Future works can be extended the scope to cover more kinds of diseases,
which may have different characteristics of their images and lead to the
different proper classification models. Moreover, to make the model better
fit the problem, such a model may achieve by custom some existing DNNs
as well as the framework. On the other hand, the proposed strategy can be
modified and applied to other closed problems, e.g., disease recognition on
other kinds of grain.
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